Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.206
Filtrar
1.
Nat Commun ; 15(1): 3781, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710688

RESUMO

Taking inspiration from natural systems, in which molecular switches are ubiquitous in the biochemistry regulatory network, we aim to design and construct synthetic molecular switches driven by DNA-modifying enzymes, such as DNA polymerase and nicking endonuclease. The enzymatic treatments on our synthetic DNA constructs controllably switch ON or OFF the sticky end cohesion and in turn cascade to the structural association or disassociation. Here we showcase the concept in multiple DNA nanostructure systems with robust assembly/disassembly performance. The switch mechanisms are first illustrated in minimalist systems with a few DNA strands. Then the ON/OFF switches are realized in complex DNA lattice and origami systems with designated morphological changes responsive to the specific enzymatic treatments.


Assuntos
DNA Polimerase Dirigida por DNA , DNA , Nanoestruturas , DNA/química , DNA/metabolismo , Nanoestruturas/química , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/química , Conformação de Ácido Nucleico , Desoxirribonuclease I/metabolismo , Desoxirribonuclease I/química , Nanotecnologia/métodos
2.
Int J Biol Macromol ; 267(Pt 2): 131514, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608986

RESUMO

The cell nucleus serves as the pivotal command center of living cells, and delivering therapeutic agents directly into the nucleus can result in highly efficient anti-tumor eradication of cancer cells. However, nucleus-targeting drug delivery is very difficult due to the presence of numerous biological barriers. Here, three antitumor drugs (DNase I, ICG: indocyanine green, and THP: pirarubicin) were sequentially triggered protein self-assembly to produce a nucleus-targeting and programmed responsive multi-drugs delivery system (DIT). DIT consisted of uniform spherical particles with a size of 282 ± 7.7 nm. The acidic microenvironment of tumors and near-infrared light could successively trigger DIT for the programmed release of three drugs, enabling targeted delivery to the tumor. THP served as a nucleus-guiding molecule and a chemotherapy drug. Through THP-guided DIT, DNase I was successfully delivered to the nucleus of tumor cells and killed them by degrading their DNA. Tumor acidic microenvironment had the ability to induce DIT, leading to the aggregation of sufficient ICG in the tumor tissues. This provided an opportunity for the photothermal therapy of ICG. Hence, three drugs were cleverly combined using a simple method to achieve multi-drugs targeted delivery and highly effective combined anticancer therapy.


Assuntos
Antineoplásicos , Núcleo Celular , Desoxirribonuclease I , Doxorrubicina , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Desoxirribonuclease I/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Portadores de Fármacos/química , Verde de Indocianina/química , Microambiente Tumoral/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus
3.
Mol Ther ; 32(5): 1298-1310, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38459694

RESUMO

Undesired on- and off-target effects of CRISPR-Cas nucleases remain a challenge in genome editing. While the use of Cas9 nickases has been shown to minimize off-target mutagenesis, their use in therapeutic genome editing has been hampered by a lack of efficacy. To overcome this limitation, we and others have developed double-nickase-based strategies to generate staggered DNA double-strand breaks to mediate gene disruption or gene correction with high efficiency. However, the impact of paired single-strand nicks on genome integrity has remained largely unexplored. Here, we developed a novel CAST-seq pipeline, dual CAST, to characterize chromosomal aberrations induced by paired CRISPR-Cas9 nickases at three different loci in primary keratinocytes derived from patients with epidermolysis bullosa. While targeting COL7A1, COL17A1, or LAMA3 with Cas9 nucleases caused previously undescribed chromosomal rearrangements, no chromosomal translocations were detected following paired-nickase editing. While the double-nicking strategy induced large deletions/inversions within a 10 kb region surrounding the target sites at all three loci, similar to the nucleases, the chromosomal on-target aberrations were qualitatively different and included a high proportion of insertions. Taken together, our data indicate that double-nickase approaches combine efficient editing with greatly reduced off-target effects but still leave substantial chromosomal aberrations at on-target sites.


