Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
1.
Antimicrob Agents Chemother ; 68(5): e0172723, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38587392

RESUMO

Antiviral susceptibility of influenza viruses was assessed using a high-content imaging-based neutralization test. Cap-dependent endonuclease inhibitors, baloxavir and AV5116, were superior to AV5115 against type A viruses, and AV5116 was most effective against PA mutants tested. However, these three inhibitors displayed comparable activity (EC50 8-22 nM) against type C viruses from six lineages. Banana lectin and a monoclonal antibody, YA3, targeting the hemagglutinin-esterase protein effectively neutralized some, but not all, type C viruses.


Assuntos
Antivirais , Dibenzotiepinas , Triazinas , Antivirais/farmacologia , Humanos , Triazinas/farmacologia , Dibenzotiepinas/farmacologia , Gammainfluenzavirus/efeitos dos fármacos , Gammainfluenzavirus/genética , Morfolinas/farmacologia , Piridonas/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Células Madin Darby de Rim Canino , Cães , Ciclopropanos/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Testes de Neutralização , Piridinas/farmacologia
2.
Eur J Med Chem ; 247: 115035, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36603507

RESUMO

Influenza is one of the leading causes of disease-related mortalities worldwide. Several strategies have been implemented during the past decades to hinder the replication cycle of influenza viruses, all of which have resulted in the emergence of resistant virus strains. The most recent example is baloxavir marboxil, where a single mutation in the active site of the target endonuclease domain of the RNA-dependent-RNA polymerase renders the recent FDA approved compound ∼1000-fold less effective. Raltegravir is a first-in-class HIV inhibitor that shows modest activity to the endonuclease. Here, we have used structure-guided approaches to create rationally designed derivative molecules that efficiently engage the endonuclease active site. The design strategy was driven by our previously published structures of endonuclease-substrate complexes, which allowed us to target functionally conserved residues and reduce the likelihood of resistance mutations. We succeeded in developing low nanomolar equipotent inhibitors of both wild-type and baloxavir-resistant endonuclease. We also developed macrocyclic versions of these inhibitors that engage the active site in the same manner as their 'open' counterparts but with reduced affinity. Structural analyses provide clear avenues for how to increase the affinity of these cyclic compounds.


Assuntos
Dibenzotiepinas , Inibidores de Integrase de HIV , Influenza Humana , Orthomyxoviridae , Humanos , RNA Polimerase Dependente de RNA , Piridonas/farmacologia , Piridonas/uso terapêutico , Influenza Humana/tratamento farmacológico , Dibenzotiepinas/farmacologia , Dibenzotiepinas/uso terapêutico , Endonucleases , Triazinas/farmacologia , Antivirais/farmacologia
3.
Antiviral Res ; 208: 105455, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36328072

RESUMO

Baloxavir marboxil (baloxavir) is a highly effective, single-dose influenza therapeutic. Identification of molecular markers in the target polymerase acidic (PA) protein that can diminish baloxavir efficacy is an ongoing goal of the scientific community. In this study, we generated recombinant Victoria-lineage and Yamagata-lineage influenza B viruses (IBVs) containing 6 substitutions (E23G/K, F36V, N37T, E119D, and E199G) spanning the endonuclease domain of the PA. Although 5 of these PA substitutions negatively impacted in vitro polymerase activity and replication kinetics, particularly in the Victoria-lineage IBV background, viruses with E119D exhibited activity levels comparable to those of wild-type viruses. Moreover, only E119D moderately decreased the susceptibility of IBVs to baloxavir (resulting in ∼2.0-fold to 2.6-fold elevated EC50s); viruses with the other substitutions exhibited normal drug inhibition. These results show that E119D may reduce the baloxavir susceptibility of IBVs without compromising their replicative fitness. Overall, this study expands the molecular landscape of PA substitutions potentially affecting baloxavir efficacy against IBV.


