Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
ACS Appl Mater Interfaces ; 13(37): 44054-44064, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34499479

RESUMO

Cell lines are applied on a large scale in the field of biomedicine, but they are susceptible to issues such as misidentification and cross-contamination. This situation is becoming worse over time due to the rapid growth of the biomedical field, and thus there is an urgent need for a more effective strategy to address the problem. As described herein, a cell coding method is established based on two types of uniform and stable glycan nanoparticles that are synthesized using the graft-copolymerization-induced self-assembly (GISA) method, which further exhibit distinct fluorescent properties due to elaborate modification with fluorescent labeling molecules. The different affinity between each nanoparticle and various cell lines results in clearly distinguishable differences in their endocytosis degrees, thus resulting in distinct characteristic fluorescence intensities. Through flow cytometry measurements, the specific signals of each cell sample can be recorded and turned into a map divided into different regions by statistical processing. Using this sensing array strategy, we have successfully identified six human cell lines, including one normal type and five tumor types. Moreover, cell contamination evaluation of different cell lines with HeLa cells as the contaminant in a semiquantitative analysis has also been successfully achieved. Notably, the whole process of nanoparticle fabrication and fluorescent testing is facile and the results are highly reliable.


Assuntos
Autenticação de Linhagem Celular/métodos , Quitosana/análogos & derivados , Dextranos/química , Corantes Fluorescentes/química , Nanopartículas/química , Carbocianinas/química , Carbocianinas/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quitosana/toxicidade , Dextranos/toxicidade , Endocitose/efeitos dos fármacos , Citometria de Fluxo , Fluoresceínas/química , Fluoresceínas/toxicidade , Corantes Fluorescentes/toxicidade , Células Endoteliais da Veia Umbilical Humana , Humanos , Nanopartículas/toxicidade
2.
ACS Appl Mater Interfaces ; 13(28): 32673-32689, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34227792

RESUMO

Injectable hydrogels have received much attention because of the advantages of simulation of the natural extracellular matrix, microinvasive implantation, and filling and repairing of complex shape defects. Yet, for bone repair, the current injectable hydrogels have shown significant limitations such as the lack of tissue adhesion, deficiency of self-healing ability, and absence of osteogenic activity. Herein, a strategy to construct mussel-inspired bisphosphonated injectable nanocomposite hydrogels with adhesive, self-healing, and osteogenic properties is developed. The nano-hydroxyapatite/poly(l-glutamic acid)-dextran (nHA/PLGA-Dex) dually cross-linked (DC) injectable hydrogels are fabricated via Schiff base cross-linking and noncovalent nHA-BP chelation. The chelation between bisphosphonate ligands (alendronate sodium, BP) and nHA favors the uniform dispersion of the latter. Moreover, multiple adhesion ligands based on catechol motifs, BP, and aldehyde groups endow the hydrogels with good tissue adhesion. The hydrogels possess excellent biocompatibility and the introduction of BP and nHA both can effectively promote viability, proliferation, migration, and osteogenesis differentiation of MC3T3-E1 cells. The incorporation of BP groups and HA nanoparticles could also facilitate the angiogenic property of endothelial cells. The nHA/PLGA-Dex DC hydrogels exhibited considerable biocompatibility despite the presence of a certain degree of inflammatory response in the early stage. The successful healing of a rat cranial defect further proves the bone regeneration ability of nHA/PLGA-Dex DC injectable hydrogels. The developed tissue adhesive osteogenic injectable nHA/PLGA-Dex hydrogels show significant potential for bone regeneration application.


Assuntos
Materiais Biomiméticos/química , Regeneração Óssea/efeitos dos fármacos , Hidrogéis/química , Nanocompostos/química , Osteogênese/efeitos dos fármacos , Alicerces Teciduais/química , Adesivos/síntese química , Adesivos/química , Adesivos/toxicidade , Alendronato/análogos & derivados , Alendronato/toxicidade , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/toxicidade , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/toxicidade , Osso e Ossos/efeitos dos fármacos , Linhagem Celular , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Dextranos/síntese química , Dextranos/química , Dextranos/toxicidade , Durapatita/síntese química , Durapatita/química , Durapatita/toxicidade , Feminino , Hidrogéis/síntese química , Hidrogéis/toxicidade , Masculino , Camundongos , Nanocompostos/toxicidade , Ácido Poliglutâmico/síntese química , Ácido Poliglutâmico/química , Ácido Poliglutâmico/toxicidade , Ratos Sprague-Dawley , Suínos , Engenharia Tecidual/métodos
3.
Int J Biol Macromol ; 187: 296-308, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34310998

