Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Sci Rep ; 14(1): 8013, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580754

RESUMO

Hepatocellular carcinoma (HCC) seriously threatens human health, mostly developed from liver fibrosis or cirrhosis. Since diethylnitrosamine (DEN) and carbon tetrachloride (CCl4)-induced HCC mouse model almost recapitulates the characteristic of HCC with fibrosis and inflammation, it is taken as an essential tool to investigate the pathogenesis of HCC. However, a comprehensive understanding of the protein expression profile of this model is little. In this study, we performed proteomic analysis of this model to elucidate its proteomic characteristics. Compared with normal liver tissues, 432 differentially expressed proteins (DEPs) were identified in tumor tissues, among which 365 were up-regulated and 67 were down-regulated. Through Gene Ontology (GO) analysis, Ingenuity Pathway Analysis (IPA), protein-protein interaction networks (PPI) analysis and Gene-set enrichment analysis (GSEA) analysis of DEPs, we identified two distinguishing features of DEN and CCl4-induced HCC mouse model in protein expression, the upregulation of actin cytoskeleton and branched-chain amino acids metabolic reprogramming. In addition, matching DEPs from the mouse model to homologous proteins in the human HCC cohort revealed that the DEN and CCl4-induced HCC mouse model was relatively similar to the subtype of HCC with poor prognosis. Finally, combining clinical information from the HCC cohort, we screened seven proteins with prognostic significance, SMAD2, PTPN1, PCNA, MTHFD1L, MBOAT7, FABP5, and AGRN. Overall, we provided proteomic data of the DEN and CCl4-induced HCC mouse model and highlighted the important proteins and pathways in it, contributing to the rational application of this model in HCC research.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas Experimentais , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteômica , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Dietilnitrosamina/efeitos adversos , Cirrose Hepática/patologia , Modelos Animais de Doenças , Proteínas de Ligação a Ácido Graxo
2.
Histochem Cell Biol ; 161(4): 337-343, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38296878

RESUMO

The third most prevalent malignancy to cause mortality is hepatocellular carcinoma (HCC). The Hedgehog (Hh) signaling pathway is activated by binding to the transmembrane receptor Patched-1 (PTCH-1), which depresses the transmembrane G protein-coupled receptor Smoothened (SMO). This study was performed to examine the preventative and therapeutic effects of cannabidiol in adult rats exposed to diethyl nitrosamine (DENA)-induced HCC.A total of 50 male rats were divided into five groups of 10 rats each. Group I was the control group. Group II received intraperitoneal (IP) injections of DENA for 14 weeks. Group III included rats that received cannabidiol (CBD) orally (3-30 mg/kg) for 2 weeks and DENA injections for 14 weeks. Group IV rats received oral CBD for 2 weeks before 14 weeks of DENA injections. Group V included rats that received CBD orally for 2 weeks after their last injection of DENA. Measurements were made for alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma glutamyl transferase (GGT), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and alpha fetoprotein (AFP). Following total RNA extraction, Smo, Hhip, Ptch-1, and Gli-1 expressions were measured using quantitative real-time polymerase chain reaction (qRT-PCR). A histopathological analysis of liver tissues was performed.The liver enzymes, oxidant-antioxidant state, morphological, and molecular parameters of the adult male rat model of DENA-induced HCC showed a beneficial improvement after CBD administration. In conclusion, by focusing on the Hh signaling system, administration of CBD showed a beneficial improvement in the liver enzymes, oxidant-antioxidant status, morphological, and molecular parameters in the DENA-induced HCC in adult male rats.


Assuntos
Canabidiol , Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratos , Masculino , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Proteínas Hedgehog/genética , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Canabidiol/efeitos adversos , Antioxidantes , Dietilnitrosamina/efeitos adversos , Transdução de Sinais , Oxidantes/efeitos adversos , Expressão Gênica
3.
J Histotechnol ; 46(1): 5-16, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36214360

RESUMO

The purpose of this study was to investigate the effect of combined therapy of diacerein and gold nanoparticles (AuNP) on diethylnitrosamine (DEN) induced hepatocellular carcinoma (HCC) in a rat model. Normal healthy and DEN-induced (HCC) rats were divided into five groups. Group I healthy rats served as normal control, Group II untreated HCC rats, Group III HCC rats administered diacerein, Group IV HCC rats administered AuNP, and Group V HCC rats administered diacerein and AuNP. All treatments were given once daily for 4 weeks. Liver morphology and necroinflammation in all groups were evaluated using hematoxylin and eosin (H&E), Masson's trichrome for fibrosis, and immunohistochemistry assays for expression of TNF-α, IL-6, ß-catenin, and caspase-3. Liver sections from Group II HCC rats showed loss of lobular architecture, thick fibrous tissue deposition, leukocyte infiltration, degenerated hepatocytes and HCC neoplastic nodules surrounded by extensive fibrosis. Group II had high expression of TNF-α, IL-6, and ß-catenin, and low caspase-3 expression as compared to Group I. HCC rats treated with the combined therapy of diacerein and AuNP (Group V) showed markedly decreased HCC lesions, significant necroinflammation reduction (p ˂ 0.05) and 90% reduction in fibrosis as compared to Group II HCC + diacerein. This combined therapy also reduced (p ˂ 0.05) TNF-α, IL-6, ß-catenin expression and increased caspase-3 expression. In conclusion, diacerein combined with AuNP synergistically attenuated the severity of HCC lesions by reducing necroinflammation and fibrosis, decreased TNF-α, IL-6, ß-catenin expression, and increased caspase-3 expression for apoptosis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas Metálicas , Ratos , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Caspase 3 , Dietilnitrosamina/efeitos adversos , beta Catenina , Ouro/efeitos adversos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Fator de Necrose Tumoral alfa/efeitos adversos , Interleucina-6/efeitos adversos , Fibrose
4.
Stem Cell Res Ther ; 13(1): 494, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195966