Assuntos
Dibenzotiepinas , Vírus da Influenza B , Vírus da Influenza B/genética , Farmacorresistência Viral/genética , Antivirais/farmacologia , Antivirais/uso terapêutico , Dibenzotiepinas/farmacologia
4.
Viruses ; 14(1)2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-35062315

RESUMO

Human infections caused by the H5 highly pathogenic avian influenza virus (HPAIV) sporadically threaten public health. The susceptibility of HPAIVs to baloxavir acid (BXA), a new class of inhibitors for the influenza virus cap-dependent endonuclease, has been confirmed in vitro, but it has not yet been fully characterized. Here, the efficacy of BXA against HPAIVs, including recent H5N8 variants, was assessed in vitro. The antiviral efficacy of baloxavir marboxil (BXM) in H5N1 virus-infected mice was also investigated. BXA exhibited similar in vitro activities against H5N1, H5N6, and H5N8 variants tested in comparison with seasonal and other zoonotic strains. Compared with oseltamivir phosphate (OSP), BXM monotherapy in mice infected with the H5N1 HPAIV clinical isolate, the A/Hong Kong/483/1997 strain, also caused a significant reduction in viral titers in the lungs, brains, and kidneys, thereby preventing acute lung inflammation and reducing mortality. Furthermore, compared with BXM or OSP monotherapy, combination treatments with BXM and OSP using a 48-h delayed treatment model showed a more potent effect on viral replication in the organs, accompanied by improved survival. In conclusion, BXM has a potent antiviral efficacy against H5 HPAIV infections.


Assuntos
Dibenzotiepinas/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Morfolinas/farmacologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Piridonas/farmacologia , Triazinas/farmacologia , Células A549 , Animais , Antivirais/farmacologia , Quimiocinas/metabolismo , Citocinas/metabolismo , Quimioterapia Combinada , Feminino , Humanos , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Oseltamivir/farmacologia , Pneumonia/tratamento farmacológico , Análise de Sequência , Replicação Viral/efeitos dos fármacos
5.
J Gen Virol ; 102(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34661516

RESUMO

The polymerase acidic (PA) I38T substitution is a dominant marker of resistance to baloxavir. We evaluated the impact of I38T on the fitness of a contemporary influenza A(H3N2) virus. Influenza A/Switzerland/9715293/2013 (H3N2) wild-type (WT) virus and its I38T mutant were rescued by reverse genetics. Replication kinetics were compared using ST6GalI-MDCK and A549 cells and infectivity/contact transmissibility were evaluated in guinea pigs. Nasal wash (NW) viral titres were determined by TCID50 ml-1 in ST6GalI-MDCK cells. Competition experiments were performed and the evolution of viral population was assessed by droplet digital RT-PCR. I38T did not alter in vitro replication. I38T induced comparable titres vs the WT in guinea pigs NWs and the two viruses transmitted equally by direct contact. However, a 50 %:50 % mixture inoculum evolved to mean WT/I38T ratios of 71 %:29 % and 66.4 %:33.6 % on days 4 and 6 p.i., respectively. Contemporary influenza A(H3N2)-I38T PA variants may conserve a significant level of viral fitness.


Assuntos
Vírus da Influenza A Subtipo H3N2/fisiologia , Infecções por Orthomyxoviridae/virologia , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética , Células A549 , Substituição de Aminoácidos , Animais , Antivirais/farmacologia , Dibenzotiepinas/farmacologia , Cães , Farmacorresistência Viral , Cobaias , Humanos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/patogenicidade , Células Madin Darby de Rim Canino , Morfolinas/farmacologia , Nariz/virologia , Infecções por Orthomyxoviridae/transmissão , Piridonas/farmacologia , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Genética Reversa , Triazinas/farmacologia , Carga Viral , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação Viral
6.
Antiviral Res ; 194: 105158, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34363859

RESUMO

It is more than 20 years since the neuraminidase inhibitors, oseltamivir and zanamivir were approved for the treatment and prevention of influenza. Guidelines for global surveillance and methods for evaluating resistance were established initially by the Neuraminidase Inhibitor Susceptibility Network (NISN), which merged 10 years ago with the International Society for influenza and other Respiratory Virus Diseases (isirv) to become the isirv-Antiviral Group (isirv-AVG). With the ongoing development of new influenza polymerase inhibitors and recent approval of baloxavir marboxil, the isirv-AVG held a closed meeting in August 2019 to discuss the impact of resistance to these inhibitors. Following this meeting and review of the current literature, this article is intended to summarize current knowledge regarding the clinical impact of resistance to polymerase inhibitors and approaches for surveillance and methods for laboratory evaluation of resistance, both in vitro and in animal models. We highlight limitations and gaps in current knowledge and suggest some strategies for addressing these gaps, including the need for additional clinical studies of influenza antiviral drug combinations. Lessons learned from influenza resistance monitoring may also be helpful for establishing future drug susceptibility surveillance and testing for SARS-CoV-2.