RESUMO

Image-guided chemo-photothermal therapy based on near-infrared (NIR) theranostic agents has found promising applications in treating tumors. In this multimodal treatment, it is of critical importance to image real-time distribution of photothermal agents in vivo and to monitor therapeutic outcomes for implementing personalized treatment. In this study, an optimally synthesized dextran-polylactide (DEX-PLA) copolymer was assembled with doxorubicin (DOX) and DiR, a kind of NIR dye, to construct desirable micelles ((DiR + DOX)/DEX-PLA) for performing image-guided chemo-photothermal therapy. These (DiR + DOX)/DEX-PLA micelles had good physical and photothermal stability in aqueous media and showed high photothermal efficiency in vivo. Based on the H22-tumor-bearing mouse model, (DiR + DOX)/DEX-PLA micelles were found to accumulate inside tumors sustainably and to emit strong fluorescence signals for more than three days. The (DiR + DOX)@DEX-PLA micelles together with NIR laser irradiation were able to highly inhibit tumor growth or even eradicate tumors with one injection and two dose-designated 5-minute laser irradiations at the tumor site during 14 days of treatment. Furthermore, they showed almost no impairment to the body of the treated mice. These (DiR + DOX)@DEX-PLA micelles have confirmative translational potential in clinical tumor therapy on account of their persistent image-guided capacity, high antitumor efficacy and good in vivo safety.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Carbocianinas/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Dextranos/química , Doxorrubicina/administração & dosagem , Portadores de Fármacos , Corantes Fluorescentes/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Fármacos Fotossensibilizantes/administração & dosagem , Terapia Fototérmica , Animais , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/toxicidade , Carbocianinas/química , Carbocianinas/toxicidade , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Dextranos/toxicidade , Doxorrubicina/química , Doxorrubicina/toxicidade , Composição de Medicamentos , Corantes Fluorescentes/química , Corantes Fluorescentes/toxicidade , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos BALB C , Micelas , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/toxicidade , Espectroscopia de Luz Próxima ao Infravermelho , Nanomedicina Teranóstica , Fatores de Tempo , Carga Tumoral/efeitos dos fármacos
4.
J Ethnopharmacol ; 270: 113842, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33460752

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional medicinal plants have gained attention as a potential therapeutic agent to combat cancer and inflammation. Diosgenin rich fresh extracts of Paris polyphylla rhizome from Indian Himalaya is traditionally used as wound healing, anti-bleeding, anti-inflammatory and anti-cancer agent by the folk healers. AIM OF THE STUDY: Present study was aimed to prepare two types of extracts from Paris polyphylla rhizome of Indian Himalayan landraces - 1. ethanolic extract of Paris polyphylla rhizome (EEPPR) and 2. Diosgenin enriched Paris polyphylla rhizome extract (DPPE), quantification of diosgenin content, and to evaluate their in vitro anti-oxidant, in vivo anti-inflammatory and in vitro cytotoxicity and anti-cancer activities of the DPPE. MATERIALS AND METHODS: Diosgenin content of EEPPR was quantified through GC-MS while diosgenin content of DPPE was quantified through HPTLC, and the diosgenin yield from EEPPR and DPPE were compared. In vitro antioxidant activities of DPPE were performed using DPPH, NOD, RP and SOD assay while in vivo anti-inflammatory activity of DPPE were evaluated in dextran induced hind paw edema in rats. In vitro cytotoxicity and anti-cancer activities of DPPE were evaluated in human breast cancer cell lines (MCF-7, MDA-MB-231), cervical cancer cell lines (HeLa) and Hep-2 cell lines. RESULTS: EEPPR obtained through cold extraction method using 70% ethanol showed maximum diosgenin content of 17.90% quantified through GC-MS while similar compounds pennogenin (3.29%), 7ß-Dehydrodiosgenin (1.90%), 7-Ketodiosgenin acetate (1.14%), and 7 ß-hydroxydiosgenin (0.55%) were detected in low concentration, and thus confirmed diosgenin as major and lead phytochemical. However, DPPE obtained through both cold and repeated hot extraction with the same solvent (70% ethanol) showed diosgenin content of 60.29% which is significantly higher (p < 0.001) than the diosgenin content in EEPPR. DPPE demonstrated significant in vitro antioxidant activities by dose-dependently quenched (p < 0.001) SOD free radicals by 76.66%, followed by DPPH (71.43%), NOD (67.35%), and RP (63.74%) at a max concentration of 2 µg/µl of ascorbic acid and test drugs with remarkable IC50 values (p < 0.01). Further, DPPE also showed potent anti-inflammatory activities by dose-dependently suppressed dextran induced paw edema in rats (p < 0.01) from 2 h to 4 h. DPPE suppressed the proliferation of MCF-7, MDA-MB-231, Hep-2 and HeLa cell lines. Maximum activity was observed in MCF-7 cells. The DPPE also induced apoptosis in MCF-7 cell lines as measured by AO/PI and DAPI staining, as well as DNA laddering, cell cycle analysis and phosphatidylserine externalization assay. The growth-inhibitory effect of DPPE on MCF-7 breast cancer cells was further confirmed from the colony-formation assay. DPPE upregulated expression of Bax and downregulated Bcl-2 and survivin mRNA transcripts. CONCLUSION: DPPE obtained through both cold and repeated hot extraction using ethanol showed significantly higher content of diosgenin than the diosgenin content detected in EEPPR. However, diosgenin yield of both the extracts (EEPPR & DPPE) clearly confirmed diosgenin as major and lead phytochemical of Paris polyphylla rhizome of Indian Himalayan landraces. Further, DPPE also demonstrated potent in vitro anti-oxidative and in vivo anti-inflammatory activities and showed in vitro cytotoxicity and significant anti-cancer (apoptosis) effects in MCF-7 breast cancer cells.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Diosgenina/farmacologia , Melanthiaceae/química , Extratos Vegetais/farmacologia , Rizoma/química , Animais , Anti-Inflamatórios/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dextranos/toxicidade , Diosgenina/química , Diosgenina/isolamento & purificação , Diosgenina/uso terapêutico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Humanos , Índia , Masculino , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ratos Wistar , Survivina/genética , Ensaio Tumoral de Célula-Tronco , Proteína X Associada a bcl-2/genética
5.
Carbohydr Polym ; 254: 117280, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33357856