RESUMO

BACKGROUND: Hepatic fibrosis is a common pathologic stage in chronic liver disease development, which might ultimately lead to liver cirrhosis. Accumulating evidence suggests that adipose-derived stromal cells (ADSCs)-based therapies show excellent therapeutic potential in liver injury disease owing to its superior properties, including tissue repair ability and immunomodulation effect. However, cell-based therapy still limits to several problems, such as engraftment efficiency and immunoreaction, which impede the ADSCs-based therapeutics development. So, ADSCs-derived extracellular vesicles (EVs), especially for exosomes (ADSC-EXO), emerge as a promise cell-free therapeutics to ameliorate liver fibrosis. The effect and underlying mechanisms of ADSC-EXO in liver fibrosis remains blurred. METHODS: Hepatic fibrosis murine model was established by intraperitoneal sequential injecting the diethylnitrosamine (DEN) for two weeks and then carbon tetrachloride (CCl4) for six weeks. Subsequently, hepatic fibrosis mice were administrated with ADSC-EXO (10 µg/g) or PBS through tail vein infusion for three times in two weeks. To evaluate the anti-fibrotic capacity of ADSC-EXO, we detected liver morphology by histopathological examination, ECM deposition by serology test and Sirius Red staining, profibrogenic markers by qRT-PCR assay. LX-2 cells treated with TGF-ß (10 ng/ml) for 12 h were conducted for evaluating ADSC-EXO effect on activated hepatic stellate cells (HSCs). RNA-seq was performed for further analysis of the underlying regulatory mechanisms of ADSC-EXO in liver fibrosis. RESULTS: In this study, we obtained isolated ADSCs, collected and separated ADSCs-derived exosomes. We found that ADSC-EXO treatment could efficiently ameliorate DEN/CCl4-induced hepatic fibrosis by improving mice liver function and lessening hepatic ECM deposition. Moreover, ADSC-EXO intervention could reverse profibrogenic phenotypes both in vivo and in vitro, including HSCs activation depressed and profibrogenic markers inhibition. Additionally, RNA-seq analysis further determined that decreased glutamine synthetase (Glul) of perivenous hepatocytes in hepatic fibrosis mice could be dramatically up-regulated by ADSC-EXO treatment; meanwhile, glutamine and ammonia metabolism-associated key enzyme OAT was up-regulated and GLS2 was down-regulated by ADSC-EXO treatment in mice liver. In addition, glutamine synthetase inhibitor would erase ADSC-EXO therapeutic effect on hepatic fibrosis. CONCLUSIONS: These findings demonstrated that ADSC-derived exosomes could efficiently alleviate hepatic fibrosis by suppressing HSCs activation and remodeling glutamine and ammonia metabolism mediated by hepatocellular glutamine synthetase, which might be a novel and promising anti-fibrotic therapeutics for hepatic fibrosis disease.


Assuntos
Carcinoma Hepatocelular , Exossomos , Neoplasias Hepáticas , Amônia/metabolismo , Animais , Tetracloreto de Carbono/toxicidade , Carcinoma Hepatocelular/patologia , Dietilnitrosamina/efeitos adversos , Exossomos/metabolismo , Fibrose , Glutamato-Amônia Ligase/metabolismo , Glutamina/metabolismo , Células Estreladas do Fígado , Homeostase , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Cirrose Hepática/terapia , Neoplasias Hepáticas/patologia , Camundongos , Células Estromais/patologia , Fator de Crescimento Transformador beta/metabolismo
5.
Hepatol Commun ; 6(12): 3550-3562, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36194180