Assuntos
Antivirais/uso terapêutico , Influenza Humana/tratamento farmacológico , Animais , Antivirais/efeitos adversos , Antivirais/farmacologia , Dibenzotiepinas/farmacologia , Farmacorresistência Viral , Inibidores Enzimáticos/farmacologia , Humanos , Influenza Humana/virologia , Conhecimento , Morfolinas/farmacologia , Neuraminidase/uso terapêutico , Oseltamivir/farmacologia , Piridonas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Triazinas/farmacologia , Replicação Viral/efeitos dos fármacos , Zanamivir/farmacologia
7.
Antiviral Res ; 193: 105126, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34217753

RESUMO

Baloxavir marboxil (BXM) treatment-emergent polymerase acid (PA) I38X amino acid substitution (AAS) in the resistant variants of influenza viruses raise concerns regarding their emergence and spread. This study investigated the impact of 1 or 5 mg/kg BXM and 25 mg/kg oseltamivir phosphate (OS) (single or combination therapy) on the occurrence of resistance-related substitutions during the sequential lung-to-lung passages of AH1N1)pdm09 virus in mice. Deep sequencing analysis revealed that 67% (n = 4/6) of the population treated with BXM single therapy (1 or 5 mg/kg) possessed the treatment-emergent PA-I38X AAS variants (I38T, I38S, and I38V). Notably, BXM-OS combination therapy impeded PA-I38X AAS emergence. Although the doses utilized in the mouse model may not be directly translated into the clinically equivalent doses of each drugs, these findings offer insights toward alternative therapies to mitigate the emergence of influenza antiviral resistance.


Assuntos
Dibenzotiepinas/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Morfolinas/farmacologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Oseltamivir/farmacologia , Piridonas/farmacologia , Triazinas/farmacologia , Substituição de Aminoácidos , Animais , Antivirais/farmacologia , Modelos Animais de Doenças , Farmacorresistência Viral/efeitos dos fármacos , Camundongos , Infecções por Orthomyxoviridae/virologia , Carga Viral/efeitos dos fármacos
8.
PLoS Pathog ; 17(5): e1009527, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33956888

RESUMO

Baloxavir is approved in several countries for the treatment of uncomplicated influenza in otherwise-healthy and high-risk patients. Treatment-emergent viruses with reduced susceptibility to baloxavir have been detected in clinical trials, but the likelihood of widespread occurrence depends on replication capacity and onward transmission. We evaluated the fitness of A/H3N2 and A/H1N1pdm09 viruses with the polymerase acidic (PA) I38T-variant conferring reduced susceptibility to baloxavir relative to wild-type (WT) viruses, using a competitive mixture ferret model, recombinant viruses and patient-derived virus isolates. The A/H3N2 PA/I38T virus showed a reduction in within-host fitness but comparable between-host fitness to the WT virus, while the A/H1N1pdm09 PA/I38T virus had broadly similar within-host fitness but substantially lower between-host fitness. Although PA/I38T viruses replicate and transmit between ferrets, our data suggest that viruses with this amino acid substitution have lower fitness relative to WT and this relative fitness cost was greater in A/H1N1pdm09 viruses than in A/H3N2 viruses.


Assuntos
Antivirais/farmacologia , Dibenzotiepinas/farmacologia , Modelos Animais de Doenças , Farmacorresistência Viral , Vírus da Influenza A/genética , Morfolinas/farmacologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Piridonas/farmacologia , Triazinas/farmacologia , Replicação Viral , Substituição de Aminoácidos , Animais , Feminino , Furões , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/isolamento & purificação , Masculino , Infecções por Orthomyxoviridae/virologia
9.
Expert Rev Clin Pharmacol ; 14(7): 901-918, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33861168