Assuntos
Sistemas CRISPR-Cas , Desoxirribonuclease I , Edição de Genes , Queratinócitos , Humanos , Edição de Genes/métodos , Desoxirribonuclease I/metabolismo , Desoxirribonuclease I/genética , Queratinócitos/metabolismo , Quebras de DNA de Cadeia Dupla , Aberrações Cromossômicas , Colágeno Tipo VII/genética , Colágeno Tipo VII/metabolismo , Células Cultivadas
4.
Biosci Rep ; 44(3)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38426234

RESUMO

Eosinophil extracellular traps (EETs) are implicated in various eosinophil-associated diseases; however, their role in chronic rhinosinusitis (CRS) remains unclear. In the present study, 57 CRS patients were enrolled, and immunofluorescence was used to analyze EETs in eosinophilic (eCRS) and non-eosinophilic (Non-eCRS) tissues. MSD was used to examine IL-4, IL-5, and IL-13 concentrations in tissue homogenates. Charcot-Leyden crystals (CLCs) protein expression was detected in PMA, PMA+DNase I, and blank control eosinophils using ELISA. Eotaxin-3 mRNA and protein levels were measured in human nasal epithelial cells (HNECs) cultured with EETs, EETs+DNase I, DNase I, and unstimulated eosinophils using PCR and ELISA. EETs were significantly increased in eCRS tissues compared with Non-eCRS (P<0.001), and correlated with VAS and Lund-Mackay CT scores. IL-5 expression was related to EETs formation (r = 0.738, P<0.001). PMA-stimulated eosinophils exhibited higher CLCs protein levels (P<0.01). Co-culturing HNECs with EETs significantly increased eotaxin-3 mRNA and protein levels (P<0.0001, P<0.001) compared with other groups. The study suggests EETs formation is elevated in eCRS patients and is involved in CLCs formation and chemokine secretion, promoting eosinophilic inflammation.


Assuntos
Armadilhas Extracelulares , Rinite , Rinossinusite , Sinusite , Humanos , Eosinófilos , Quimiocina CCL26/metabolismo , Interleucina-5/genética , Interleucina-5/metabolismo , Desoxirribonuclease I/metabolismo , RNA Mensageiro/metabolismo
5.
J Transl Med ; 22(1): 246, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454482

RESUMO

BACKGROUND: Thrombo-inflammation and neutrophil extracellular traps (NETs) are exacerbated in severe cases of COVID-19, potentially contributing to disease exacerbation. However, the mechanisms underpinning this dysregulation remain elusive. We hypothesised that lower DNase activity may be associated with higher NETosis and clinical worsening in patients with COVID-19. METHODS: Biological samples were obtained from hospitalized patients (15 severe, 37 critical at sampling) and 93 non-severe ambulatory cases. Our aims were to compare NET biomarkers, functional DNase levels, and explore mechanisms driving any imbalance concerning disease severity. RESULTS: Functional DNase levels were diminished in the most severe patients, paralleling an imbalance between NET markers and DNase activity. DNase1 antigen levels were higher in ambulatory cases but lower in severe patients. DNase1L3 antigen levels remained consistent across subgroups, not rising alongside NET markers. DNASE1 polymorphisms correlated with reduced DNase1 antigen levels. Moreover, a quantitative deficiency in plasmacytoid dendritic cells (pDCs), which primarily express DNase1L3, was observed in critical patients. Analysis of public single-cell RNAseq data revealed reduced DNase1L3 expression in pDCs from severe COVID-19 patient. CONCLUSION: Severe and critical COVID-19 cases exhibited an imbalance between NET and DNase functional activity and quantity. Early identification of NETosis imbalance could guide targeted therapies against thrombo-inflammation in COVID-19-related sepsis, such as DNase administration, to avert clinical deterioration. TRIAL REGISTRATION: COVERAGE trial (NCT04356495) and COLCOV19-BX study (NCT04332016).


Assuntos
COVID-19 , Armadilhas Extracelulares , Doenças do Sistema Nervoso , Humanos , Armadilhas Extracelulares/metabolismo , Neutrófilos/metabolismo , Desoxirribonucleases/metabolismo , Desoxirribonuclease I/metabolismo , Inflamação/metabolismo
6.
Nucleic Acids Res ; 52(6): 3469-3482, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38421613

RESUMO

Gene-editing technologies have revolutionized biotechnology, but current gene editors suffer from several limitations. Here, we harnessed the power of gamma-modified peptide nucleic acids (γPNAs) to facilitate targeted, specific DNA invasion and used T7 endonuclease I (T7EI) to recognize and cleave the γPNA-invaded DNA. Our data show that T7EI can specifically target PNA-invaded linear and circular DNA to introduce double-strand breaks (DSBs). Our PNA-Guided T7EI (PG-T7EI) technology demonstrates that T7EI can be used as a programmable nuclease capable of generating single or multiple specific DSBs in vitro under a broad range of conditions and could be potentially applied for large-scale genomic manipulation. With no protospacer adjacent motif (PAM) constraints and featuring a compact protein size, our PG-T7EI system will facilitate and expand DNA manipulations both in vitro and in vivo, including cloning, large-fragment DNA assembly, and gene editing, with exciting applications in biotechnology, medicine, agriculture, and synthetic biology.


