Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
Environ Res ; 220: 115240, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36621544

RESUMO

In order to solve nitrogen pollution in environmental water, two heterotrophic nitrifying and aerobic denitrifying strains isolated from acid paddy soil were identified as Achromobacter sp. strain HNDS-1 and Enterobacter sp. strain HNDS-6 respectively. Strain HNDS-1 and strain HNDS-6 exhibited amazing ability to nitrogen removal. When (NH4)2SO4, KNO3, NaNO2 were used as nitrogen resource respectively, the NH4+-N, NO3--N, NO2--N removal efficiencies of strain HNDS-1 were 93.31%, 89.47%, and 100% respectively, while those of strain HNDS-6 were 82.39%, 96.92%, and 100%. And both of them could remove mixed nitrogen effectively in low C/N (C/N = 5). Strain HNDS-1 could remove 76.86% NH4+-N and 75.13% NO3--N. And strain HNDS-6 can remove 65.07% NH4+-N and 78.21% NO3--N. A putative ammonia monooxygenase, nitrite reductase, nitrate reductase, assimilatory nitrate reductase, nitrate/nitrite transport protein and nitric oxide reductase of strain HNDS-1, while hydroxylamine reductase, nitrite reductase, nitrate reductase, assimilatory nitrate reductase, nitrate/nitrite transport protein, and nitric oxide reductase of strain HNDS-6 were identified by genomic analysis. DNA-SIP analysis showed that genes Nxr, narG, nirK, norB, nosZ were involved in nitrogen removal pathway, which indicates that the denitrification pathway of strain HNDS-1 and strain HNDS-6 was NO3-→NO2-→NO→N2O→N2 during NH4+-N removal process. And the nitrification pathway of strain HNDS-1 and strain HNDS-6 was NO2-→NO3-, but the nitrification pathway of NH4+→ NO2- needs further studies.


Assuntos
Achromobacter , Desnitrificação , Enterobacter , Nitrificação , Achromobacter/genética , Achromobacter/metabolismo , Aerobiose/genética , Aerobiose/fisiologia , Desnitrificação/genética , Desnitrificação/fisiologia , Enterobacter/genética , Enterobacter/metabolismo , Nitratos/metabolismo , Nitrificação/genética , Nitrificação/fisiologia , Nitrito Redutases/metabolismo , Nitritos/metabolismo , Nitrogênio/metabolismo , Dióxido de Nitrogênio/metabolismo
2.
Chemosphere ; 309(Pt 1): 136641, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36183891

RESUMO

Denitrification, a typical biological process mediated by complex environmental factors, i.e., carbon sources and dissolved oxygen (DO), has attracted great attention due to its contribution to the control of eutrophication and the biochemical cycling of nitrogen. However, the effects of carbon source on electron distribution and enzyme expression for enhanced denitrification under competition of electron acceptors (DO and nitrate) remain unclear. Here, we profile the carbon metabolic pathway of polyhydroxybutyrate (PHB) and glucose (Glu) at high and low DO levels (50% and 10% saturated DO, respectively). It was found that PHB enhanced the growth of Pseudomonas stutzeri (model denitrifying bacterium) and improved the specific nitrogen removal rate (SNRR) at all DO levels. The functional proteins had a better affinity for the cofactor nicotinamide-adenine dinucleotide (NADH) than for nicotinamide adenine dinucleotide phosphate (NADPH); thus, more electrons were involved in nitrogen reduction and intracellular PHB production in the PHB groups than in the Glu groups. Furthermore, the expression difference of enzymes in glucose and PHB metabolism was demonstrated by metaproteomic and target protein analysis, implying that PHB-driven intracellular carbon accumulation could optimize the intracellular electron allocation and correspondingly promote nitrogen metabolism. Our work integrated the mechanisms of intracellular carbon metabolism with preferences for electron transfer pathways in denitrification, providing a new perspective on how the selective parameters regulated microbial functions involved in denitrification.