RESUMO

BACKGROUND: Scarce evidence verifying the clinical impact of baloxavir on influenza complications is found. METHODS: PubMed, Cochrane Library, and Web of Science databases were searched through December 2020. Randomized-controlled trials (RCT) that enrolled patients with laboratory-confirmed influenza receiving neuraminidase inhibitors (NAI) or baloxavir comparing to placebo were assessed. PROSPERO Registration-number: CRD42021226854. RESULTS: Twenty-one RCTs (11,697 patients) were included. Antiviral administration significantly reduced time to clinical resolution (mean difference: -21.3 hours) and total influenza-related complications (OR:0.55, 95%CI: 0.42-0.73). Specifically, antivirals significantly decreased bronchitis (OR:0.54, 95%CI: 0.38-0.75), sinusitis (OR:0.51, 95%CI: 0.33-0.78), acute otitis media (OR:0.48, 95%CI: 0.30-0.77), and antibiotic prescription (OR:0.62; 95%CI: 0.48-0.80). A positive trend favored antivirals administration to reduce pneumonia (OR:0.47, 95%CI: 0.16-1.33), or hospitalization rates (OR:0.65; 95%CI: 0.34-1.24) compared to placebo, but did not reach statistical significance. Adverse events (AE) were reported in 11%, 8.9%, and 5.1% of NAIs, placebo and baloxavir recipients, respectively. Compared with NAIs, administration of baloxavir showed non-significantly reduced AEs (OR:0.74, 95%CI: 0.53-1.04). CONCLUSIONS: Single-dose baloxavir and NAIs were superior to placebo to reduce complications in uncomplicated influenza, with 40% significant reduction in antibiotic prescription. Safety and efficacy of single-dose baloxavir were non-inferior to NAIs.


Assuntos
Dibenzotiepinas/farmacologia , Influenza Humana/tratamento farmacológico , Morfolinas/farmacologia , Neuraminidase/antagonistas & inibidores , Piridonas/farmacologia , Triazinas/farmacologia , Antivirais/administração & dosagem , Antivirais/efeitos adversos , Antivirais/farmacologia , Dibenzotiepinas/administração & dosagem , Dibenzotiepinas/efeitos adversos , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/farmacologia , Humanos , Influenza Humana/virologia , Morfolinas/administração & dosagem , Morfolinas/efeitos adversos , Piridonas/administração & dosagem , Piridonas/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto , Triazinas/administração & dosagem , Triazinas/efeitos adversos
10.
J Biol Chem ; 296: 100486, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33647314

RESUMO

Baloxavir marboxil (BXM) is an FDA-approved antiviral prodrug for the treatment of influenza A and B infection and postexposure prophylaxis. The active form, baloxavir acid (BXA), targets the cap-snatching endonuclease (PA) of the influenza virus polymerase complex. The nuclease activity delivers the primer for transcription, and previous reports have shown that BXA blocks the nuclease activity with high potency. However, biochemical studies on the mechanism of action are lacking. Structural data have shown that BXA chelates the two divalent metal ions at the active site, like inhibitors of the human immunodeficiency virus type 1 (HIV-1) integrase or ribonuclease (RNase) H. Here we studied the mechanisms underlying the high potency of BXA and how the I38T mutation confers resistance to the drug. Enzyme kinetics with the recombinant heterotrimeric enzyme (FluB-ht) revealed characteristics of a tight binding inhibitor. The apparent inhibitor constant (Kiapp) is 12 nM, while the I38T mutation increased Kiapp by ∼18-fold. Order-of-addition experiments show that a preformed complex of FluB-ht, Mg2+ ions and BXA is required to observe inhibition, which is consistent with active site binding. Conversely, a preformed complex of FluB-ht and RNA substrate prevents BXA from accessing the active site. Unlike integrase inhibitors that interact with the DNA substrate, BXA behaves like RNase H inhibitors that compete with the nucleic acid at the active site. The collective data support the conclusion that BXA is a tight binding inhibitor and the I38T mutation diminishes these properties.


Assuntos
Dibenzotiepinas/farmacologia , Endonucleases/antagonistas & inibidores , Vírus da Influenza B/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Morfolinas/farmacologia , Piridonas/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Triazinas/farmacologia , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , Domínio Catalítico , Endonucleases/metabolismo , Humanos , Vírus da Influenza B/enzimologia , Vírus da Influenza B/isolamento & purificação , Influenza Humana/enzimologia , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo
11.
Antiviral Res ; 188: 105036, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33577807