Assuntos
Quebras de DNA de Cadeia Dupla , Desoxirribonuclease I , Ácidos Nucleicos Peptídicos , Desoxirribonuclease I/metabolismo , DNA/genética , DNA/metabolismo , DNA Circular , Edição de Genes
7.
Appl Environ Microbiol ; 90(2): e0187123, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38299814

RESUMO

Dental caries is the most common chronic infectious disease around the world and disproportionately affects the marginalized socioeconomic group. Streptococcus mutans, considered a primary etiological agent of caries, depends on the coordinated physiological response to tolerate the oxidative stress generated by commensal species within dental plaque, which is a critical aspect of its pathogenicity. Here, we identified and characterized a novel tetracycline repressor family regulator, SMU_1361c, which appears to be acquired by the bacteria via horizontal gene transfer. Surprisingly, smu_1361c functions as a negative transcriptional regulator to regulate gene expression outside its operon and is involved in the oxidative stress response of S. mutans. The smu_1361c overexpression strain UA159/pDL278-1361c was more susceptible to oxidative stress and less competitive against hydrogen peroxide generated by commensal species Streptococcus gordonii and Streptococcus sanguinis. Transcriptomics analysis revealed that smu_1361c overexpression resulted in the significant downregulation of 22 genes, mainly belonging to three gene clusters responsible for the oxidative stress response. The conversed DNA binding motif of SMU_1361c was determined by electrophoretic mobility shift and DNase I footprinting assay with purified SMU_1361c protein; therefore, smu_1361c is directly involved in gene transcription related to the oxidative stress response. Crucially, our finding provides a new understanding of how S. mutans deals with the oxidative stress that is required for pathogenesis and will facilitate the development of new and improved therapeutic approaches for dental caries.IMPORTANCEStreptococcus mutans is the major organism associated with the development of dental caries, which globally is the most common chronic disease. To persist and survive in biofilms, S. mutans must compete with commensal species that occupy the same ecological niche. Here, we uncover a novel molecular mechanism of how tetracycline repressor family regulator smu_1361c is involved in the oxidative stress response through transcriptomics analysis, electrophoretic mobility shift assay, and DNase I footprinting assay. Furthermore, we demonstrated that smu_1361c mediates S. mutans sensitivity to oxidative stress and competitiveness with commensal streptococci. Therefore, this study has revealed a previously unknown regulation between smu_1361c and genes outside its operon and demonstrated the importance of smu_1361c in the oxidative stress response and the fitness of S. mutans within the plaque biofilms, which can be exploited as a new therapy to modulate ecological homeostasis and prevent dental caries.


Assuntos
Cárie Dentária , Streptococcus mutans , Humanos , Streptococcus mutans/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Estresse Oxidativo , Tetraciclinas , Desoxirribonuclease I/metabolismo
8.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38339001

RESUMO

UV-B radiation induces sunburn, and neutrophils are pivotal in this inflammation. In this study, we examined the potential involvement of neutrophil extracellular traps (NETs) in ultraviolet B (UVB)-induced skin inflammation, correlating the skin inflammation-mitigating effects of Hochu-ekki-to on UV-B irradiation and NETs. To elucidate NET distribution in the dorsal skin, male ICR mice, exposed to UVB irradiation, were immunohistologically analyzed to detect citrullinated histone H3 (citH3) and peptidylarginine deiminase 4 (PAD4). Reactive oxygen species (ROS) production in the bloodstream was analyzed. To establish the involvement of NET-released DNA in this inflammatory response, mice were UV-B irradiated following the intraperitoneal administration of DNase I. In vitro experiments were performed to scrutinize the impact of Hochu-ekki-to on A23187-induced NETs in neutrophil-like HL-60 cells. UV-B irradiation induced dorsal skin inflammation, coinciding with a significant increase in citH3 and PAD4 expression. Administration of DNase I attenuated UV-B-induced skin inflammation, whereas Hochu-ekki-to administration considerably suppressed the inflammation, correlating with diminished levels of citH3 and PAD4 in the dorsal skin. UV-B irradiation conspicuously augmented ROS and hydrogen peroxide (H2O2) production in the blood. Hochu-ekki-to significantly inhibited ROS and H2O2 generation. In vitro experiments demonstrated that Hochu-ekki-to notably inhibited A23187-induced NETs in differentiated neutrophil-like cells. Hence, NETs have been implicated in UV-B-induced skin inflammation, and their inhibition reduces cutaneous inflammation. Additionally, Hochu-ekki-to mitigated skin inflammation by impeding neutrophil infiltration and NETs in the dorsal skin of mice.