RESUMO

Polysaccharides have been used widely in many industries, from food technology and mining to cosmetics and biomedical applications. Over recent years there has been growing interest in the development of responsive polysaccharides with unique and switchable properties, particularly systems that display lower-critical solution temperatures (LCSTs). Therefore, in this study we aimed to investigate a novel strategy that would allow the conversion of non-responsive polysaccharides into thermoresponsive polysaccharides with tuneable LCSTs. Through the functionalisation of dextran with alkylamide groups (isopropyl amide, diethyl amide, piperidinyl and diisobutyl amide) using a carbodiimide coupling approach in conjunction with amic acid derivatives, we prepared a library of novel dextrans with various degrees of substitution (DS), which were characterised via nuclear magnetic resonance (NMR) spectroscopy and gel permeation chromatography (GPC). The alkylamide-functionalised dextrans were found to have good solubility in aqueous solutions, with the exception of those having a high DS of large hydrophobic substituents. Determination of the thermoresponsive characteristics of the polymer solutions via UV-vis spectroscopy revealed that the LCST of the alkylamide-functionalised dextrans was highly dependent on the type of alkylamide group and the DS and could be tuned over a large range (5-35 °C). Above the LCST, all of the thermoresponsive alkylamide-functionalised dextrans formed colloidal dispersions with particles sizes ranging from 400 -600 nm, as determined by dynamic light scattering (DLS). In addition, the polymers were found to exhibit a fast and reversible phase transition in solution with narrow hysteresis (∼ 1-5 °C). Finally, the injectability and biocompatibility of the novel thermoresponsive dextrans was confirmed in vivo via subcutaneous and intracranial ventricle injections, with no local or systemic toxicity noted over a 14 d period. Overall, the alkylamide-functionalised dextrans display interesting thermoresponsive properties and trends that may make them useful in biomedical applications, such as drug-delivery.


Assuntos
Polissacarídeos/química , Alquilação , Amidas/química , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Materiais Biocompatíveis/toxicidade , Cromatografia em Gel , Dextranos/administração & dosagem , Dextranos/química , Dextranos/toxicidade , Difusão Dinâmica da Luz , Teste de Materiais , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Peso Molecular , Ressonância Magnética Nuclear Biomolecular , Tamanho da Partícula , Transição de Fase , Polissacarídeos/administração & dosagem , Polissacarídeos/toxicidade , Espectrofotometria , Temperatura
6.
Gastroenterology ; 159(6): 2146-2162.e33, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32805281

RESUMO

BACKGROUND & AIMS: Chromosomal instability (CIN) is a carcinogenesis event that promotes metastasis and resistance to therapy by unclear mechanisms. Expression of the colon cancer-associated transcript 2 gene (CCAT2), which encodes a long noncoding RNA (lncRNA), associates with CIN, but little is known about how CCAT2 lncRNA regulates this cancer enabling characteristic. METHODS: We performed cytogenetic analysis of colorectal cancer (CRC) cell lines (HCT116, KM12C/SM, and HT29) overexpressing CCAT2 and colon organoids from C57BL/6N mice with the CCAT2 transgene and without (controls). CRC cells were also analyzed by immunofluorescence microscopy, γ-H2AX, and senescence assays. CCAT2 transgene and control mice were given azoxymethane and dextran sulfate sodium to induce colon tumors. We performed gene expression array and mass spectrometry to detect downstream targets of CCAT2 lncRNA. We characterized interactions between CCAT2 with downstream proteins using MS2 pull-down, RNA immunoprecipitation, and selective 2'-hydroxyl acylation analyzed by primer extension analyses. Downstream proteins were overexpressed in CRC cells and analyzed for CIN. Gene expression levels were measured in CRC and non-tumor tissues from 5 cohorts, comprising more than 900 patients. RESULTS: High expression of CCAT2 induced CIN in CRC cell lines and increased resistance to 5-fluorouracil and oxaliplatin. Mice that expressed the CCAT2 transgene developed chromosome abnormalities, and colon organoids derived from crypt cells of these mice had a higher percentage of chromosome abnormalities compared with organoids from control mice. The transgenic mice given azoxymethane and dextran sulfate sodium developed more and larger colon polyps than control mice given these agents. Microarray analysis and mass spectrometry indicated that expression of CCAT2 increased expression of genes involved in ribosome biogenesis and protein synthesis. CCAT2 lncRNA interacted directly with and stabilized BOP1 ribosomal biogenesis factor (BOP1). CCAT2 also increased expression of MYC, which activated expression of BOP1. Overexpression of BOP1 in CRC cell lines resulted in chromosomal missegregation errors, and increased colony formation, and invasiveness, whereas BOP1 knockdown reduced viability. BOP1 promoted CIN by increasing the active form of aurora kinase B, which regulates chromosomal segregation. BOP1 was overexpressed in polyp tissues from CCAT2 transgenic mice compared with healthy tissue. CCAT2 lncRNA and BOP1 mRNA or protein were all increased in microsatellite stable tumors (characterized by CIN), but not in tumors with microsatellite instability compared with nontumor tissues. Increased levels of CCAT2 lncRNA and BOP1 mRNA correlated with each other and with shorter survival times of patients. CONCLUSIONS: We found that overexpression of CCAT2 in colon cells promotes CIN and carcinogenesis by stabilizing and inducing expression of BOP1 an activator of aurora kinase B. Strategies to target this pathway might be developed for treatment of patients with microsatellite stable colorectal tumors.