RESUMO

Baloxavir marboxil has been used for influenza treatment since March 2018 in Japan. After baloxavir treatment, the most frequently detected substitution is Ile38Thr in polymerase acidic protein (PA/I38T), and this substitution reduces baloxavir susceptibility in influenza A viruses. To rapidly investigate the frequency of PA/I38T in influenza A (H1N1)pdm09 and A (H3N2) viruses in clinical samples, we established a rapid real-time system to detect single nucleotide polymorphisms in PA, using cycling probe real-time PCR. We designed two sets of probes that were labeled with either 6-carboxyfluorescein (FAM) or 6-carboxy-X-rhodamine (ROX) to identify PA/I38 (wild type strain) or PA/I38T, respectively. The established cycling probe real-time PCR system showed a dynamic linear range of 101 to 106 copies with high sensitivity in plasmid DNA controls. This real-time PCR system discriminated between PA/I38T and wild type viruses well. During the 2018/19 season, 377 influenza A-positive clinical samples were collected in Japan before antiviral treatment. Using our cycling probe real-time PCR system, we detected no (0/129, 0.0%) influenza A (H1N1)pdm09 viruses with PA/I38T substitutions and four A (H3N2) (4/229, 1.7%) with PA/I38T substitution prior to treatment. In addition, we found PA/I38T variant in siblings who did not received baloxavir treatment during an infection caused by A (H3N2) that afflicted the entire family. Although human-to-human transmission of PA/I38T variant may have occurred in a closed environment, the prevalence of this variant in influenza A viruses was still limited. Our cycling probe-PCR system is thus useful for antiviral surveillance of influenza A viruses possessing PA/I38T.


Assuntos
Antivirais/farmacologia , Dibenzotiepinas/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Morfolinas/farmacologia , Piridonas/farmacologia , RNA Polimerase Dependente de RNA/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Triazinas/farmacologia , Proteínas Virais/genética , Substituição de Aminoácidos , Animais , Linhagem Celular , Humanos , Vírus da Influenza A/enzimologia , Vírus da Influenza A/isolamento & purificação , Testes de Sensibilidade Microbiana , RNA Viral/biossíntese , Replicação Viral/efeitos dos fármacos
12.
Am J Nurs ; 121(2): 26-27, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33497124

RESUMO

Baloxavir marboxil (Xofluza), an antiviral flu treatment, has now been approved to prevent influenza.Patients should avoid taking calcium, aluminum, or magnesium products while receiving baloxavir as this will lead to a loss of antiviral efficacy.


Assuntos
Dibenzotiepinas/farmacologia , Influenza Humana/tratamento farmacológico , Influenza Humana/prevenção & controle , Morfolinas/farmacologia , Piridonas/farmacologia , Triazinas/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Dibenzotiepinas/uso terapêutico , Humanos , Morfolinas/uso terapêutico , Piridonas/uso terapêutico , Triazinas/uso terapêutico
13.
Rev Med Virol ; 31(3): e2175, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32975358

RESUMO

Neuraminidase inhibitors (NAIs), that currently include oseltamivir (Tamiflu® ), zanamivir (Relenza® ), peramivir (Rapivab® ) and laninamivir (Inavir® ), constitute an important class of antivirals recommended against seasonal influenza A and B infections. NAIs target the surface NA protein whose sialidase activity is responsible for virion release from infected cells. Because of their pivotal role in the transcription/translation process, the polymerase acidic (PA) and polymerase basic 1 and 2 (PB1 and PB2, respectively) internal proteins also constitute targets of interest for the development of additional anti-influenza agents. Baloxavir marboxil (BXM), an inhibitor of the cap-dependent endonuclease activity of the influenza PA protein, was approved in the United States and Japan in 2018. Baloxavir acid (BXA), the active compound of BXM, demonstrated a potent in vitro activity against different types/subtypes of influenza viruses including seasonal influenza A/B strains as well as avian influenza A viruses with a pandemic potential. A single oral dose of BXM provided virological and clinical benefits that were respectively superior or equal to those displayed by the standard (5 days, twice daily) oseltamivir regimen. Nevertheless, BXM-resistant variants have emerged at relatively high rates in BXM-treated children and adults. Consequently, there is a need to study the fitness (virulence and transmissibility) characteristics of mutants with a high potential to emerge as such variants can compromise the clinical usefulness of BXM. The purpose of this manuscript is to review the fitness properties of influenza A and B isolates harbouring mutations of reduced susceptibility to BXA.