RESUMO

Liver cancer, comprised primarily of hepatocellular carcinoma (HCC), is the third leading cause of cancer deaths worldwide and increasing in Western countries. We previously identified the transcription factor zinc fingers and homeoboxes 2 (Zhx2) as a regulator of hepatic gene expression, and many Zhx2 target genes are dysregulated in HCC. Here, we investigate HCC in Zhx2-deficient mice using the diethylnitrosamine (DEN)-induced liver tumor model. Our study using whole-body Zhx2 knockout (Zhx2KO ) mice revealed the complete absence of liver tumors 9 and 10 months after DEN exposure. Analysis soon after DEN treatment showed no differences in expression of the DEN bioactivating enzyme cytochrome P450 2E1 (CYP2E1) and DNA polymerase delta 2, or in the numbers of phosphorylated histone variant H2AX foci between Zhx2KO and wild-type (Zhx2wt ) mice. The absence of Zhx2, therefore, did not alter DEN bioactivation or DNA damage. Zhx2KO livers showed fewer positive foci for Ki67 staining and reduced interleukin-6 and AKT serine/threonine kinase 2 expression compared with Zhx2wt livers, suggesting that Zhx2 loss reduces liver cell proliferation and may account for reduced tumor formation. Tumors were reduced but not absent in DEN-treated liver-specific Zhx2 knockout mice, suggesting that Zhx2 acts in both hepatocytes and nonparenchymal cells to inhibit tumor formation. Analysis of data from the Cancer Genome Atlas and Clinical Proteomic Tumor Consortium indicated that ZHX2 messenger RNA and protein levels were significantly higher in patients with HCC and associated with clinical pathological parameters. Conclusion: In contrast to previous studies in human hepatoma cell lines and other HCC mouse models showing that Zhx2 acts as a tumor suppressor, our data indicate that Zhx2 acts as an oncogene in the DEN-induced HCC model and is consistent with the higher ZHX2 expression in patients with HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/induzido quimicamente , Dietilnitrosamina/efeitos adversos , Genes Homeobox , Proteínas de Homeodomínio/genética , Neoplasias Hepáticas/induzido quimicamente , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteômica , Fatores de Transcrição/genética , Dedos de Zinco
6.
Cells ; 11(18)2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36139435

RESUMO

MiR-22 is mostly considered as a hepatic tumor-suppressor microRNA based on in vitro analyses. Yet, whether miR-22 exerts a tumor-suppressive function in the liver has not been investigated in vivo. Herein, in silico analyses of miR-22 expression were performed in hepatocellular carcinomas from human patient cohorts and different mouse models. Diethylnitrosamine-induced hepatocellular carcinomas were then investigated in lean and diet-induced obese miR-22-deficient mice. The proteome of liver tissues from miR-22-deficient mice prior to hepatocellular carcinoma development was further analyzed to uncover miR-22 regulated factors that impact hepatocarcinogenesis with miR-22 deficiency. MiR-22 downregulation was consistently observed in hepatocellular carcinomas from all human cohorts and mouse models investigated. The time of appearance of the first tumors was decreased and the number of tumoral foci induced by diethylnitrosamine was significantly increased by miR-22-deficiency in vivo, two features which were further drastically exacerbated with diet-induced obesity. At the molecular level, we provide evidence that the loss of miR-22 significantly affects the energetic metabolism and mitochondrial functions of hepatocytes, and the expression of tumor-promoting factors such as thrombospondin-1. Our study demonstrates that miR-22 acts as a hepatic tumor suppressor in vivo by restraining pro-carcinogenic metabolic deregulations through pleiotropic mechanisms and the overexpression of relevant oncogenes.


Assuntos
Carcinoma Hepatocelular , Fígado Gorduroso , Neoplasias Hepáticas , MicroRNAs , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Dietilnitrosamina/efeitos adversos , Modelos Animais de Doenças , Fígado Gorduroso/patologia , Humanos , Neoplasias Hepáticas/patologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteoma , Trombospondinas
7.
J Gastrointest Cancer ; 53(4): 980-989, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34698995

RESUMO

BACKGROUND: Chromenes are a wide group of natural compounds that can be synthesized chemically. The chromen-4-one nucleus acts as a skeleton for varieties of additional active groups that makes the chromene activity vary between antioxidant and anti-inflammatory agents. In the present study, a newly synthesized chromene compound exhibits different behaviors other than anti-inflammatory and antioxidant activities that it is the first time that a member of chromen-4-one compound can control the cancer progress. Inflammation is the first step in tumor development where the severity grade can potentiate tumor growth and progression. In many tumors, pro-inflammatory genes record high expression level such as tumor necrosis factor (TNF-α) and vascular endothelial growth factors (VEGF). These pro-inflammatory factors act as rate limiting steps in tumor initiation, and controlling its expression acts as an early therapeutic way to control the tumor proliferation. The chromone derivatives have biological activities such as anti-inflammatory and anti-tumor activity. METHODS: In the present study, hepatocellular cancer (HCC) induced by diethylnitrosamine (DEN) in rats and then treated with the new chromene derivative and the parameters TNF-α, VEGF, p53, Cyt C, MMP-9, Bcl2, and Bax were measured. RESULTS: The treatment strategy Ch compound is to downregulate pro-inflammatory gene expression of early genes as TNF-α as well as VEGF and subsequently control other factors such as p53, Cyt C, and MMP-9. Also, retrieve the balance between Bcl2 and Bax proteins in DEN-induced HCC in rats. CONCLUSION: The ability of the new Ch derivative to control the primary initiators of HCC such as TNF-α offers this derivative an anti-tumor activity and encourages further researches to follow and monitor its effect on the molecular level.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Ratos , Anti-Inflamatórios/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Proteína X Associada a bcl-2 , Benzopiranos/farmacologia , Carcinoma Hepatocelular/patologia , Dietilnitrosamina/efeitos adversos , Neoplasias Hepáticas/patologia , Metaloproteinase 9 da Matriz/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Oncogene ; 40(46): 6456-6468, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34608264