Assuntos
Desoxirribonuclease I , Medicamentos de Ervas Chinesas , Armadilhas Extracelulares , Raios Ultravioleta , Animais , Masculino , Camundongos , Calcimicina/farmacologia , Desoxirribonuclease I/farmacologia , Desoxirribonuclease I/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/efeitos da radiação , Histonas/metabolismo , Peróxido de Hidrogênio/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos ICR , Neutrófilos/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta/efeitos adversos
9.
Protein Expr Purif ; 217: 106445, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38342386

RESUMO

INTRODUCTION: The aim of this study was to compare two CRISPR/Cas9-based orthogonal strategies, paired-Cas9 nickase (paired-Cas9n) and RNA-guided FokI (RFN), in targeting 18S rDNA locus in Chinese hamster ovary (CHO) cells and precisely integrating a bicistronic anti-CD52 monoclonal antibody (mAb) expression cassette into this locus. METHODS: T7E1 and high-resolution melt (HRM) assays were used to compare the ability of mentioned systems in inducing double-strand break (DSB) at the target site. Moreover, 5'- and 3'-junction polymerase chain reactions (PCR) were used to verify the accuracy of the targeted integration of the mAb expression cassette into the 18S rDNA locus. Finally, anti-CD52 mAb gene copy number was measured and, its expression was analyzed using ELISA and western blot assays. RESULTS: Our results indicated that both paired-Cas9n and RFN induced DSB at the target site albeit RFN performance was slightly more efficient in HRM analysis. We also confirmed that the anti-CD52 mAb cassette was accurately integrated at the 18S rDNA locus and the mAb was expressed successfully in CHO cells. CONCLUSION: Taken together, our findings elucidated that both paired-Cas9n and RFN genome editing tools are promising in targeting the 18S rDNA locus. Site specific integration of the bicistronic anti-CD52 mAb expression cassette at this locus in the CHO-K1 cells was obtained, using RFN. Moreover, proper expression of the anti-CD52 mAb at the 18S rDNA target site can be achieved using the bicistronic internal ribosome entry site (IRES)-based vector system.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Cricetinae , Animais , Edição de Genes/métodos , Cricetulus , Células CHO , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , DNA Ribossômico , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo
10.
Sci Rep ; 14(1): 3352, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336977

RESUMO

The CRISPR-Cas nickase system for genome editing has attracted considerable attention owing to its safety, efficiency, and versatility. Although alternative effectors to Cas9 have the potential to expand the scope of genome editing, their application has not been optimized. Herein, we used an enhanced CRISPR-Cas12a nickase system to induce mutations by targeting genes in a human-derived cell line. The optimized CRISPR-Cas12a nickase system effectively introduced mutations into target genes under a specific directionality and distance between nickases. In particular, the single-mode Cas12a nickase system can induce the target-specific mutations with less DNA double-strand breaks. By inducing mutations in the Thymine-rich target genes in single- or dual-mode, Cas12a nickase compensates the limitations of Cas9 nickase and is expected to contribute to the development of future genome editing technologies.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Desoxirribonuclease I/metabolismo , Mutação , Quebras de DNA de Cadeia Dupla
11.
J Thromb Haemost ; 22(5): 1410-1420, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38296159