Assuntos
Desnitrificação , Pseudomonas stutzeri , Desnitrificação/fisiologia , Pseudomonas stutzeri/metabolismo , Carbono/metabolismo , Nitratos/metabolismo , NAD/metabolismo , NADP/metabolismo , Oxigênio/metabolismo , Nitrogênio/metabolismo , Glucose/metabolismo
3.
Sci Total Environ ; 843: 156841, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35750160

RESUMO

The occurrence of nitrate is the most significant type of pollution affecting groundwater globally, being a major contributor to the poor condition of water bodies. This pollution is related to livestock-agricultural and urban activities, and the nitrate presence in drinking water has a clear impact on human health. For example, it causes the blue child syndrome. Moreover, the high nitrate content in aquifers and surface waters significantly affects aquatic ecosystems since it is responsible for the eutrophication of surface water bodies. A treatability test was performed in the laboratory to study the decrease of nitrate in the capture zone of water supply wells. For this purpose, two boreholes were drilled from which groundwater and sediments were collected to conduct the test. The goal was to demonstrate that nitrate in groundwater can be decreased much more efficiently using combined abiotic and biotic methods with micro-zero valent iron and biostimulation with lactic acid, respectively, than when both strategies are used separately. The broader implications of this goal derive from the fact that the separate use of these reagents decreases the efficiency of nitrate removal. Thus, while nitrate is removed using micro-valent iron, high concentrations of harmful ammonium are also generated. Furthermore, biostimulation alone leads to overgrowth of other microorganisms that do not result in denitrification, therefore complete denitrification requires more time to occur. In contrast, the combined strategy couples abiotic denitrification of nitrate with biostimulation of microorganisms capable of biotically transforming the abiotically generated harmful ammonium. The treatability test shows that the remediation strategy combining in situ chemical reduction using micro-zero valent iron and biostimulation with lactic acid could be a viable strategy for the creation of a reactive zone around supply wells located in regions where groundwater and porewater in low permeability layers are affected by diffuse nitrate contamination.


Assuntos
Compostos de Amônio , Água Subterrânea , Poluentes Químicos da Água , Desnitrificação/fisiologia , Ecossistema , Água Subterrânea/química , Ferro/química , Ácido Láctico , Nitratos/análise , Óxidos de Nitrogênio , Água , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 826: 154173, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35240182

RESUMO

The direct effect of CO2 on denitrification has attracted great attention currently. Our previous studies have confirmed that CO2 inhibited heterotrophic denitrification and caused high nitrite accumulation and nitrous oxide emission. Cysteine is a widely reported bio-accelerator; however, its effect on denitrification under CO2 exposure remains unknown. In this paper, the effect of cysteine on heterotrophic denitrification and its mechanisms under CO2 exposure were explored with the model denitrifier, Paracoccus denitrificans. We observed that total nitrogen removal increased from 17.9% to 90.4% as cysteine concentration increased from 0 to 50 µM, probably due to restoration of cell growth and viability. Further study showed that cysteine reduced the inhibition of CO2 on denitrification due to multiple positive influences: (1) regulating glutathione metabolism to eliminate intracellular reactive nitrogen species (RNS), while reducing extracellular polymeric substances (EPS) levels and altering its composition, ultimately restoring cell membrane integrity (2) facilitating the transport and metabolism of carbon sources to increase NADH production, and (3) increasing intracellular iron and up-regulating the expression of key iron transporters genes (AfuA, AfuB, ExbB and TonB) to restore the transport and consumption of electron. This study suggests that cysteine can be added to recover heterotrophic denitrification performance after inhibition by elevated CO2.


Assuntos
Carbono , Desnitrificação , Carbono/metabolismo , Dióxido de Carbono/farmacologia , Cisteína/metabolismo , Desnitrificação/fisiologia , Processos Heterotróficos , Ferro/farmacologia , Nitratos/metabolismo , Nitrogênio/metabolismo , Oxirredução
5.
Biotechnol Bioeng ; 119(1): 268-276, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34698369