Assuntos
Instabilidade Cromossômica , Neoplasias Colorretais/genética , Neoplasias Experimentais/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Aurora Quinase B/metabolismo , Azoximetano/toxicidade , Carcinogênese/genética , Linhagem Celular Tumoral , Colo/citologia , Colo/patologia , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/patologia , Análise Citogenética , Dextranos/toxicidade , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/patologia , Organoides , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/genética
7.
J Biomed Mater Res A ; 108(5): 1186-1202, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32031743

RESUMO

In pursuit of a preventive therapeutic for maternal autoantibody-related (MAR) autism, we assessed the toxicity, biodistribution, and clearance of a MAR specific peptide-functionalized dextran iron oxide nanoparticle system in pregnant murine dams. We previously synthesized ~15 nm citrate-coated dextran iron oxide nanoparticles (DIONPs), surface-modified with polyethylene glycol and MAR peptides to produce systems for nanoparticle-based autoantibody reception and entrapments (SNAREs). First, we investigated their immunogenicity and MAR lactate dehydrogenase B antibody uptake in murine serum in vitro. To assess biodistribution and toxicity, as well as systemic effects, we performed in vivo clinical and post mortem pathological evaluations. We observed minimal production of inflammatory cytokines-interleukin 10 (IL-10) and IL-12 following in vitro exposure of macrophages to SNAREs. We established the maximum tolerated dose of SNAREs to be 150 mg/kg at which deposition of iron was evident in the liver and lungs by histology and magnetic resonance imaging but no concurrent evidence of liver toxicity or lung infarction was detected. Further, SNAREs exhibited slower clearance from the maternal blood in pregnant dams compared to DIONPs based on serum total iron concentration. These findings demonstrated that the SNAREs have a prolonged presence in the blood and are safe for use in pregnant mice as evidenced by no associated organ damage, failure, inflammation, and fetal mortality. Determination of the MTD dose sets the basis for future studies investigating the efficacy of our nanoparticle formulation in a MAR autism mouse model.


Assuntos
Dextranos/toxicidade , Epitopos/toxicidade , Nanopartículas Magnéticas de Óxido de Ferro/toxicidade , Animais , Células Cultivadas , Citocinas/análise , Dextranos/análise , Dextranos/farmacocinética , Epitopos/análise , Feminino , Macrófagos/efeitos dos fármacos , Nanopartículas Magnéticas de Óxido de Ferro/análise , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Distribuição Tecidual
8.
Acta Chim Slov ; 67(4): 1172-1179, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33533471

RESUMO

Microbial inhibition of carboxymethyl dextran (CMD) magnetic nanoparticles (MNPs) was investigated on two different bacterial cultures, Escherichia coli and Staphylococcus aureus, where inhibition properties of CMD-MNPs were confirmed, while uncoated MNPs exhibited no inhibition properties. To such CMD-MNPs, enzyme alcohol dehydrogenase (ADH) from Saccharomyces cerevisiae was immobilized. Later on, CMD-MNPs were functionalized, using an epoxide cross-linker epichlorohydrin (EClH) for another option of ADH immobilization. Residual activities of immobilized ADH onto epoxy functionalized and non-functionalized CMD-MNPs were determined. Effect of cross-linker concentration, temperature of immobilization and enzyme concentration on residual activities of immobilized ADH were determined, as well. With optimal process conditions (4% (v/v) EClH, 4 °C and 0.02 mg/mL of ADH), residual activity of immobilized ADH was 90%. Such immobilized ADH was characterized using FT-IR, SEM and DLS analysis.


Assuntos
Álcool Desidrogenase/química , Dextranos/química , Enzimas Imobilizadas/química , Compostos de Epóxi/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Dextranos/toxicidade , Compostos de Epóxi/toxicidade , Escherichia coli/efeitos dos fármacos , Nanopartículas Magnéticas de Óxido de Ferro/toxicidade , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Staphylococcus aureus/efeitos dos fármacos
9.
Brain Res Bull ; 155: 191-201, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31786269

RESUMO

Elevated application potential of fullerene C60 paved the way to think on its adverse effect when it reaches to biological system and environment. Though fullerenes are insoluble in water, various strategies are employed to make it soluble. Method of solubilization with organic solvents, yield cytotoxic responses both in vitro and in vivo. In this study, dextran was used to stabilize C60 particle. Fourier transformed-infrared spectroscopy (FT-IR) and transition electron microscopy (TEM) were used for characterization and it confirms effective surface stabilization and morphological characteristics. This was followed by various cytotoxicity studies to evaluate its bio-nano interactions. The results of the study suggest that the dextran stabilized C60 nanoparticles (Dex-C60) forms uniform suspension in water and was stable up to 72 h. The C6 glial cell-Dex-C60 interactions indicated that the Dex-C60 nanoparticles penetrate deeper into the cells and cause dose dependent toxic response. The result of the study recommended that Dex-C60 nanoparticles should undergo intensive risk assessment before biomedical applications and should take proper safety measure to avoid its entry to the environment.