Assuntos
Antivirais/farmacologia , Dibenzotiepinas/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Morfolinas/farmacologia , Piridonas/farmacologia , Triazinas/farmacologia , Farmacorresistência Viral , Humanos , Vírus da Influenza A/isolamento & purificação
14.
Antiviral Res ; 185: 104970, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33159999

RESUMO

Influenza B viruses cause significant morbidity and mortality, particularly in children, but the awareness of their impact is often less than influenza A viruses partly due to their lack of pandemic potential. Here, we summarise the biology, epidemiology and disease burden of influenza B, and review existing data on available antivirals for its management. There has long been uncertainty surrounding the clinical efficacy of neuraminidase inhibitors (NAIs) for influenza B treatment. In this article, we bring together the existing data on NAIs and discuss these alongside recent large randomised controlled trial data for the new polymerase inhibitor baloxavir in high-risk influenza B patients. Finally, we offer considerations for the clinical management of influenza B, with a focus on children and high-risk patients where disease burden is highest.


Assuntos
Efeitos Psicossociais da Doença , Gerenciamento Clínico , Vírus da Influenza B/patogenicidade , Influenza Humana/prevenção & controle , Antivirais/uso terapêutico , Criança , Ensaios Clínicos Fase III como Assunto , Dibenzotiepinas/farmacologia , Dibenzotiepinas/uso terapêutico , Farmacorresistência Viral , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Vírus da Influenza B/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Morfolinas/farmacologia , Morfolinas/uso terapêutico , Pandemias/prevenção & controle , Piridonas/farmacologia , Piridonas/uso terapêutico , Triazinas/farmacologia , Triazinas/uso terapêutico
15.
Viruses ; 12(12)2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302389

RESUMO

Control measures in the case of high pathogenicity avian influenza (HPAI) outbreaks in poultry include culling, surveillance, and biosecurity; wild birds in captivity may also be culled, although some rare bird species should be rescued for conservation. In this study, two anti-influenza drugs, baloxavir marboxil (BXM) and peramivir (PR), used in humans, were examined in treating HPAI in birds, using chickens as a model. Chickens were infected with H5N6 HPAI virus and were treated immediately or 24 h from challenge with 20 mg/kg BXM or PR twice a day for five days. As per our findings, BXM significantly reduced virus replication in organs and provided full protection to chickens compared with that induced by PR. In the 24-h-delayed treatment, neither drug completely inhibited virus replication nor ensured the survival of infected chickens. A single administration of 2.5 mg/kg of BXM was determined as the minimum dose required to fully protect chickens from HPAI virus; the concentration of baloxavir acid, the active form of BXM, in chicken blood at this dose was sufficient for a 48 h antiviral effect post-administration. Thus, these data can be a starting point for the use of BXM and PR in treating captive wild birds infected with HPAI virus.


Assuntos
Ácidos Carbocíclicos/farmacologia , Antivirais/farmacologia , Galinhas/virologia , Dibenzotiepinas/farmacologia , Guanidinas/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Influenza Aviária/tratamento farmacológico , Influenza Aviária/virologia , Morfolinas/farmacologia , Piridonas/farmacologia , Triazinas/farmacologia , Ácidos Carbocíclicos/uso terapêutico , Animais , Antivirais/uso terapêutico , Dibenzotiepinas/uso terapêutico , Monitoramento de Medicamentos , Guanidinas/uso terapêutico , Influenza Aviária/mortalidade , Morfolinas/uso terapêutico , Especificidade de Órgãos , Piridonas/uso terapêutico , Tempo para o Tratamento , Resultado do Tratamento , Triazinas/uso terapêutico , Eliminação de Partículas Virais
16.
Biol Pharm Bull ; 43(12): 1960-1965, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33268716

RESUMO

The novel anti-influenza virus agent baloxavir marboxil is a selective inhibitor of an influenza cap-dependent endonuclease. Although a single oral dose in tablet form of baloxavir marboxil is expected to improve drug compliance and rapidly reduce viral titers for pediatric patients with influenza, there is a concern that baloxavir marboxil-resistant influenza A variants could be generated. In this study, we investigated the frequency of prescription and pharmacy revisits for baloxavir marboxil at an outpatient clinic compared with that of neuraminidase inhibitors in pediatric patients with influenza. A total of 475 pediatric patients who were infected with the influenza virus visited the pharmacy between December 2019 and March 2020. Baloxavir marboxil (n = 149), oseltamivir (n = 161) and laninamivir (n = 162) were mainly prescribed and only a few patients were treated with peramivir (n = 2) or zanamivir (n = 1). Baloxavir marboxil-, oseltamivir- and laninamivir-treated pediatric patients were enrolled, and a log-rank test showed that the revisits of pediatric patients who were taking baloxavir marboxil was lower than those for oseltamivir (p < 0.001). Moreover, Cox proportional hazards models also revealed that baloxavir marboxil decreased the risk of revisits in comparison to oseltamivir (hazard ratio 0.28, 95% confidence interval 0.11-0.70, p = 0.006), while no difference was found between laninamivir and baloxavir marboxil. Although there is a need to acquire appropriate and relevant information concerning resistant viruses, our results suggest that baloxavir marboxil may be a useful drug for treating pediatric patients with influenza infections.