RESUMO

Generally, high bioelectroactivity of anodophilic biofilm favors high power generation of microbial fuel cell (MFC); however, it is not clear whether it can promote denitrification of MFC synchronously. In this study, we studied the impact of anodophilic biofilm bioelectroactivity on the denitrification behavior of air-cathode MFC (AC-MFC) in steady state and found that high bioelectroactivity of anodophilic biofilm not only favored high power generation of the AC-MFC, but also promoted the growth of denitrifers at the anodes and strengthened denitrification. Anodophilic biofilms of AC-MFC with various bioelectroactivity were acclimated at conditions of open circuit (OC), Rext of 1000 Ω and 20 Ω (denoted as AC-MFC-OC, AC-MFC-1000Ω, and AC-MFC-20Ω, respectively) and performed for over 100 days. Electrochemical tests and microbial analysis results showed that the anode of the AC-MFC-20Ω delivered higher current response of both oxidation and denitrification and had higher abundance of electroactive bacteria than the AC-MFC-OC, AC-MFC-1000Ω, demonstrating a higher bioelectroactivity of the anodophilic biofilms. Moreover, these electroactive bacteria favored the accumulation of denitrifers, like Thauera and Alicycliphilus, probably by consuming trace oxygen through catalyzing oxygen reduction. The AC-MFC-20Ω not only delivered a 61.7% higher power than the AC-MFC-1000Ω, but also achieved a stable and high denitrification rate constant (kDN ) of 1.9 h-1 , which was 50% and 40% higher than that of the AC-MFC-OC and AC-MFC-1000Ω, respectively. It could be concluded that the high bioelectroactivity of the anodophilic biofilms not only favored high power generation of the AC-MFC, but also promoted the enrichment of denitrifers at the anodes and strengthened denitrification. This study provided an effective method for enhancing power generation and denitrification performance of the AC-MFC synchronously.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Biofilmes , Desnitrificação/fisiologia , Ar , Eletrodos/microbiologia
6.
Biotechnol Bioeng ; 119(1): 257-267, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34693996

RESUMO

Nitrous oxide (N2 O) was previously deemed as a potent greenhouse gas but is actually an untapped energy source, which can accumulate during the microbial denitrification of nitric oxide (NO). Compared with the organic electron donor required in heterotrophic denitrification, elemental sulfur (S0 ) is a promising electron donor alternative due to its cheap cost and low biomass yield in sulfur-driven autotrophic denitrification. However, no effort has been made to test N2 O recovery from sulfur-driven denitrification of NO so far. Therefore, in this study, batch and continuous experiments were carried out to investigate the NO removal performance and N2 O recovery potential via sulfur-driven NO-based denitrification under various Fe(II)EDTA-NO concentrations. Efficient energy recovery was achieved, as up to 35.5%-40.9% of NO was converted to N2 O under various NO concentrations. N2 O recovery from Fe(II)EDTA-NO could be enhanced by the low bioavailability of sulfur and the acid environment caused by sulfur oxidation. The NO reductase (NOR) and N2 O reductase (N2 OR) were inhibited distinctively at relatively low NO levels, leading to efficient N2 O accumulation, but were suppressed irreversibly at NO level beyond 15 mM in continuous experiments. Such results indicated that the regulation of NO at a relatively low level would benefit the system stability and NO removal capacity during long-term system operation. The continuous operation of the sulfur-driven Fe(II)EDTA-NO-based denitrification reduced the overall microbial diversity but enriched several key microbial community. Thauera, Thermomonas, and Arenimonas that are able to carry out sulfur-driven autotrophic denitrification became the dominant organisms with their relative abundance increased from 25.8% to 68.3%, collectively.


Assuntos
Desnitrificação/fisiologia , Microbiota , Óxido Nítrico , Óxido Nitroso , Enxofre/metabolismo , Processos Autotróficos/fisiologia , Microbiota/genética , Microbiota/fisiologia , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Óxido Nitroso/análise , Óxido Nitroso/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34764222

RESUMO

Benthic N2 production by microbial denitrification and anammox is the largest sink for fixed nitrogen in the oceans. Most N2 production occurs on the continental shelves, where a high flux of reactive organic matter fuels the depletion of nitrate close to the sediment surface. By contrast, N2 production rates in abyssal sediments are low due to low inputs of reactive organics, and nitrogen transformations are dominated by aerobic nitrification and the release of nitrate to the bottom water. Here, we demonstrate that this trend is reversed in the deepest parts of the oceans, the hadal trenches, where focusing of reactive organic matter enhances benthic microbial activity. Thus, at ∼8-km depth in the Atacama Trench, underlying productive surface waters, nitrate is depleted within a few centimeters of the sediment surface, N2 production rates reach those reported from some continental margin sites, and fixed nitrogen loss is mainly conveyed by anammox bacteria. These bacteria are closely related to those known from shallow oxygen minimum zone waters, and comparison of activities measured in the laboratory and in situ suggest they are piezotolerant. Even the Kermadec Trench, underlying oligotrophic surface waters, exhibits substantial fixed N removal. Our results underline the role of hadal sediments as hot spots of deep-sea biological activity, revealing a fully functional benthic nitrogen cycle at high hydrostatic pressure and pointing to hadal sediments as a previously unexplored niche for anaerobic microbial ecology and diagenesis.