RESUMO

BACKGROUND: Fibrin, von Willebrand factor, and extracellular DNA from neutrophil extracellular traps all contribute to acute ischemic stroke thrombus integrity. OBJECTIVES: In this study, we explored how the proteomic composition of retrieved thromboemboli relates to susceptibility to lysis with distinct thrombolytics. METHODS: Twenty-six retrieved stroke thromboemboli were portioned into 4 segments, with each subjected to 1 hour of in vitro lysis at 37 °C in 1 of 4 solutions: tissue plasminogen activator (tPA), tPA + von Willebrand factor-cleaving ADAMTS-13, tPA + DNA-cleaving deoxyribonuclease (DNase) I, and all 3 enzymes. Lysis, characterized by the percent change in prelysis and postlysis weight, was compared across the solutions and related to the corresponding abundance of proteins identified on mass spectrometry for each of the thromboemboli used in lysis. RESULTS: Solutions containing DNase resulted in approximately 3-fold greater thrombolysis than that with the standard-of-care tPA solution (post hoc Tukey, P < .01 for all). DNA content was directly related to lysis in solutions containing DNase (Spearman's ρ > 0.39 and P < .05 for all significant histones) and inversely related to lysis in solutions without DNase (Spearman's ρ < -0.40 and P < .05 for all significant histones). Functional analysis suggests distinct pathways associated with susceptibility to thrombolysis with tPA (platelet-mediated) or DNase (innate immune system-mediated). CONCLUSION: This study demonstrates synergy of DNase and tPA in thrombolysis of stroke emboli and points to DNase as a potential adjunct to our currently limited selection of thrombolytics in treating acute ischemic stroke.


Assuntos
DNA , Fibrinolíticos , Histonas , AVC Isquêmico , Ativador de Plasminogênio Tecidual , Humanos , AVC Isquêmico/tratamento farmacológico , DNA/metabolismo , Histonas/metabolismo , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Masculino , Idoso , Feminino , Terapia Trombolítica , Desoxirribonuclease I/metabolismo , Desoxirribonuclease I/uso terapêutico , Pessoa de Meia-Idade , Proteômica/métodos , Proteína ADAMTS13/genética , Proteína ADAMTS13/metabolismo , Armadilhas Extracelulares/metabolismo , Fibrinólise/efeitos dos fármacos , Fator de von Willebrand/metabolismo , Idoso de 80 Anos ou mais , Trombose/tratamento farmacológico
12.
EMBO Mol Med ; 16(1): 112-131, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38182795

RESUMO

The therapeutic use of adeno-associated viral vector (AAV)-mediated gene disruption using CRISPR-Cas9 is limited by potential off-target modifications and the risk of uncontrolled integration of vector genomes into CRISPR-mediated double-strand breaks. To address these concerns, we explored the use of AAV-delivered paired Staphylococcus aureus nickases (D10ASaCas9) to target the Hao1 gene for the treatment of primary hyperoxaluria type 1 (PH1). Our study demonstrated effective Hao1 gene disruption, a significant decrease in glycolate oxidase expression, and a therapeutic effect in PH1 mice. The assessment of undesired genetic modifications through CIRCLE-seq and CAST-Seq analyses revealed neither off-target activity nor chromosomal translocations. Importantly, the use of paired-D10ASaCas9 resulted in a significant reduction in AAV integration at the target site compared to SaCas9 nuclease. In addition, our study highlights the limitations of current analytical tools in characterizing modifications introduced by paired D10ASaCas9, necessitating the development of a custom pipeline for more accurate characterization. These results describe a positive advance towards a safe and effective potential long-term treatment for PH1 patients.


Assuntos
Sistemas CRISPR-Cas , Hiperoxalúria Primária , Humanos , Animais , Camundongos , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Edição de Genes , Hiperoxalúria Primária/genética , Hiperoxalúria Primária/terapia
13.
Nucleic Acids Res ; 52(4): 1575-1590, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38296834

RESUMO

Many bacteria form biofilms to protect themselves from predators or stressful environmental conditions. In the biofilm, bacteria are embedded in a protective extracellular matrix composed of polysaccharides, proteins and extracellular DNA (eDNA). eDNA most often is released from lysed bacteria or host mammalian cells, and it is the only matrix component most biofilms appear to have in common. However, little is known about the form DNA takes in the extracellular space, and how different non-canonical DNA structures such as Z-DNA or G-quadruplexes might contribute to its function in the biofilm. The aim of this study was to determine if non-canonical DNA structures form in eDNA-rich staphylococcal biofilms, and if these structures protect the biofilm from degradation by nucleases. We grew Staphylococcus epidermidis biofilms in laboratory media supplemented with hemin and NaCl to stabilize secondary DNA structures and visualized their location by immunolabelling and fluorescence microscopy. We furthermore visualized the macroscopic biofilm structure by optical coherence tomography. We developed assays to quantify degradation of Z-DNA and G-quadruplex DNA oligos by different nucleases, and subsequently investigated how these enzymes affected eDNA in the biofilms. Z-DNA and G-quadruplex DNA were abundant in the biofilm matrix, and were often present in a web-like structures. In vitro, the structures did not form in the absence of NaCl or mechanical shaking during biofilm growth, or in bacterial strains deficient in eDNA or exopolysaccharide production. We thus infer that eDNA and polysaccharides interact, leading to non-canonical DNA structures under mechanical stress when stabilized by salt. We also confirmed that G-quadruplex DNA and Z-DNA was present in biofilms from infected implants in a murine implant-associated osteomyelitis model. Mammalian DNase I lacked activity against Z-DNA and G-quadruplex DNA, while Micrococcal nuclease could degrade G-quadruplex DNA and S1 Aspergillus nuclease could degrade Z-DNA. Micrococcal nuclease, which originates from Staphylococcus aureus, may thus be key for dispersal of biofilm in staphylococci. In addition to its structural role, we show for the first time that the eDNA in biofilms forms a DNAzyme with peroxidase-like activity in the presence of hemin. While peroxidases are part of host defenses against pathogens, we now show that biofilms can possess intrinsic peroxidase activity in the extracellular matrix.