RESUMO

Cancer metastasis accounts for nearly 90% of all cancer deaths. Metastatic cancer progression requires both cancer cell migration to the site of the metastasis and subsequent proliferation after colonization. However, it has long been recognized that cancer cell migration and proliferation can be uncoupled; but the mechanism underlying this paradox is not well understood. Here we report that TNFAIP8 (tumor necrosis factor-α-induced protein 8), a "professional" transfer protein of phosphoinositide second messengers, promotes cancer cell migration or metastasis but inhibits its proliferation or cancer growth. TNFAIP8-deficient mice developed larger tumors, but TNFAIP8-deficient tumor cells completely lost their ability to migrate toward chemoattractants and were defective in colonizing lung tissues as compared to wild-type counterparts. Mechanistically, TNFAIP8 served as a cellular "pilot" of tumor cell migration by locally amplifying PI3K-AKT and Rac signals on the cell membrane facing chemoattractant; at the same time, TNFAIP8 also acted as a global inhibitor of tumor cell growth and proliferation by regulating Hippo signaling pathway. These findings help explain the migration-proliferation paradox of cancer cells that characterizes many cancers.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Fibrossarcoma/patologia , Neoplasias Pulmonares/patologia , Neoplasias Cutâneas/patologia , Animais , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Dietilnitrosamina/efeitos adversos , Feminino , Fibrossarcoma/induzido quimicamente , Fibrossarcoma/genética , Fibrossarcoma/metabolismo , Regulação Neoplásica da Expressão Gênica , Via de Sinalização Hippo , Humanos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Metilcolantreno/efeitos adversos , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo
9.
Phytother Res ; 35(6): 3365-3376, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33624311

RESUMO

Morus nigra is a rich source of anthocyanins, phytochemicals that have anticancer effects. This study aimed to investigate the effects of M. nigra extract (MNE) on diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC). Male Sprague-Dawley rats were assigned into four groups (n = 10): control, DEN, and DEN +100 or 400 mg/kg of MNE. After 4 months, the DEN group showed a significant mortality rate, hepatic lipid peroxidation, dysplastic nodules in the cirrhotic liver, and an increase of blood bilirubin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP). Also, the body weight gain, blood albumin and glucose, liver antioxidant capacity (thiol groups), and some hematological parameters (RBC, hematocrit, hemoglobin, and platelet) were significantly decreased in the DEN group. MNE significantly increased survival, reduced the size of HCC nodules, improved liver oxidant/antioxidant status, and prevented the above-mentioned changes in the blood (except ALP, glucose, and platelet). Quantitative real-time PCR showed that MNE decreased the expression of Wnt4 and ß-catenin, while had no significant effect on PI3K, Akt, and PTEN expression. The MNE did not exhibit antiproliferative activity against HepG2 liver cancer cells. In conclusion, MNE exhibits a hepatoprotective effect through inhibiting oxidative stress and Wnt4/ß-catenin pathway and therefore prolongs the survival of rats with HCC.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Morus/química , Extratos Vegetais/farmacologia , Alanina Transaminase/sangue , Animais , Antioxidantes/metabolismo , Aspartato Aminotransferases/sangue , Bilirrubina/sangue , Carcinoma Hepatocelular/patologia , Dietilnitrosamina/efeitos adversos , Células Hep G2 , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Neoplasias Hepáticas/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
10.
Mol Med Rep ; 22(5): 3873-3885, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33000276

RESUMO

Epigallocatechin gallate (EGCG), the most active monomer in green tea (GT), has demonstrated potential therapeutic and preventive effects on various tumors, including liver cancer. However, the anticancer mechanisms of EGCG in liver cancer remain to be elucidated. The abnormal expression of cell division cycle 25A (CDC25A) has been identified in liver cancer and is closely associated with malignancy and poor prognosis in patients with hepatocellular carcinoma (HCC). The present study used human hepatoma cell lines and rats with diethylnitrosamine (DEN)­induced HCC as models to investigate the association between the effect of EGCG on liver cancer and regulation of the p21waf1/Cip1/CDC25A axis. The results demonstrated that EGCG can inhibit the proliferation of HepG2 and Huh7 cells, reduce the expression of CDC25A and increase the expression of p21waf1/Cip1 in HepG2. In vivo, HCC was induced by DEN in Sprague­Dawley rats. EGCG significantly reduced tumor volume and improved the survival rates of rats with HCC. The expression levels of CDC25A mRNA and protein in liver tissues and the level of serum γ glutamyl transpeptidase in rats treated with EGCG were significantly decreased, while p21waf1/Cip1 mRNA and protein expression levels were increased compared with the HCC group, in the process of DEN­induced HCC. No significant difference in the chemopreventive effects on liver cancer was observed between GT extract and EGCG under an EGCG equivalence condition. Thus, EGCG can suppress human hepatoma cell proliferation and prolong the survival of rats with HCC, and the potential mechanism may be involved in EGCG­induced upregulation of p21waf1/Cip1 and downregulation of CDC25A.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/prevenção & controle , Catequina/análogos & derivados , Dietilnitrosamina/efeitos adversos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/prevenção & controle , Fitoterapia/métodos , Extratos Vegetais/administração & dosagem , Fosfatases cdc25/antagonistas & inibidores , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Catequina/administração & dosagem , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Células Hep G2 , Humanos , Fígado/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Chá/química , Transfecção , Carga Tumoral/efeitos dos fármacos , Fosfatases cdc25/genética
11.
Cancer Sci ; 111(11): 4266-4275, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32860300