Assuntos
Antivirais/uso terapêutico , Dibenzotiepinas/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Influenza Humana/tratamento farmacológico , Morfolinas/uso terapêutico , Neuraminidase/antagonistas & inibidores , Farmácias/tendências , Piridonas/uso terapêutico , Triazinas/uso terapêutico , Adolescente , Antivirais/farmacologia , Criança , Pré-Escolar , Dibenzotiepinas/farmacologia , Prescrições de Medicamentos , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Lactente , Influenza Humana/epidemiologia , Masculino , Morfolinas/farmacologia , Piridonas/farmacologia , Estações do Ano , Triazinas/farmacologia
17.
Molecules ; 25(22)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202790

RESUMO

To discover novel inhibitors that target the influenza polymerase basic protein 2 (PB2) cap-binding domain (CBD), commercial ChemBridge compound libraries containing 384,796 compounds were screened using a cascade docking of LibDock-LigandFit-GOLD, and 60 compounds were selected for testing with cytopathic effect (CPE) inhibition assays and surface plasmon resonance (SPR) assay. Ten compounds were identified to rescue cells from H1N1 virus-mediated death at non-cytotoxic concentrations with EC50 values ranging from 0.30 to 67.65 µM and could bind to the PB2 CBD of H1N1 with Kd values ranging from 0.21 to 6.77 µM. Among these, four compounds (11D4, 12C5, 21A5, and 21B1) showed inhibition of a broad spectrum of influenza virus strains, including oseltamivir-resistant ones, the PR/8-R292K mutant (H1N1, recombinant oseltamivir-resistant strain), the PR/8-I38T mutant (H1N1, recombinant baloxavir-resistant strain), and the influenza B/Lee/40 virus strain. These compounds have novel chemical scaffolds and relatively small molecular weights and are suitable for optimization as lead compounds. Based on sequence and structure comparisons of PB2 CBDs of various influenza virus subtypes, we propose that the Phe323/Gln325, Asn429/Ser431, and Arg355/Gly357 mutations, particularly the Arg355/Gly357 mutation, have a marked impact on the selectivities of PB2 CBD-targeted inhibitors of influenza A and influenza B.


Assuntos
Antivirais/farmacologia , Vírus da Influenza A Subtipo H1N1/enzimologia , Simulação de Acoplamento Molecular , Proteínas Virais/antagonistas & inibidores , Animais , Sítios de Ligação , Dibenzotiepinas/farmacologia , Cães , Cinética , Ligantes , Células Madin Darby de Rim Canino , Morfolinas/farmacologia , Mutação , Oseltamivir/farmacologia , Ligação Proteica , Domínios Proteicos , Piridonas/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/química , Software , Ressonância de Plasmônio de Superfície , Triazinas/farmacologia , Proteínas Virais/química
18.
Viruses ; 12(10)2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33049959

RESUMO

Two antiviral classes, the neuraminidase inhibitors (NAIs) and polymerase inhibitors (baloxavir marboxil and favipiravir) can be used to prevent and treat influenza infections during seasonal epidemics and pandemics. However, prolonged treatment may lead to the emergence of drug resistance. Therapeutic combinations constitute an alternative to prevent resistance and reduce antiviral doses. Therefore, we evaluated in vitro combinations of baloxavir acid (BXA) and other approved drugs against influenza A(H1N1)pdm09 and A(H3N2) subtypes. The determination of an effective concentration inhibiting virus cytopathic effects by 50% (EC50) for each drug and combination indexes (CIs) were based on cell viability. CompuSyn software was used to determine synergism, additivity or antagonism between drugs. Combinations of BXA and NAIs or favipiravir had synergistic effects on cell viability against the two influenza A subtypes. Those effects were confirmed using a physiological and predictive ex vivo reconstructed human airway epithelium model. On the other hand, the combination of BXA and ribavirin showed mixed results. Overall, BXA stands as a good candidate for combination with several existing drugs, notably oseltamivir and favipiravir, to improve in vitro antiviral activity. These results should be considered for further animal and clinical evaluations.