Assuntos
Dextranos/química , Dextranos/toxicidade , Fulerenos/química , Fulerenos/toxicidade , Neuroglia/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/toxicidade , Ratos , Espécies Reativas de Oxigênio/metabolismo
10.
Int J Nanomedicine ; 14: 8421-8432, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31749616

RESUMO

PURPOSE: Immune activation with T cell tumor infiltration is beneficial for the prognosis of patients suffering from solid cancer. Depending on their immune status, solid tumors can be immunologically classified into three groups: "hot" tumors are infiltrated with T lymphocytes, "cold" tumors are not infiltrated and "immune excluded" tumors are only infiltrated in the peripheral tumor tissue. Checkpoint inhibitors provide new therapeutic options for "hot" tumors by triggering the immune response of T cells. In order to enable this for cold tumors as well, T cells must be enriched in the tumor. Therefore, we use the principle of magnetic targeting to guide T cells loaded with citrate-coated superparamagnetic iron oxide nanoparticles (SPIONCitrate) to the tumor by an externally applied magnetic field. METHODS: SPIONCitrate were produced by alkaline coprecipitation of iron(II) and iron(III) chloride and in situ coating with sodium citrate. The concentration-dependent cytocompatibility of the particles was determined by flow cytometry and blood stability assays. Atomic emission spectroscopy was used for the quantification of the particle uptake into T lymphocytes. The attractability of the loaded cells was observed by live-cell imaging in the presence of an externally applied magnetic field. RESULTS: SPIONCitrate displayed good cytocompatibility to T cells and did not show any sign of aggregation in blood. Finally, SPIONCitrate-loaded T cells were strongly attracted by a small external magnet. CONCLUSION: T cells can be "magnetized" by incorporation of SPIONCitrate for magnetic targeting. The production of the particle-cell hybrid system is straightforward, as the loading process only requires basic laboratory devices and the loading efficiency is sufficient for cells being magnetically controllable. For these reasons, SPIONCitrate are potential suitable candidates for magnetic T cell targeting.


Assuntos
Ácido Cítrico/química , Dextranos/química , Imunoterapia , Magnetismo , Nanopartículas de Magnetita/química , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Dextranos/sangue , Dextranos/toxicidade , Dextranos/ultraestrutura , Humanos , Ferro/metabolismo , Nanopartículas de Magnetita/toxicidade , Nanopartículas de Magnetita/ultraestrutura , Neoplasias/sangue , Espécies Reativas de Oxigênio/metabolismo
11.
Int J Biol Macromol ; 135: 776-789, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31158423

RESUMO

Dual stimuli responsive polyelectrolyte nanoparticles have been developed for chemo-photothermal synergistic therapy of colon cancer cells. This novel system is formed by layer by layer (LbL) assembly, which is composed of aminated nanodextran (AND) and carboxylated nanocellulose (CNC) deposited on the surface of chemically modified graphene oxide (MGO). The alternate layers of cationic AND and anionic CNC interact with MGO through electrostatic interaction and forms MGO-AND/CNC nanocomposite. The MGO-AND/CNC exploited for the encapsulation of anticancer drug curcumin (CUR) by π-π stacking and hydrogen bonding interactions. Various concentrations of MGO and AND/CNC were examined and the optimal hydrodynamic size of the particle was found to have 158.0 nm, zeta potential of -45.9 ±â€¯6.9 mV and encapsulation efficiency of 86.4 ±â€¯4.7%. The resulting nanocomposite was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, dynamic light scattering and zeta potential measurements. Drug release assay indicates that the LbL MGO-AND/CNC releases much faster in an acidic environment than intestinal pH. A cytotoxicity assay was conducted to prove the efficacy of drug loaded MGO-AND/CNC to destroy HCT116 cells in response to near-infrared (NIR) laser emission. Study results suggest the novel dual-sensitive nanoparticles allow intracellular curcumin delivery and respond to either acidic environments or NIR excitation.


Assuntos
Antineoplásicos/química , Celulose/química , Dextranos/química , Portadores de Fármacos/química , Nanopartículas/química , Fototerapia , Polieletrólitos/química , Antineoplásicos/farmacologia , Terapia Combinada , Curcumina/química , Curcumina/farmacologia , Dextranos/toxicidade , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Células HCT116 , Hemólise/efeitos dos fármacos , Humanos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Teste de Materiais
12.
Int J Biol Macromol ; 132: 1098-1105, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30974136

RESUMO

Wound dressing is of significant importance to promote cutaneous wound healing process. To develop an effective wound dressing, a PVA/DA hydrogel was prepared using a Poly (vinyl alcohol)/Dextran-aldehyde solution blend, followed by crosslinking via freeze-thaw method and freeze-drying. We characterized the hydrogel by infrared spectroscopy, mechanical property tests, swelling behavior test and biocompatibility test. Results showed that the PVA/DA hydrogels had a 3-dimensional, highly porous structure with uniformly distributed pores of 5-10 µm, strong tensile strength of 5.6 MPa, efficient ability to absorb fluid of 6 time its weight and suitable water vapor transmission rate of 2100 g m-2day-1 to keep a moist environment and good biocompatibility shown by very low hemolysis and no cytotoxicity. In wound healing tests using a full-thickness skin wound model, macroscopic observations showed that the wound covered by the PVA/DA hydrogel almost reached complete healing faster by 10 days, while histological analysis indicated a faster regeneration of skin. Thus, the PVA/DA hydrogel was suitable for application as a wound dressing and may have potential for use in various biomedical applications.