RESUMO

UDP-glucuronosyltransferase (UGT) 1A enzymes detoxify a broad array of exogenous compounds including environmental toxins and carcinogens. Case-control studies identified genetic variations in UGT1A genes leading to reduced glucuronidation activity, which were associated with hepatocellular carcinoma (HCC) formation and progression. The aim of the study was therefore to examine the direct effect of common UGT1A polymorphisms (SNPs) on HCC development and outcome in a diethylnitrosamine (DEN)-induced mouse model. Therefore, a single intraperitoneal DEN injection (20 mg/kg) was administered to 15-day-old htgUGT1A-WT and htgUGT1A-SNP mice (containing a human haplotype of 10 common UGT1A SNPs) either receiving water or coffee cotreatment for the following 39 weeks. After this time, tumor incidence, size (>1 mm), histology, liver-body ratio, serum aminotransferase activities, and UGT1A regulation and activity levels were determined. In DEN-treated htgUGT1A-SNP mice, a markedly higher number of tumors with a bigger cumulative diameter were detected. The relative liver weight and aminotransferase activity levels were also significantly higher in mice carrying UGT1A SNPs. After coffee + DEN cotreatment, susceptibility for tumor development and growth considerably decreased in both mouse lines, but was still higher in htgUGT1A-SNP mice. In conclusion, our study provides experimental evidence for the protective role of UGT1A enzymes in neoplastic transformation. These data confirm case-control studies implicating impaired UGT1A-mediated carcinogen detoxification as a risk factor for individual cancer disposition. Coffee treatment, which is able to activate UGT1A expression and activity, reduced HCC development and provides an explanation for the protective properties of coffee on liver diseases including liver cancer.


Assuntos
Carcinogênese/induzido quimicamente , Carcinogênese/genética , Dietilnitrosamina/efeitos adversos , Predisposição Genética para Doença , Glucuronosiltransferase/genética , Polimorfismo de Nucleotídeo Único , Animais , Biópsia , Modelos Animais de Doenças , Ativação Enzimática , Feminino , Regulação Neoplásica da Expressão Gênica , Glucuronosiltransferase/sangue , Humanos , Testes de Função Hepática , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Transgênicos , Transcriptoma
12.
J Hepatol ; 73(3): 603-615, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32593682

RESUMO

BACKGROUND & AIMS: Obesity is an independent risk factor for malignancies, including hepatocellular carcinoma (HCC). However, it remains unknown whether maternal obesity affects the incidence of HCC in offspring. Thus, we aimed to investigate this association and its underlying mechanisms. METHODS: Diethylnitrosamine (DEN) was used to induce HCC in a high-fat diet (HFD)-induced multigenerational obesity model. RNA-sequencing was performed to identify the genes and microRNAs (miRNAs) that were altered over generations. The role of the miR-27a-3p-Acsl1/Aldh2 axis in HCC was evaluated in cell lines and HCC-bearing nude mice, and its intergenerational impact was studied in pregnant mice and their offspring. RESULTS: Under HFD stress, maternal obesity caused susceptibility of offspring to DEN-induced HCC, and such susceptibility was cumulative over generations. We identified that Acsl1 and Aldh2, direct targets of miR-27a-3p, were gradually changed over generations. Under hyperlipidemic conditions, downregulation of Acsl1 and Aldh2 increased cell proliferation (in vitro) or tumor growth (in vivo) in synergy. Intratumor injection of an miR-27a-3p agomir exacerbated tumor growth by downregulating Acsl1 and Aldh2; while intratumor injection of an miR-27a-3p antagomir had the opposite effect. Moreover, serum miR-27a-3p levels gradually increased in the HFD-fed maternal lineage over generations. Injecting pregnant mice with an miR-27a-3p agomir not only upregulated hepatic miR-27a-3p and downregulated Acsl1/Aldh2 in offspring (fetus, young and adult stages), but also exacerbated HCC development in DEN-treated offspring. In human HCC, upregulated miR-27a-3p and downregulated Acsl1/Aldh2 were negatively correlated with survival on TCGA analysis; while, hepatic miR-27a-3p was negatively correlated with Acsl1/Aldh2 expression in tumor/non-tumor tissues from fatty/non-fatty livers. CONCLUSIONS: Maternal obesity plays a role in regulating cumulative susceptibility to HCC development in offspring over multiple generations through the miR-27a-3p-Acsl1/Aldh2 axis. LAY SUMMARY: It is not currently known how maternal obesity affects the incidence of liver cancer in offspring. In this study, we identified a microRNA (miR-27a-3p) that was upregulated in obese mothers and could be passed on to their offspring. This microRNA enhanced the risk of liver cancer in offspring by regulating 2 genes (Acsl1 and Aldh2). This mechanism could be a future therapeutic target.