Assuntos
Sedimentos Geológicos/microbiologia , Fixação de Nitrogênio/fisiologia , Bactérias Fixadoras de Nitrogênio/metabolismo , Nitrogênio/metabolismo , Oxidação Anaeróbia da Amônia/fisiologia , Desnitrificação/fisiologia , Microbiota/fisiologia , Nitratos/metabolismo , Nitrificação/fisiologia , Ciclo do Nitrogênio/fisiologia , Oceanos e Mares
8.
Bioengineered ; 12(1): 7529-7551, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34652267

RESUMO

The naturally occurring biomineralization or microbially induced calcium carbonate (MICP) precipitation is gaining huge attention due to its widespread application in various fields of engineering. Microbial denitrification is one of the feasible metabolic pathways, in which the denitrifying microbes lead to precipitation of carbonate biomineral by their basic enzymatic and metabolic activities. This review article explains all the metabolic pathways and their mechanism involved in the MICP process in detail along with the benefits of using denitrification over other pathways during MICP implementation. The potential application of denitrification in building materials pertaining to soil reinforcement, bioconcrete, restoration of heritage structures and mitigating the soil pollution has been reviewed by addressing the finding and limitation of MICP treatment. This manuscript further sheds light on the challenges faced during upscaling, real field implementation and the need for future research in this path. The review concludes that although MICP via denitrification is an promising technique to employ it in building materials, a vast interdisciplinary research is still needed for the successful commercialization of this technique.


Assuntos
Bactérias , Biomineralização , Carbonato de Cálcio , Materiais de Construção/microbiologia , Desnitrificação/fisiologia , Bactérias/química , Bactérias/metabolismo , Carbonato de Cálcio/química , Carbonato de Cálcio/metabolismo , Redes e Vias Metabólicas , Solo
9.
Microbiologyopen ; 10(4): e1227, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34459550

RESUMO

The imperfect denitrifier, Candidatus (Ca.) Desulfobacillus denitrificans, which lacks nitric oxide (NO) reductase, frequently appears in anammox bioreactors depending on the operating conditions. We used genomic and metatranscriptomic analyses to evaluate the metabolic potential of Ca. D. denitrificans and deduce its functional relationships to anammox bacteria (i.e., Ca. Brocadia pituitae). Although Ca. D. denitrificans is hypothesized to supply NO to Ca. B. pituitae as a byproduct of imperfect denitrification, this microbe also possesses hydroxylamine oxidoreductase, which catalyzes the oxidation of hydroxylamine to NO and potentially the reverse reaction. Ca. D. denitrificans can use a range of electron donors for denitrification, including aromatic compounds, glucose, sulfur compounds, and hydrogen, but metatranscriptomic analysis suggested that the major electron donors are aromatic compounds, which inhibit anammox activity. The interrelationship between Ca. D. denitirificans and Ca. B. pituitae via the metabolism of aromatic compounds may govern the population balance of both species. Ca. D. denitrificans also has the potential to fix CO2 via an irregular Calvin cycle and couple denitrification to the oxidation of hydrogen and sulfur compounds under chemolithoautotrophic conditions. This metabolic versatility, which suggests a mixotrophic lifestyle, would facilitate the growth of Ca. D. denitrificans in the anammox bioreactor.


Assuntos
Compostos de Amônio/metabolismo , Oxidação Anaeróbia da Amônia/fisiologia , Betaproteobacteria/metabolismo , Reatores Biológicos/microbiologia , Desnitrificação/fisiologia , Anaerobiose , Dióxido de Carbono/metabolismo , Perfilação da Expressão Gênica , Glucose/metabolismo , Compostos Inorgânicos/metabolismo , Ácido Nítrico/metabolismo , Oxirredução , Planctomicetos/metabolismo , Compostos de Enxofre/metabolismo , Transcriptoma/genética
10.
Environ Microbiol ; 23(1): 239-251, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33118311

RESUMO

Denitrification causes nitrogen losses from terrestrial ecosystems. The magnitude of nitrogen loss depends on the prevalence of denitrifiers, which show ecological differences if they harbour nirS or nirK genes encoding nitrite reductases with the same biological function. Thus, it is relevant to understand the mechanisms of co-existence of denitrifiers, including their response to environmental filters and competition due to niche similarities. We propose a framework to analyse the co-existence of denitrifiers across multiple assemblages by using nir gene-based co-occurrence networks. We applied it in Mediterranean soils before and during 1 year after an experimental fire. Burning did not modify nir community structure, but significantly impacted co-occurrence patterns. Bacteria with the same nir co-occurred in space, and those with different nir excluded each other, reflecting niche requirements: nirS abundance responded to nitrate and salinity, whereas nirK to iron content. Prior to fire, mutual exclusion between bacteria with the same nir suggested competition due to niche similarities. Burning provoked an immediate rise in mineral nitrogen and erased the signals of competition, which emerged again within days as nir abundances peaked. nir co-occurrence patterns can help infer the assembly mechanisms of denitrifying communities, which control nitrogen losses in the face of ecological disturbance.