Assuntos
Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Neuraminidase/antagonistas & inibidores , Inibidores da Síntese de Ácido Nucleico/farmacologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Ácidos Carbocíclicos/farmacologia , Amidas/farmacologia , Animais , Antivirais/farmacologia , Linhagem Celular , Dibenzotiepinas/farmacologia , Cães , Combinação de Medicamentos , Farmacorresistência Viral/efeitos dos fármacos , Sinergismo Farmacológico , Guanidinas/farmacologia , Células Madin Darby de Rim Canino , Morfolinas/farmacologia , Oseltamivir/farmacologia , Pirazinas/farmacologia , Piridonas/farmacologia , Ribavirina/farmacologia , Triazinas/farmacologia , Proteínas Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Zanamivir/farmacologia
19.
J Med Chem ; 63(17): 9403-9420, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32787099

RESUMO

4-Substituted 2,4-dioxobutanoic acids inhibit influenza virus cap-dependent endonuclease (CEN) activity. Baloxavir marboxil, 4, is approved for treating influenza virus infections. We describe here the synthesis and biological evaluation of active compounds, 5a-5g, and their precursors (6a, 6b, 6d, and 6e) with flexible bulky hydrophobic groups instead of the rigid polyheterocyclic moieties. In silico docking confirmed the ability of 5a-5g to bind to the active site of influenza A CEN (PDB code: 6FS6) like baloxavir acid, 3. These novel compounds inhibited polymerase complex activity, inhibited virus replication in cells, prevented death in a lethal influenza A virus mouse challenge model, and dramatically lowered viral lung titers. 5a and 5e potently inhibited different influenza genera in vitro. Precursors 6a and 6d demonstrated impressive mouse oral bioavailability with 6a, providing effective in vivo protection. Thus, these novel compounds are potent CEN inhibitors with in vitro and in vivo activity comparable to baloxavir.


Assuntos
Dibenzotiepinas/química , Dibenzotiepinas/farmacologia , Endonucleases/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Vírus da Influenza A Subtipo H1N1/enzimologia , Morfolinas/química , Morfolinas/farmacologia , Piridonas/química , Piridonas/farmacologia , Triazinas/química , Triazinas/farmacologia , Animais , Dibenzotiepinas/efeitos adversos , Dibenzotiepinas/farmacocinética , Endonucleases/química , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/farmacocinética , Feminino , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Camundongos , Modelos Moleculares , Morfolinas/efeitos adversos , Morfolinas/farmacocinética , Conformação Proteica , Piridonas/efeitos adversos , Piridonas/farmacocinética , Distribuição Tecidual , Triazinas/efeitos adversos , Triazinas/farmacocinética
20.
Antiviral Res ; 182: 104906, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32798601

RESUMO

Baloxavir, a new antiviral drug targeting cap-dependent endonuclease activity of polymerase acidic (PA) protein of influenza viruses, is now approved in multiple countries. Several substitutions at isoleucine 38 in PA protein (e.g., PA-I38T) have been associated with decreased baloxavir susceptibility in vitro and in vivo. In recent years, next generation sequencing (NGS) analysis and pyrosequencing have been used by CDC and U.S. Public Health Laboratories to monitor drug susceptibility of influenza viruses. Here we described an improved pyrosequencing assay for detecting influenza A viruses carrying substitutions at PA-38. Cyclic and customized orders of nucleotide dispensation were evaluated, and pyrosequencing results were compared to those generated using NGS. Our data showed that the customized nucleotide dispensation has improved the pyrosequencing assay performance in identification of double mixtures (e.g., PA-38I/T); however, identification of PA-38 variants in triple mixtures remains a challenge. While NGS analysis indicated the presence of PA-I38K in one clinical specimen and isolate, our attempts to detect this mutation by pyrosequencing or recover the virus carrying PA-I38K in cell culture were unsuccessful, raising a possibility of a rarely occurring sequencing error. Overall, pyrosequencing provides a convenient means to detect baloxavir resistant influenza viruses when NGS is unavailable or a faster turnaround time is required.


Assuntos
Antivirais/farmacologia , Dibenzotiepinas/farmacologia , Farmacorresistência Viral/genética , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Morfolinas/farmacologia , Piridonas/farmacologia , Triazinas/farmacologia , Substituição de Aminoácidos , Animais , Cães , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Vírus da Influenza A/classificação , Células Madin Darby de Rim Canino , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...