Assuntos
Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/epidemiologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/epidemiologia , MicroRNAs/metabolismo , Obesidade Materna/complicações , Obesidade Materna/metabolismo , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Dieta Hiperlipídica/efeitos adversos , Dietilnitrosamina/efeitos adversos , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Células Hep G2 , Humanos , Incidência , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , MicroRNAs/genética , Obesidade Materna/etiologia , Gravidez , Transfecção , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Mol Biol Rep ; 47(3): 1883-1893, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32016634

RESUMO

Hepatocellular carcinoma (HCC) is a tough opponent. HCC contributes to 14.8% of all cancer mortality in Egypt. There are many choices for management of HCC; however tumor relapse has been reported in animal and clinical studies. This study was conducted to investigate the impact of low dose γ-irradiation (LDR) and combretastatin A-4 disodium phosphate (CA-4DP) on HCC recurrence. HCC was induced in male Wistar albino rats by oral administration of N-nitrosodiethylamine (NDEA) for 17 weeks. We evaluated the expression of the endothelial cell marker (CD31) by immunostaining. Expression of Rho Associated Coiled-Coil Containing Protein Kinase 1(ROCK1) and Vascular endothelial growth factor (VEGF) expression was assessed by real-time PCR after (6, 24 and 48 h). Our results showed that expression of CD31 and gene expression of ROCK1 and VEGF was significantly repressed at all-time intervals by combination therapy ofLDR and CA-4DP as compared with untreated NDEA/HCC group and NDEA/HCC groups treated with either LDR or CA-4DP alone, (P < 0.05). Our study demonstrated the additive effect of LDR in combination with CA-4DP in suppression of HCC.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Estilbenos/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/genética , Quinases Associadas a rho/genética , Animais , Antineoplásicos Fitogênicos/farmacologia , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Quimiorradioterapia , Terapia Combinada , Dietilnitrosamina/efeitos adversos , Regulação para Baixo , Egito , Raios gama , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Ratos , Ratos Wistar , Estilbenos/farmacologia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Biol Trace Elem Res ; 193(1): 214-225, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30993490

RESUMO

The catalytic activity of cerium oxide nanoparticles (CeO2NPs) is responsible for its application as an antitumor agent. This activity may be due to its ability to switch between III and IV oxidation states thereby conferring pro- and antioxidant properties. This study was designed to assess the hepatoprotective potential of CeO2NPs in male BALB/c mice administered diethylnitrosamine (DEN). Thirty-six mice were divided equally into six groups and treated intraperitoneally with normal saline (control), DEN (200 mg/kg) alone, CeO2NPs 1 (100 µg/kg) + DEN (200 mg/kg), CeO2NPs 2 (200 µg/kg) + DEN (200 mg/kg), CeO2NPs 1 alone, and CeO2NPs 2 alone. Animals were pretreated with CeO2NPs daily for eight consecutive days, while DEN was administered 48 h before the animals were sacrificed. Administration of DEN caused a significant increase in serum alanine aminotransferase (ALT) and urea by 51% and 96%, respectively. Markers of oxidative stress (malondialdehyde) and inflammation (nitric oxide and myeloperoxidase) in hepatic tissues of DEN-treated mice were increased by 60%, 16%, and 38%, respectively. The activities of hepatic superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, and level of reduced glutathione were significantly decreased in DEN-treated mice by 50%, 123%, 23%, 419%, and 78%, respectively. In addition, DEN increased the expression of hepatic Bcl2 and COX-2, while p53, Bax, and iNOS were mildly expressed. Pretreatment with CeO2NPs attenuated the activities of antioxidant enzymes and expression of Bcl2 and COX-2. Overall, CeO2NPs confers protection from DEN-induced liver damage via antioxidative activity.


Assuntos
Cério , Doença Hepática Induzida por Substâncias e Drogas , Dietilnitrosamina/efeitos adversos , Fígado/metabolismo , Nanopartículas , Estresse Oxidativo/efeitos dos fármacos , Animais , Cério/química , Cério/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dietilnitrosamina/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/uso terapêutico
15.
J Hepatol ; 72(4): 725-735, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31726117