Assuntos
DNA Catalítico , DNA Forma Z , Quadruplex G , Animais , Camundongos , DNA Catalítico/metabolismo , Desoxirribonuclease I/metabolismo , Nuclease do Micrococo/genética , Cloreto de Sódio , Hemina , DNA Bacteriano/metabolismo , Biofilmes , Staphylococcus/genética , DNA , Polissacarídeos , Peroxidase/metabolismo , Mamíferos/genética
14.
Int J Biol Macromol ; 257(Pt 2): 128703, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072351

RESUMO

The susceptibility of DNA nanomaterials to enzymatic degradation in biological environments is a significant obstacle limiting their broad applications in biomedicine. While DNA nanostructures exhibit some resistance to nuclease degradation, the underlying mechanism of this resistance remains elusive. In this study, the interaction of tetrahedral DNA nanostructures (TDNs) and double-stranded DNA (dsDNA) with DNase I is investigated using all-atom molecular dynamics simulations. Our results indicate that DNase I can effectively bind to all dsDNA molecules, and certain key residues strongly interact with the nucleic bases of DNA. However, the binding of DNase I to TDNs exhibits a non-monotonic behavior based on size; TDN15 and TDN26 interact weakly with DNase I (∼ - 75 kcal/mol), whereas TDN21 forms a strong binding with DNase I (∼ - 110 kcal/mol). Furthermore, the topological properties of the DNA nanostructures are analyzed, and an under-twisting (∼32°) of the DNA helix is observed in TDN15 and TDN26. Importantly, this under-twisting results in an increased width of the minor groove in TDN15 and TDN26, which primarily explains their reduced binding affinity to DNase I comparing to the dsDNA. Overall, this study demonstrated a novel mechanism for local structural control of DNA at the nanoscale by adjusting the twisting induced by length.


Assuntos
Desoxirribonuclease I , Nanoestruturas , Desoxirribonuclease I/metabolismo , DNA/química , Nanoestruturas/química
15.
Plant J ; 117(2): 573-589, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897092

RESUMO

The characterization of cis-regulatory DNA elements (CREs) is essential for deciphering the regulation of gene expression in eukaryotes. Although there have been endeavors to identify CREs in plants, the properties of CREs in polyploid genomes are still largely unknown. Here, we conducted the genome-wide identification of DNase I-hypersensitive sites (DHSs) in leaf and stem tissues of the auto-octoploid species Saccharum officinarum. We revealed that DHSs showed highly similar distributions in the genomes of these two S. officinarum tissues. Notably, we observed that approximately 74% of DHSs were located in distal intergenic regions, suggesting considerable differences in the abundance of distal CREs between S. officinarum and other plants. Leaf- and stem-dependent transcriptional regulatory networks were also developed by mining the binding motifs of transcription factors (TFs) from tissue-specific DHSs. Four TEOSINTE BRANCHED 1, CYCLOIDEA, and PCF1 (TCP) TFs (TCP2, TCP4, TCP7, and TCP14) and two ethylene-responsive factors (ERFs) (ERF109 and ERF03) showed strong causal connections with short binding distances from each other, pointing to their possible roles in the regulatory networks of leaf and stem development. Through functional validation in transiently transgenic protoplasts, we isolate a set of tissue-specific promoters. Overall, the DHS maps presented here offer a global view of the potential transcriptional regulatory elements in polyploid sugarcane and can be expected to serve as a valuable resource for both transcriptional network elucidation and genome editing in sugarcane breeding.