Assuntos
Aldeídos/química , Bandagens , Dextranos/química , Dextranos/farmacologia , Hidrogéis/química , Álcool de Polivinil/química , Cicatrização/efeitos dos fármacos , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/toxicidade , Dextranos/toxicidade , Hemólise/efeitos dos fármacos , Teste de Materiais , Fenômenos Mecânicos , Camundongos , Células RAW 264.7
13.
Curr Pharm Biotechnol ; 20(2): 146-156, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30767739

RESUMO

BACKGROUND: Corticosteroids are the preferred option to treat asthma, however, they possess serious side effects and are inefficient in 10% of patients. Thus, new therapeutic approaches for asthma treatment are required. OBJECTIVE: To study the efficacy of a novel glutarimide derivative XC8 in a Sephadex-induced lung inflammation in rats as well as in acute and chronic ovalbumin-induced allergic asthma in guinea pigs. METHOD: Rats were treated with 0.18-18 mg/kg of XC8 intragastrically 4 times (24 h and 1 h prior to and 24 h and 45 h after endotracheal administration of Sephadex). The number of inflammatory cells in bronchoalveaolar lavages (BAL) was determined. Guinea pigs were treated with 0.045 -1.4 mg/kg (acute asthma) or with 1.4 and 7.0 mg/kg of XC8 (chronic asthma) intragastrically following the sensitization with ovalbumin and during aerosol challenge. Lung inflammation, numbers of eosinophils (BAL and lung tissue), goblet cells, degranulating mast cells and specific airway resistance (sRAW) were determined. The comparator steroid drug budesonide (0.5 mg/kg for rats and 0.16 mg/kg for guinea pigs) was administered by inhalation. RESULTS: XC8 reduced influx of eosinophils into BAL in Sephadex-induced lung inflammation model in rats (by 2.6-6.4 times). Treatment of acute asthma in guinea pigs significantly reduced eosinophils in guinea pigs in BAL (from 55% to 30%-39% of the total cell count) and goblet cells in lung tissue. In a model of acute and chronic asthma, XC8 reduced significantly the number of eosinophils and degranulating mast cells in the lung tissue. Treatment with XC8 but not with budesonide decreased the specific airway resistance in acute and chronic asthma model up to the level of naive animals. CONCLUSION: XC8 induced a profound anti-inflammatory effect by reducing eosinophils in BAL and eosinophils and degranulating mast cell numbers in the airway tissue. The anti-asthmatic effect of XC8 is comparable to that of budesonide. Moreover, in contrast to budesonide, XC8 was capable to reduce goblet cells and airway resistance.


Assuntos
Asma/tratamento farmacológico , Pneumonia/tratamento farmacológico , Administração Oral , Animais , Budesonida/uso terapêutico , Dextranos/toxicidade , Eosinófilos/efeitos dos fármacos , Cobaias , Masculino , Ovalbumina/imunologia , Piperidonas/administração & dosagem , Piperidonas/uso terapêutico , Ratos , Ratos Wistar
14.
Eur J Pharmacol ; 848: 49-54, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30690005

RESUMO

The aim of this study is to investigate the protective effect and underlying molecular mechanisms of isobavachalcone on Sephadex-induced lung injury in rats. The result showed isobavachalcone inhibited massive granulomas, decreased inflammatory cells infiltration and oxidative stress markers level, but it can increase antioxidant enzymes level. The ELISA assay exhibited isobavachalcone decreased TNF-α production in BALF and lung tissue. Western blotting analysis showed isobavachalcone can inhibit NF-κB pathway that may be mediated by upregulation of A20. Furthermore, we also found isobavachalcone can activate NRF2/HO-1 pathway and inhibit adhesion molecule expression. Taken together, the present results suggested that isobavachalcone can attenuate Sephadex-induced lung injury that may be related to inhibition of NF-κB mediated by upregulation of A20 and activation of NRF2/HO-1 signaling pathway.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Chalconas/uso terapêutico , Proteínas de Ligação a DNA/metabolismo , Dextranos/toxicidade , Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Chalconas/farmacologia , Proteínas de Ligação a DNA/agonistas , Relação Dose-Resposta a Droga , Masculino , Proteínas de Membrana/agonistas , Fator 2 Relacionado a NF-E2/agonistas , Ratos , Ratos Sprague-Dawley , Proteína 3 Induzida por Fator de Necrose Tumoral alfa
15.
Langmuir ; 35(31): 10166-10172, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30698448