Assuntos
Bactérias/metabolismo , Desnitrificação/fisiologia , Incêndios , Nitrito Redutases/genética , Nitrito Redutases/metabolismo , Bactérias/genética , Desnitrificação/genética , Ecossistema , Nitratos/metabolismo , Nitrogênio/metabolismo , Salinidade , Solo/química , Microbiologia do Solo
11.
FEBS J ; 288(1): 244-261, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32255259

RESUMO

Certain facultative anaerobes such as the opportunistic human pathogen Pseudomonas aeruginosa can respire on nitrate, a process generally known as denitrification. This enables denitrifying bacteria to survive in anoxic environments and contributes, for example, to the formation of biofilm, hence increasing difficulties in eradicating P. aeruginosa infections. A central step in denitrification is the reduction of nitrite to nitric oxide by nitrite reductase NirS, an enzyme that requires the unique cofactor heme d1 . While heme d1 biosynthesis is mostly understood, the role of the essential periplasmatic protein NirF in this pathway remains unclear. Here, we have determined crystal structures of NirF and its complex with dihydroheme d1 , the last intermediate of heme d1 biosynthesis. We found that NirF forms a bottom-to-bottom ß-propeller homodimer and confirmed this by multi-angle light and small-angle X-ray scattering. The N termini are adjacent to each other and project away from the core structure, which hints at simultaneous membrane anchoring via both N termini. Further, the complex with dihydroheme d1 allowed us to probe the importance of specific residues in the vicinity of the ligand binding site, revealing residues not required for binding or stability of NirF but essential for denitrification in experiments with complemented mutants of a ΔnirF strain of P. aeruginosa. Together, these data suggest that NirF possesses a yet unknown enzymatic activity and is not simply a binding protein of heme d1 derivatives. DATABASE: Structural data are available in PDB database under the accession numbers 6TV2 and 6TV9.


Assuntos
Proteínas de Bactérias/química , Heme/análogos & derivados , Periplasma/genética , Pseudomonas aeruginosa/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Desnitrificação/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Deleção de Genes , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Heme/biossíntese , Heme/química , Modelos Moleculares , Periplasma/química , Periplasma/enzimologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/enzimologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Termodinâmica
12.
Sci Rep ; 10(1): 16053, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994429

RESUMO

Factors influencing production of greenhouse gases nitrous oxide (N2O) and nitrogen (N2) in arable soils include high nitrate, moisture and plants; we investigate how differences in the soil microbiome due to antecedent soil treatment additionally influence denitrification. Microbial communities, denitrification gene abundance and gas production in soils from tilled arable plots with contrasting fertilizer inputs (no N, mineral N, FYM) and regenerated woodland in the long-term Broadbalk field experiment were investigated. Soil was transferred to pots, kept bare or planted with wheat and after 6 weeks, transferred to sealed chambers with or without K15NO3 fertilizer for 4 days; N2O and N2 were measured daily. Concentrations of N2O were higher when fertilizer was added, lower in the presence of plants, whilst N2 increased over time and with plants. Prior soil treatment but not exposure to N-fertiliser or plants during the experiment influenced denitrification gene (nirK, nirS, nosZI, nosZII) relative abundance. Under our experimental conditions, denitrification generated mostly N2; N2O was around 2% of total gaseous N2 + N2O. Prior long-term soil management influenced the soil microbiome and abundance of denitrification genes. The production of N2O was driven by nitrate availability and N2 generation increased in the presence of plants.