RESUMO

BACKGROUND & AIM: Under the regulation of various oncogenic pathways, cancer cells undergo adaptive metabolic programming to maintain specific metabolic states that support their uncontrolled proliferation. As it has been difficult to directly and effectively inhibit oncogenic signaling cascades with pharmaceutical compounds, focusing on the downstream metabolic pathways that enable indefinite growth may provide therapeutic opportunities. Thus, we sought to characterize metabolic changes in hepatocellular carcinoma (HCC) development and identify metabolic targets required for tumorigenesis. METHODS: We compared gene expression profiles of Morris Hepatoma (MH3924a) and DEN (diethylnitrosamine)-induced HCC models to those of liver tissues from normal and rapidly regenerating liver models, and performed gain- and loss-of-function studies of the identified gene targets for their roles in cancer cell proliferation in vitro and in vivo. RESULTS: The proline biosynthetic enzyme PYCR1 (pyrroline-5-carboxylate reductase 1) was identified as one of the most upregulated genes in the HCC models. Knockdown of PYCR1 potently reduced cell proliferation of multiple HCC cell lines in vitro and tumor growth in vivo. Conversely, overexpression of PYCR1 enhanced the proliferation of the HCC cell lines. Importantly, PYCR1 expression was not elevated in the regenerating liver, and KD or overexpression of PYCR1 had no effect on proliferation of non-cancerous cells. Besides PYCR1, we found that additional proline biosynthetic enzymes, such as ALDH18A1, were upregulated in HCC models and also regulated HCC cell proliferation. Clinical data demonstrated that PYCR1 expression was increased in HCC, correlated with tumor grade, and was an independent predictor of clinical outcome. CONCLUSION: Enhanced expression of proline biosynthetic enzymes promotes HCC cell proliferation. Inhibition of PYCR1 or ALDH18A1 may be a novel therapeutic strategy to target HCC. LAY SUMMARY: Even with the recently approved immunotherapies against liver cancer, currently available medications show limited clinical benefits or efficacy in the majority of patients. As such, it remains a top priority to discover new targets for effective liver cancer treatment. Here, we identify a critical role for the proline biosynthetic pathway in liver cancer development, and demonstrate that targeting key proteins in the pathway, namely PYCR1 and ALDH18A1, may be a novel therapeutic strategy for liver cancer.


Assuntos
Carcinogênese/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas/metabolismo , Prolina/biossíntese , Transdução de Sinais/genética , Aldeído Desidrogenase/deficiência , Aldeído Desidrogenase/genética , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/patologia , Proliferação de Células/genética , Dietilnitrosamina/efeitos adversos , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Células HaCaT , Células Hep G2 , Humanos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos SCID , Pirrolina Carboxilato Redutases/deficiência , Pirrolina Carboxilato Redutases/genética , Ratos , Transcriptoma , Transfecção , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto , delta-1-Pirrolina-5-Carboxilato Redutase
16.
Biochem Biophys Res Commun ; 522(2): 381-387, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31761320

RESUMO

Two-stage rat hepatocarcinogenesis model was used to induce early carcinogenesis in which thioacetamide (TAA) promotes diethylnitrosamine (DEN) initiated carcinogenesis. Dimethyl fumarate (DMF) used to treat multiple sclerosis, activates the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant responsive element (ARE) pathway during oxidative stress, and maintains antioxidant levels. Glibenclamide (GLB), a sulphonylurea drug used to treat type II diabetes, possesses anti-inflammatory properties and inhibits NLRP3 inflammasomes. The present study was designed to investigate the concurrent intervention of DMF and GLB on DEN + TAA-induced early hepatic carcinogenesis. DMF and GLB treatment improved DEN + TAA-induced decrease in body weight, increase in liver weight and plasma transaminases, histopathological alterations, DNA damage, and apoptosis. DMF and GLB intervention significantly ameliorated the DEN + TAA-induced alterations in the antioxidant (Nrf2, HO-1, SOD-1, catalase), inflammatory (NF-κB, NLRP3, ASC, caspase-1), fibrogenic (TGF-ß1, collagen) and regenerative proliferative stress (GST-p, HGF, c-MET, TGFα, EGF, AFP) markers. The present results indicate that Nrf2/ARE activation and NLRP3 inhibition might be a rational approach to attenuate oxidative stress and chronic inflammation associated progression of hepatocarcinogenesis.


Assuntos
Carcinogênese/patologia , Dietilnitrosamina/efeitos adversos , Fumarato de Dimetilo/farmacologia , Glibureto/farmacologia , Fígado/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Tioacetamida/efeitos adversos , Animais , Peso Corporal/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Dano ao DNA , Fígado/efeitos dos fármacos , Masculino , Tamanho do Órgão/efeitos dos fármacos , Ratos Wistar
17.
J Exp Clin Cancer Res ; 38(1): 438, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666108