Assuntos
Cromatina , Saccharum , Succinatos , Saccharum/genética , Saccharum/metabolismo , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Melhoramento Vegetal , Genômica , Poliploidia
16.
Dev Comp Immunol ; 153: 105107, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38036049

RESUMO

Artificial insemination has been a predominant technique employed in goat husbandry for breeding purposes. Subsequent to artificial insemination, sperm can elicit inflammation in the reproductive tract, resulting in substantial the accumulation of neutrophils. Recognized as foreign entities, sperm may become entrapped within neutrophil extracellular traps (NETs) released by neutrophils, thereby exploiting their properties of pathogen elimination. Deoxyribonuclease I (DNase I), which is known for disintegrating NETs and causing loss of function, has been utilized to ameliorate liver and brain damage resulting from NETs, as well as to enhance sperm quality. This study investigated the mechanism of sperm-induced NETs and further explored the impact of DNase I on NETs. Sperm quality was evaluated using optical microscopy, while the structure of NETs was observed through immunofluorescence staining. The formation mechanism of NETs was examined using inhibitors and PicoGreen. The findings revealed that sperm induced the formation of NETs, a process regulated by glycolysis, NADPH oxidase, ERK1/2, and p38 signaling pathways. The composition of NETs encompassed DNA, citrullinated histone H3 (citH3), and elastase (NE). DNase I protects sperm by degrading NETs, thereby concurrently preserving the integrity of plasma membrane and motility of sperm. In summary, the release of sperm-induced NETs leads to its damage, but this detrimental effect is counteracted by DNase I through degradation of NETs. These observations provide novel insights into reproductive immunity in goats.


Assuntos
Armadilhas Extracelulares , Masculino , Animais , Armadilhas Extracelulares/metabolismo , Cabras , Sêmen , Neutrófilos , Espermatozoides , Desoxirribonuclease I/metabolismo , Desoxirribonuclease I/farmacologia
17.
Nature ; 625(7996): 735-742, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030727

RESUMO

Noncoding DNA is central to our understanding of human gene regulation and complex diseases1,2, and measuring the evolutionary sequence constraint can establish the functional relevance of putative regulatory elements in the human genome3-9. Identifying the genomic elements that have become constrained specifically in primates has been hampered by the faster evolution of noncoding DNA compared to protein-coding DNA10, the relatively short timescales separating primate species11, and the previously limited availability of whole-genome sequences12. Here we construct a whole-genome alignment of 239 species, representing nearly half of all extant species in the primate order. Using this resource, we identified human regulatory elements that are under selective constraint across primates and other mammals at a 5% false discovery rate. We detected 111,318 DNase I hypersensitivity sites and 267,410 transcription factor binding sites that are constrained specifically in primates but not across other placental mammals and validate their cis-regulatory effects on gene expression. These regulatory elements are enriched for human genetic variants that affect gene expression and complex traits and diseases. Our results highlight the important role of recent evolution in regulatory sequence elements differentiating primates, including humans, from other placental mammals.


Assuntos
Sequência Conservada , Evolução Molecular , Genoma , Primatas , Animais , Feminino , Humanos , Gravidez , Sequência Conservada/genética , Desoxirribonuclease I/metabolismo , DNA/genética , DNA/metabolismo , Genoma/genética , Mamíferos/classificação , Mamíferos/genética , Placenta , Primatas/classificação , Primatas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Reprodutibilidade dos Testes , Fatores de Transcrição/metabolismo , Proteínas/genética , Regulação da Expressão Gênica/genética
18.
ASAIO J ; 70(3): 241-247, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37923309

RESUMO

Sepsis is an unusual systemic reaction with high mortality and secondary septic liver injury is proposed to be the major cause of mortality. Extracorporeal membrane oxygenation (ECMO) can enhance terminal organ perfusion by elevating circulatory support which is used in severe sepsis patients. However, the interaction of blood components with the biomaterials of the extracorporeal membrane elicits a systemic inflammatory response. Besides, inflammation and apoptosis are the main mediators in the pathophysiology of septic liver injury. Therefore, we investigated the protective effect of Deoxyribonuclease I (DNase I) against septic liver injury supported by ECMO in rats. Sepsis was induced by lipopolysaccharide (LPS) and 24 hours after the administration, the rats were treated with ECMO. Then blood samples and liver tissues were collected. DNase I significantly attenuated the level of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and significantly decreased hepatic levels of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome, myeloperoxidase (MPO), downstream inflammatory factor interleukin-1ß (IL-1ß) and interleukin-18 (IL-18), and improved neutrophil infiltration. Additionally, DNase I significantly reduced the expression of apoptosis key protein and terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL)-labeled apoptotic hepatocytes. In summary, our findings demonstrated that DNase I alleviates liver injury in ECMO-supported septic rats by reducing the inflammatory and apoptotic responses.