Assuntos
Desnitrificação/fisiologia , Microbiologia do Solo , Solo/química , Fertilizantes/análise , Microbiota , Nitrogênio/análise , Óxido Nitroso/análise , Plantas
13.
World J Microbiol Biotechnol ; 36(10): 151, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32924078

RESUMO

Nitrogen and phosphorous are important inorganic water pollutants that pose a major threat to the environment and health of both humans and animals. The physical and chemical ways to remove these pollutants from water and soil are expensive and harsh, so biological removal becomes the method of choice to alleviate the problem without any side effects. The identification of microorganisms capable of simultaneous heterotrophic nitrification and aerobic denitrification has greatly simplified the sequestration of nitrogen from ammonium (NH4+) into dinitrogen (N2). Further, the discovery of phosphorous accumulating organisms offers greater economic benefits because these organisms can favourably and simultaneously remove both nitrogen and phosphorous from wastewaters hence reducing the nutrient burden. The stability of the system and removal efficiency of inorganic pollutants can be enhanced by the use of immobilized organisms. However, limited work has been done so far in this direction and there is a need to further the efforts towards refining process efficiency by testing low-cost substrates and diverse microbial populations for the total eradication of these contaminants from wastewaters.


Assuntos
Desnitrificação/fisiologia , Nitrificação/fisiologia , Fosfatos/metabolismo , Purificação da Água/métodos , Biodegradação Ambiental , Poluentes Ambientais , Processos Heterotróficos , Imobilização , Nitrogênio/análise , Fósforo , Águas Residuárias
14.
Sci Rep ; 10(1): 10002, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561802

RESUMO

A salt-tolerant denitrifying bacterium strain F2 was isolated from seawall muddy water in Dalian City, Liaoning Province, China. Strain F2 was identified by morphological observations, physiological and biochemical characteristics and 16 S rDNA identification. The salt tolerance of strain F2 was verified and the factors affecting the removal ability of strain F2 to nitrous nitrogen (NO2-N) and nitrate nitrogen (NO3-N) in saline conditions were investigated. Strain F2 was identified as Alishewanella sp., named Alishewanella sp. F2. Strain F2 can tolerate NaCl concentrations up to 70 g/L, and its most efficient denitrification capacity was observed at NaCl concentrations of 0-30 g/L. In the medium with NaCl concentrations of 0-30 g/L, strain F2 exhibited high removal efficiencies of NO2-N and NO3-N, with the removal percentages for both NO2-N and NO3-N of approximately 99%. In saline conditions with 30 g/L NaCl, the optimum culture pH, NaNO2 initial concentrations and inoculation sizes of strain F2 were 8-10, 0.4-0.8 g/L and 5-7%, respectively. Strain F2 was highly effective in removing NO2-N and NO3-N in saline conditions, and it has a good application potential in saline wastewater treatment.


Assuntos
Alteromonadaceae/isolamento & purificação , Desnitrificação/fisiologia , Tolerância ao Sal/genética , Águas Residuárias/microbiologia , Alteromonadaceae/genética
15.
Chemosphere ; 257: 127269, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32531490

RESUMO

Various sole and mixed electron donors were tested to promote the denitrification rate and nitrate removal efficiency in biofilter systems with high phosphate and ammonia removal efficiency (92.6% and 95.3% respectively). Compared to sole electron donors, complex organic carbon (bits of wood and straw) substantially improved the denitrification rate and nitrate removal efficiency (from 6.3%-18.5% to35.4%) by shifting the denitrifying microbial community composition, even though the relative abundance of functional genes mediating denitrification decreased. The mixed electron donor combining complex organic carbon with sulfur, iron and CH4 further promoted nitrate removal efficiency by 37.2%. The significantly higher abundance and diversity of bacteria mediating organic carbon decomposition in the treatments with complex organic carbon indicated the continuous production of organic carbon with small molecular weights, which provided sustainable and effective electron donor for denitrification. However, sole sulfur or iron did not effectively promote the denitrification rate and nitrogen removal efficiency, even though the related microbial community had been formed.


Assuntos
Reatores Biológicos/microbiologia , Desnitrificação/fisiologia , Microbiota , Bactérias , Carbono , Elétrons , Metagenoma , Nitratos , Nitrogênio , Óxidos de Nitrogênio , Enxofre
16.
J Biol Chem ; 295(27): 9021-9032, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32409583