RESUMO

BACKGROUND: Glutathione S-transferase zeta 1 (GSTZ1) is the penultimate enzyme in phenylalanine/tyrosine catabolism. GSTZ1 is dysregulated in cancers; however, its role in tumorigenesis and progression of hepatocellular carcinoma (HCC) is largely unknown. We aimed to assess the role of GSTZ1 in HCC and to reveal the underlying mechanisms, which may contribute to finding a potential therapeutic strategy against HCC. METHODS: We first analyzed GSTZ1 expression levels in paired human HCC and adjacent normal tissue specimens and the prognostic effect of GSTZ1 on HCC patients. Thereafter, we evaluated the role of GSTZ1 in aerobic glycolysis in HCC cells on the basis of the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). Furthermore, we assessed the effect of GSTZ1 on HCC proliferation, glutathione (GSH) concentration, levels of reactive oxygen species (ROS), and nuclear factor erythroid 2-related factor 2 (NRF2) signaling via gain- and loss- of GSTZ1 function in vitro. Moreover, we investigated the effect of GSTZ1 on diethylnitrosamine (DEN) and carbon tetrachloride (CCl4) induced hepatocarcinogenesis in a mouse model of HCC. RESULTS: GSTZ1 was downregulated in HCC, thus indicating a poor prognosis. GSTZ1 deficiency significantly promoted hepatoma cell proliferation and aerobic glycolysis in HCC cells. Moreover, loss of GSTZ1 function depleted GSH, increased ROS levels, and enhanced lipid peroxidation, thus activating the NRF2-mediated antioxidant pathway. Furthermore, Gstz1 knockout in mice promoted DEN/CCl4-induced hepatocarcinogenesis via activation of the NRF2 signaling pathway. Furthermore, the antioxidant agent N-acetylcysteine and NRF2 inhibitor brusatol effectively suppressed the growth of Gstz1-knockout HepG2 cells and HCC progression in Gstz1-/- mice. CONCLUSIONS: GSTZ1 serves as a tumor suppressor in HCC. GSH depletion caused by GSTZ1 deficiency elevates oxidative stress, thus constitutively activating the NRF2 antioxidant response pathway and accelerating HCC progression. Targeting the NRF2 signaling pathway may be a promising therapeutic approach for this subset of HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Neoplasias Hepáticas/patologia , Transdução de Sinais , Animais , Tetracloreto de Carbono/efeitos adversos , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Dietilnitrosamina/efeitos adversos , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Peroxidação de Lipídeos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Transplante de Neoplasias , Estresse Oxidativo , Prognóstico
18.
EMBO J ; 38(15): e101964, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31267557

RESUMO

The IGF1R signaling is important in the malignant progression of cancer. However, overexpression of IGF1R has not been properly assessed in HCC. Here, we revealed that GSTZ1-1, the enzyme in phenylalanine/tyrosine catabolism, is downregulated in HCC, and its expression was negatively correlated with IGF1R. Mechanistically, GSTZ1-1 deficiency led to succinylacetone accumulation, alkylation modification of KEAP1, and NRF2 activation, thus promoting IGF1R transcription by recruiting SP1 to its promoter. Moreover, inhibition of IGF1R or NRF2 significantly inhibited tumor-promoting effects of GSTZ1 knockout in vivo. These findings establish succinylacetone as an oncometabolite, and GSTZ1-1 as an important tumor suppressor by inhibiting NRF2/IGF1R axis in HCC. Targeting NRF2 or IGF1R may be a promising treatment approach for this subset HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Dietilnitrosamina/efeitos adversos , Regulação para Baixo , Glutationa Transferase/genética , Heptanoatos/metabolismo , Neoplasias Hepáticas/patologia , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células Hep G2 , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Experimentais , Prognóstico , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Análise de Sobrevida
20.
Int J Biol Macromol ; 137: 346-357, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31260769

RESUMO

Oxidative stress plays a central role in the incidence of liver injury. Nuclear factor erythroid 2-related factor-2 (Nrf2) is a key protein regulator of antioxidant response elements (ARE)-mediated gene expression. Thus, Nrf2 can be regarded as a plausible therapeutic target during liver injury. ß-Carotene is implicated as one of the important antioxidant with diverse health benefits. The delivery of ß-carotene to the target tissue has been debatable due to its low bioavailability, poor water solubility and instability. Here, a nanocomposite of ß-carotene with reduced graphene oxide (ßC-rGO) has been developed to demonstrate its pronounced effect in regulating Nrf2 to trigger protection against diethylnitrosamine (DEN)-induced hepatic fibrosis in rats. The rGO and ßC-rGO samples were characterised by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. Progress of disease was monitored through ultrasonography, in vitro liver and serum biochemistry (alanine transaminase, aspartate transaminase, alkaline phosphatase, bilirubin, lipid peroxidation, protein carbonyls, superoxide dismutase, catalase, glutathione-S-transferase, Nrf2, vitamin-A, retinol dehydrogenase), histopathology, confocal and ultrastructural studies. In fibrotic animals liver biochemistry was significantly altered along with massive changes in liver anatomy. ßC-rGO ameliorates experimental fibrogenesis and restores liver functioning due to increased availability of ß-carotene in the liver. It is suggested that ßC-rGO nanocomposite promotes cellular antioxidant status via upregulation of Nrf2 protein factor and invigorate hepatic stellate cells (HSCs) through restoring vitamin-A.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas/etiologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Dietilnitrosamina/efeitos adversos , Grafite , Fator 2 Relacionado a NF-E2/metabolismo , Nanocompostos/química , beta Caroteno/administração & dosagem , Animais , Biomarcadores , Doença Hepática Crônica Induzida por Substâncias e Drogas/diagnóstico , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Modelos Animais de Doenças , Grafite/química , Peroxidação de Lipídeos/efeitos dos fármacos , Testes de Função Hepática , Masculino , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/administração & dosagem , Ratos , Ultrassonografia , beta Caroteno/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...