Assuntos
Oxigenação por Membrana Extracorpórea , Sepse , Humanos , Ratos , Animais , Fígado/metabolismo , Hepatócitos , Sepse/terapia , Desoxirribonuclease I/metabolismo , Desoxirribonuclease I/farmacologia
19.
Plant J ; 118(1): 277-287, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38113345

RESUMO

Previously, it has been shown that mutagenesis frequencies can be improved by directly fusing the human exonuclease TREX2 to Cas9, resulting in a strong increase in the frequency of smaller deletions at the cut site. Here, we demonstrate that, by using the SunTag system for recruitment of TREX2, the mutagenesis efficiency can be doubled in comparison to the direct fusion in Arabidopsis thaliana. Therefore, we also tested the efficiency of the system for targeted deletion formation by recruiting two other 3'-5' exonucleases, namely the human TREX1 and E. coli ExoI. It turns out that SunTag-mediated recruitment of TREX1 not only improved the general mutation induction efficiency slightly in comparison to TREX2, but that, more importantly, the mean size of the induced deletions was also enhanced, mainly via an increase of deletions of 25 bp or more. EcExoI also yielded a higher amount of larger deletions. However, only in the case of TREX1 and TREX2, the effect was predominately SunTag-dependent, indicating efficient target-specific recruitment. Using SunTag-mediated TREX1 recruitment at other genomic sites, we were able to obtain similar deletion patterns. Thus, we were able to develop an attractive novel editing tool that is especially useful for obtaining deletions in the range from 20 to 40 bp around the cut site. Such sizes are often required for the manipulation of cis-regulatory elements. This feature is closing an existing gap as previous approaches, based on single nucleases or paired nickases or nucleases, resulted in either shorter or longer deletions, respectively.


Assuntos
Sistemas CRISPR-Cas , Escherichia coli , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Mutagênese , Mutação , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Edição de Genes
20.
PLoS One ; 18(10): e0291592, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37906560

RESUMO

BACKGROUND: In the past two years, studies have found a significant increase in neutrophil extracellular traps (NETs) in patients with IgA vasculitis (IgAV), which is correlated with the severity of the disease. NETs have been reported as an intervention target in inflammatory and autoimmune diseases. This study aimed to investigate the effect of targeted degradation of NETs using DNase I in IgAV rat model. METHODS: Twenty-four Sprague-Dawley rats were randomly divided into three groups: the IgAV model group, the DNase I intervention group and the normal control group, with an average of 8 rats in each group. The model group was established by using Indian ink, ovalbumin, and Freund's complete adjuvant. In the intervention group, DNase I was injected through tail vein 3 days before the end of established model. The circulating cell free-DNA (cf-DNA) and myeloperoxidase-DNA (MPO-DNA) were analyzed. The presence of NETs in the kidney, gastric antrum and descending duodenum were detected using multiple fluorescences immunohistochemistry and Western blots. Morphological changes of the tissues were observed. RESULTS: After the intervention of DNase I, there was a significant reduction in cf-DNA and MPO-DNA levels in the intervention group compared to the IgAV model group (all P<0.001). The presence of NETs in renal, gastric, and duodenal tissues of the intervention group exhibited a significant decrease compared to the IgAV model group (P < 0.01). Moreover, the intervention group demonstrated significantly lower levels of renal MPO and citrullinated histone H3 (citH3) protein expression when compared to the IgAV model group (all P < 0.05). The HE staining results of intervention group demonstrated a significant reduction in congestion within glomerular and interstitial capillaries. Moreover, there was a notable improvement in gastric and intestinal mucosa necrosis, congestion and bleeding. Additionally, there was a substantial decrease in inflammatory cells infiltration. CONCLUSION: The degradation of NETs can be targeted by DNase I to mitigate tissue damage in IgAV rat models. Targeted regulation of NETs holds potential as a therapeutic approach for IgAV.


Assuntos
Armadilhas Extracelulares , Vasculite por IgA , Enteropatias , Humanos , Ratos , Animais , Armadilhas Extracelulares/metabolismo , Neutrófilos/metabolismo , Desoxirribonuclease I/metabolismo , Ratos Sprague-Dawley , Enteropatias/metabolismo , DNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...