RESUMO

Many proteobacteria, such as Escherichia coli, contain two main types of quinones: benzoquinones, represented by ubiquinone (UQ) and naphthoquinones, such as menaquinone (MK), and dimethyl-menaquinone (DMK). MK and DMK function predominantly in anaerobic respiratory chains, whereas UQ is the major electron carrier in the reduction of dioxygen. However, this division of labor is probably not very strict. Indeed, a pathway that produces UQ under anaerobic conditions in an UbiU-, UbiV-, and UbiT-dependent manner has been discovered recently in E. coli Its physiological relevance is not yet understood, because MK and DMK are also present in E. coli Here, we established that UQ9 is the major quinone of Pseudomonas aeruginosa and is required for growth under anaerobic respiration (i.e. denitrification). We demonstrate that the ORFs PA3911, PA3912, and PA3913, which are homologs of the E. coli ubiT, ubiV, and ubiU genes, respectively, are essential for UQ9 biosynthesis and, thus, for denitrification in P. aeruginosa These three genes here are called ubiTPa , ubiVPa , and ubiUPa We show that UbiVPa accommodates an iron-sulfur [4Fe-4S] cluster. Moreover, we report that UbiUPa and UbiTPa can bind UQ and that the isoprenoid tail of UQ is the structural determinant required for recognition by these two Ubi proteins. Since the denitrification metabolism of P. aeruginosa is believed to be important for the pathogenicity of this bacterium in individuals with cystic fibrosis, our results highlight that the O2-independent UQ biosynthetic pathway may represent a target for antibiotics development to manage P. aeruginosa infections.


Assuntos
Desnitrificação/fisiologia , Pseudomonas aeruginosa/metabolismo , Ubiquinona/biossíntese , Vias Biossintéticas , Respiração Celular , Transporte de Elétrons , Oxigênio/metabolismo , Quinonas/metabolismo , Ubiquinona/metabolismo , Vitamina K 2/metabolismo
17.
Environ Microbiol ; 22(6): 2124-2139, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32124508

RESUMO

The balance between nitrate respiration pathways, denitrification and dissimilatory nitrate (NO3 - ) reduction to ammonium (DNRA), determines whether bioavailable nitrogen is removed as N2 gas or recycled as ammonium. Saltwater intrusion and organic matter enrichment may increase sulphate reduction leading to sulphide accumulation. We investigated the effects of sulphide on the partitioning of NO3 - between complete denitrification and DNRA and the microbial communities in salt marsh sediments. Complete denitrification significantly decreased with increasing sulphide, resulting in an increase in the contribution of DNRA to NO3 - respiration. Alternative fates of NO3 - became increasingly important at higher sulphide treatments, which could include N2 O production and/or transport into intracellular vacuoles. Higher 16S transcript diversity was observed in the high sulphide treatment, with clear shifts in composition. Generally, low and no sulphide, coupled with high NO3 - , favoured the activity of Campylobacterales, Oceanospirillales and Altermonadales, all of which include opportunistic denitrifiers. High ∑sulphide conditions promoted the activity of potential sulphide oxidizing nitrate reducers (Desulfobulbaceae, Acidiferrobacteraceae and Xanthomonadales) and sulphate reducers (Desulfomonadaceae, Desulfobacteraceae). Our study highlights the tight coupling between N and S cycling, and the implications of these dynamics on the fate of bioavailable N in coastal environments susceptible to intermittent saltwater inundation and organic matter enrichment.


Assuntos
Compostos de Amônio/metabolismo , Desnitrificação/fisiologia , Gammaproteobacteria/metabolismo , Sedimentos Geológicos/microbiologia , Sulfetos/farmacologia , Sedimentos Geológicos/química , Microbiota , Nitratos/metabolismo , Nitrogênio/metabolismo , Áreas Alagadas
18.
Ecotoxicol Environ Saf ; 194: 110343, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32151862

RESUMO

For the treatment of low C/N wastewaters, methanol or acetate is usually dosed as electron donor for denitrification but such organics makes the process costly. To decrease the cost, iron which is the fourth most abundant element in lithosphere is suggested as the substitution of methanol and acetate. The peak volumetric removal rate (VRR) of nitrate nitrogen in the ferrous iron-dependent nitrate removal (FeNiR) reactor was 0.70 ± 0.04 kg-N/(m3·d), and the corresponding removal efficiency was 98%. Iron showed toxicity to cells by decreasing the live cell amount (dropped 56%) and the live cell activity (dropped 70%). The toxicity of iron was mainly expressed by the formation of iron encrustation. From microbial community data analysis, heterotrophs (Paracocccus, Thauera and Azoarcus) faded away while the facultative chemolithotrophs (Hyphomicrobium and Anaerolineaceae_uncultured) dominated in the reactor after replacing acetate with ferrous iron in the influent. Through scanning electron microscope (SEM) and transmission electron microscope (TEM), two iron oxidation sites in FeNiR cells were observed and accordingly two FeNiR mechanisms were proposed: 1) extracellular FeNiR in which ferrous iron was bio-oxidized extracellularly; and 2) intracellular FeNiR in which ferrous iron was chemically oxidized in periplasm. Bio-oxidation (extracellular FeNiR) and chemical oxidation (intracellular FeNiR) of ferrous iron coexisted in FeNiR reactor, but the former one predominated. Comparing with the control group without electron donor in the influent, FeNiR reactor showed 2 times higher and stable nitrate removal rate, suggesting iron could be used as electron donor for denitrification. However, further research works are still needed for the practical application of FeNiR in wastewater treatment.