RESUMO

Tumor hypoxia is a significant factor leading to the resistance of tumors to treatment, especially for photodynamic therapy and radiotherapy where oxygen is needed to kill cancer cells. Oxygen delivery agents such as oxygen-saturated perfluorocarbon nanoemulsions and lipid oxygen microbubbles have been employed to supply oxygen to hypoxic tumors with ultrasound activation. Such oxygen delivery systems are still associated with several drawbacks, including premature oxygen release and the dependence of external stimuli. To address these limitations, we developed oxygen nanobubbles that were enclosed by the acetalated dextran polymer shells for spontaneous oxygeneration in response to a minor pH drop in the tumor microenvironment. The acetalated dextran polymer shell serves as a robust barrier against gas dissolution in the circulating blood to retain the majority of the oxygen payload, and its pH-responsive property enables an abrupt burst release of oxygen in the mild acidic tumor microenvironment. The acetalated dextran oxygen nanobubbles exhibited excellent stability and biocompatibility. In vitro and in vivo experiments were conducted to investigate the pH-responsive oxygen release. The external stimuli-free supply of oxygen by the acetalated dextran oxygen nanobubbles was evaluated on CNE2 tumor-bearing mice, and the intratumoral oxygen level increased by 6-fold after the administration of the oxygen nanobubbles, manifesting that our pH-responsive oxygen nanobubbles hold great potential as a potent oxygen delivery agent to overcome the hypoxia-induced resistance.


Assuntos
Portadores de Fármacos/química , Nanoestruturas/química , Oxigênio/farmacologia , Hipóxia Tumoral/efeitos dos fármacos , Acetais/química , Acetais/toxicidade , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Meios de Contraste/toxicidade , Dextranos/química , Dextranos/toxicidade , Portadores de Fármacos/toxicidade , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Nanoestruturas/toxicidade , Ultrassonografia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Langmuir ; 35(5): 1837-1845, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30086636

RESUMO

Patients with diabetic wounds have deficient local and systemic cellular immunity. Herein, a new silver nanoparticle-containing hydrogel with antifouling properties was developed for enhancing the immune response in diabetic wound healing. The antifouling property was obtained by adjusting the composition of cationic chitosan and anionic dextran to approach zero charge. Furthermore, this hybrid hydrogel showed long-lasting and broad-spectrum antibacterial activity. Rapid wound contraction was observed after the treatment with the hydrogel, which suggested its superior healing activity to promote fibroblast migration, granulation tissue formation, and angiogenesis. The upregulation of CD68+ and CD3+ expression levels demonstrated that the hydrogel could trigger immune responses in the treatment of wound healing. These results show that this antifouling hybrid hydrogel as a wound dressing provided a promising strategy for the treatment of diabetic ulcers.


Assuntos
Antibacterianos/uso terapêutico , Hidrogéis/química , Nanopartículas Metálicas/uso terapêutico , Prata/uso terapêutico , Úlcera Cutânea/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/síntese química , Antibacterianos/toxicidade , Quitosana/síntese química , Quitosana/química , Quitosana/toxicidade , Doença Crônica , Derme/patologia , Dextranos/síntese química , Dextranos/uso terapêutico , Dextranos/toxicidade , Diabetes Mellitus Experimental/complicações , Hidrogéis/síntese química , Hidrogéis/toxicidade , Masculino , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Camundongos , Células NIH 3T3 , Pseudomonas aeruginosa/efeitos dos fármacos , Ratos Sprague-Dawley , Prata/química , Prata/toxicidade , Úlcera Cutânea/etiologia , Staphylococcus aureus/efeitos dos fármacos , Linfócitos T/metabolismo
17.
Carbohydr Polym ; 205: 167-175, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30446092

RESUMO

Serum stability is a crucial factor for ideal polymeric gene vectors. In this work, a series of serum-tolerant and low-toxicity glycopolymers/poly(ethyleneimine) (PEI) complexes were designed for gene delivery. Atomic transfer radical polymerization (ATRP) was used to synthesize the comb-shaped random copolymers dextran-g-poly(2-dimethylaminoethyl methacrylate-co-2-lactobionamidoethyl methacrylate) (DDrL). Then DDrLs/PEI were investigated for their use as plasmid DNA (pDNA) vectors, which can completely condense the pDNA into nanoparticles. The DDrLs/PEI/pDNA complexes in serum-containing media showed better stability than PEI/pDNA complexes. in vitro gene transfection studies showed that DDrLs/PEI exhibited a remarkable transfection efficiency enhancement in the presence of serum compared to that in serum-free conditions. Moreover, the transfection level of DDrLs/PEI were two orders of magnitude higher than that of PEI alone in the presence of 30% serum. DDrLs/PEI complexes with galactose enhanced pDNA delivery to hepatocytes, with higher protein expression in ASGPr-presenting HepG2 than in HeLa cells, which lack the receptor. All of the DDrLs/PEI/pDNA complexes had lower cytotoxicity than PEI/pDNA.


Assuntos
DNA/genética , Dextranos/química , Hepatócitos/metabolismo , Polietilenoimina/química , Ácidos Polimetacrílicos/química , Transfecção , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dextranos/síntese química , Dextranos/toxicidade , Humanos , Tamanho da Partícula , Plasmídeos , Polietilenoimina/síntese química , Polietilenoimina/toxicidade , Ácidos Polimetacrílicos/síntese química , Ácidos Polimetacrílicos/toxicidade
18.
Biol Pharm Bull ; 41(12): 1853-1858, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30282852