Assuntos
Desnitrificação/fisiologia , Elétrons , Ferro/química , Reatores Biológicos , Compostos Férricos , Nitratos , Nitrogênio , Oxirredução , Águas Residuárias
19.
Sci Rep ; 10(1): 2215, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32042029

RESUMO

Biological ammonium removal via heterotrophic nitrification/aerobic denitrification (HN/AD) presents several advantages in relation to conventional removal processes, but little is known about the microorganisms and metabolic pathways involved in this process. In this study, Pseudomonas stutzeri UFV5 was isolated from an activated sludge sample from oil wastewater treatment station and its ammonium removal via HN/AD was investigated by physicochemical and molecular approaches to better understand this process and optimize the biological ammonium removal in wastewater treatment plants. Results showed that P. stutzeri UFV5 removed all the ammonium in 48-72 hours using pyruvate, acetate, citrate or sodium succinate as carbon sources, C/N ratios 6, 8, 10 and 12, 3-6% salinities, pH 7-9 and temperatures of 20-40 °C. Comparative genomics and PCR revealed that genes encoding the enzymes involved in anaerobic denitrification process are present in P. stutzeri genome, but no gene that encodes enzymes involved in autotrophic nitrification was found. Furthermore, transcriptomics showed that none of the known enzymes of autotrophic nitrification and anaerobic denitrification had their expression differentiated and an upregulation of the biosynthesis machinery and protein translation was observed, besides several genes with unknown function, indicating a non-conventional mechanism involved in HN/AD process.


Assuntos
Compostos de Amônio/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Pseudomonas stutzeri/metabolismo , Transcriptoma/fisiologia , Águas Residuárias/química , Aerobiose/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Desnitrificação/fisiologia , Processos Heterotróficos/fisiologia , Nitrificação/fisiologia , Pseudomonas stutzeri/química , Pseudomonas stutzeri/genética , Esgotos/microbiologia
20.
Environ Pollut ; 260: 114018, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31991343

RESUMO

Bacteria involved with ecosystem N cycling in the rhizosphere of submerged macrophytes are abundant and diverse. Any declines of submerged macrophytes can have a great influence on the abundance and diversity of denitrifying bacteria and anammox bacteria. Natural decline, tardy decline, and sudden decline methods were applied to cultivated Potamogeton crispus. The abundance of anammox bacteria and nirS denitrifying bacteria in rhizosphere sediment were detected using real-time fluorescent quantitative PCR of 16S rRNA, and phylogenetic trees were constructed to analyze the diversities of these two microbes. The results indicated that the concentration of NH4+ in pore water gradually increased with increasing distances from the roots, whereas, the concentration of NO3- showed a reverse trend. The abundance of anammox bacteria and nirS denitrifying bacteria in sediment of declined P. crispus populations decreased significantly over time. The abundance of these two microbes in the sudden decline group were significantly higher (P > 0.05) than the other decline treatment groups. Furthermore, the abundances of these two microbes were positively correlated, with RDA analyses finding the mole ratio of NH4+/NO3- being the most important positive factor affecting microbe abundance. Phylogenetic analysis indicated that the anammox bacteria Brocadia fuigida and Scalindua wagneri, and nirS denitrifying bacteria Herbaspirillum and Pseudomonas, were the dominant species in declined P. crispus sediment. We suggest the sudden decline of submerged macrophytes would increase the abundance of anammox bacteria and denitrifying bacteria in a relatively short time.


Assuntos
Desnitrificação/fisiologia , Potamogetonaceae , Rizosfera , Bactérias , Ecossistema , Sedimentos Geológicos , Oxirredução , Filogenia , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...