RESUMO

Contact hypersensitivity (CHS) to preservatives is receiving increased attention. Parabens are widely used in foods, pharmaceutics and cosmetics as preservatives. The skin sensitizing activity of parabens remains controversial but a few investigations have been made as to whether parabens could facilitate sensitization to other chemicals. We have shown that di-n-butyl phthalate (DBP), a phthalate ester, has an adjuvant effect in a fluorescein isothiocyanate (FITC)-induced CHS mouse model. We have also demonstrated that DBP activates transient receptor potential ankyrin 1 (TRPA1) cation channels expressed on sensory neurons. Comparative studies of phthalate esters revealed that TRPA1 agonistic activity and the adjuvant effect on FITC-CHS coincide. Here we focused on two commonly used parabens, butyl paraben (BP) and ethyl paraben (EP), as to their adjuvant effects. BALB/c mice were epicutneously sensitized with FITC in acetone in the presence or absence of a paraben. Sensitization to FITC was evaluated as the ear-swelling response after FITC challenge. BP but not EP enhanced skin sensitization to FITC, but the effect of BP was much weaker than that of DBP. Mechanistically, BP enhanced the trafficking of FITC-presenting CD11c+ dendritic cells (DCs) from the skin to draining lymph nodes as well as cytokine production by draining lymph nodes. When the TRPA1 agonistic activity was measured with a cell line expressing TRPA1, BP exhibited higher activity than EP. The present study provides direct in vivo evidence that BP causes sensitization to other chemicals by means of a mouse FITC-CHS model.


Assuntos
Dermatite de Contato/metabolismo , Dextranos/toxicidade , Modelos Animais de Doenças , Fluoresceína-5-Isotiocianato/análogos & derivados , Parabenos/toxicidade , Animais , Células CHO , Cricetinae , Cricetulus , Dermatite de Contato/patologia , Relação Dose-Resposta a Droga , Feminino , Fluoresceína-5-Isotiocianato/toxicidade , Camundongos , Camundongos Endogâmicos BALB C
19.
Toxicol Sci ; 165(2): 420-430, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29947792

RESUMO

Osmotic nephrosis, a disease caused by intravenous infusion of various fluids such as hypertonic sucrose and isotonic polysaccharide-based plasma volume expanders, exhibits specific histopathological features, including vacuolated and swollen proximal tubules, ie, "clear tubules". Pre-existing kidney injury exacerbates this condition, resulting in major clinical problems. However, the underlying mechanisms are unclear. Animal models often yield results that are directly translatable to humans. Therefore, in this study, we performed detailed histopathological analyses of the formation of clear tubules in rats treated with gentamicin or ischemia/reperfusion (IR) operation followed by dextran administration. The results showed that clear tubules may originate from regenerative tubules. Additionally, we classified regenerative tubules into 3 categories based on their development, with a particular focus on the middle and late stages. Comprehensive microarray and real-time polymerase chain reaction analyses of mRNA extracted from regenerative tubules at each stage using laser microdissection revealed that regenerative tubules in the middle stage showed an imbalance between dextran absorption and metabolism, resulting in accumulation of dextran, particularly in the cytoplasm of the tubules. Overall, our findings demonstrated that clear tubules originated from regenerated tubules and that tubules at the middle stage became clear tubules because of an imbalance during their development. This could explain why osmotic nephrosis is exacerbated in the presence of kidney lesions.


Assuntos
Injúria Renal Aguda/patologia , Túbulos Renais Proximais/patologia , Nefrose/patologia , Traumatismo por Reperfusão/patologia , Injúria Renal Aguda/complicações , Injúria Renal Aguda/metabolismo , Animais , Dextranos/metabolismo , Dextranos/toxicidade , Modelos Animais de Doenças , Progressão da Doença , Feminino , Gentamicinas/metabolismo , Gentamicinas/toxicidade , Túbulos Renais Proximais/metabolismo , Masculino , Nefrose/etiologia , Nefrose/metabolismo , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/metabolismo
20.
Eur J Pharm Sci ; 117: 362-370, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29522909

RESUMO

We report here, reverse micelle mediated synthesis of multifunctional dextran (dex) coated Gd2O3 nanoparticles (NPs) carrying rose bengal (RB) dye for magnetic resonance and optical imaging. The diameter of these RB attached dex coated Gd2O3 NPs (Gd-dex-RB NPs) was found to be ~17 nm as measured by TEM. NMR line broadening effect on the surrounding water protons affirmed the paramagnetic nature of these NPs. Optical properties of Gd-dex-RB NPs were validated by UV-Vis and fluorescence spectroscopy. Time dependent release profile of RB from NPs at two different pH of 7.4 and 5.0 revealed that these NPs behave as slow releasing system. In-vitro study revealed that NPs are efficiently taken up by cells and show optical activity in cellular environment. In vitro cell viability (SRB) assay was performed on cancerous (A-549, U-87) and normal (HEK-293) cell lines, showed the absence of cytotoxic effect of Gd-dex-RB NPs. Therefore, such multifunctional NPs can be efficiently used for bio-imaging and optical tracking.


Assuntos
Meios de Contraste/química , Dextranos/química , Gadolínio/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas Metálicas , Imagem Molecular/métodos , Rosa Bengala/química , Células A549 , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/administração & dosagem , Meios de Contraste/metabolismo , Meios de Contraste/toxicidade , Dextranos/administração & dosagem , Dextranos/metabolismo , Dextranos/toxicidade , Gadolínio/administração & dosagem , Gadolínio/metabolismo , Gadolínio/toxicidade , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Cinética , Tamanho da Partícula , Rosa Bengala/administração & dosagem , Rosa Bengala/metabolismo , Rosa Bengala/toxicidade , Solubilidade , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...