Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 379
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338829

RESUMO

Molecular Dynamics simulations study material structure and dynamics at the atomic level. X-ray and neutron scattering experiments probe exactly the same time- and length scales as the simulations. In order to benchmark simulations against measured scattering data, a program is required that computes scattering patterns from simulations with good single-core performance and support for parallelization. In this work, the existing program Sassena is used as a potent solution to this requirement for a range of scattering methods, covering pico- to nanosecond dynamics, as well as the structure from some Ångströms to hundreds of nanometers. In the case of nanometer-level structures, the finite size of the simulation box, which is referred to as the finite size effect, has to be factored into the computations for which a method is described and implemented into Sassena. Additionally, the single-core and parallelization performance of Sassena is investigated, and several improvements are introduced.


Assuntos
Benchmarking , Simulação de Dinâmica Molecular , Raios X , Radiografia , Nêutrons , Difração de Nêutrons/métodos , Espalhamento a Baixo Ângulo , Difração de Raios X
2.
Anal Chem ; 96(1): 212-219, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38150504

RESUMO

Customization of deuterated biomolecules is vital for many advanced biological experiments including neutron scattering. However, because it is challenging to control the proportion and regiospecificity of deuterium incorporation in live systems, often only two or three synthetic lipids are mixed together to form simplistic model membranes. This limits the applicability and biological accuracy of the results generated with these synthetic membranes. Despite some limited prior examination of deuterating Escherichia coli lipids in vivo, this approach has not been widely implemented. Here, an extensive mass spectrometry-based profiling of E. coli phospholipid deuteration states with several different growth media was performed, and a computational method to describe deuterium distributions with a one-number summary is introduced. The deuteration states of 36 lipid species were quantitatively profiled in 15 different growth conditions, and tandem mass spectrometry was used to reveal deuterium localization. Regressions were employed to enable the prediction of lipid deuteration for untested conditions. Small-angle neutron scattering was performed on select deuterated lipid samples, which validated the deuteration states calculated from the mass spectral data. Based on these experiments, guidelines for the design of specifically deuterated phospholipids are described. This unlocks even greater capabilities from neutron-based techniques, enabling experiments that were formerly impossible.


Assuntos
Difração de Nêutrons , Fosfolipídeos , Deutério/química , Difração de Nêutrons/métodos , Escherichia coli/metabolismo , Espectrometria de Massas em Tandem
3.
Acta Crystallogr D Struct Biol ; 79(Pt 12): 1079-1093, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37942718

RESUMO

Neutron diffraction is one of the three crystallographic techniques (X-ray, neutron and electron diffraction) used to determine the atomic structures of molecules. Its particular strengths derive from the fact that H (and D) atoms are strong neutron scatterers, meaning that their positions, and thus protonation states, can be derived from crystallographic maps. However, because of technical limitations and experimental obstacles, the quality of neutron diffraction data is typically much poorer (completeness, resolution and signal to noise) than that of X-ray diffraction data for the same sample. Further, refinement is more complex as it usually requires additional parameters to describe the H (and D) atoms. The increase in the number of parameters may be mitigated by using the `riding hydrogen' refinement strategy, in which the positions of H atoms without a rotational degree of freedom are inferred from their neighboring heavy atoms. However, this does not address the issues related to poor data quality. Therefore, neutron structure determination often relies on the presence of an X-ray data set for joint X-ray and neutron (XN) refinement. In this approach, the X-ray data serve to compensate for the deficiencies of the neutron diffraction data by refining one model simultaneously against the X-ray and neutron data sets. To be applicable, it is assumed that both data sets are highly isomorphous, and preferably collected from the same crystals and at the same temperature. However, the approach has a number of limitations that are discussed in this work by comparing four separately re-refined neutron models. To address the limitations, a new method for joint XN refinement is introduced that optimizes two different models against the different data sets. This approach is tested using neutron models and data deposited in the Protein Data Bank. The efficacy of refining models with H atoms as riding or as individual atoms is also investigated.


Assuntos
Difração de Nêutrons , Nêutrons , Raios X , Difração de Raios X , Cristalografia , Difração de Nêutrons/métodos , Cristalografia por Raios X
4.
Acta Crystallogr D Struct Biol ; 79(Pt 12): 1056-1070, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37921806

RESUMO

Hydrogen (H) atoms are abundant in macromolecules and often play critical roles in enzyme catalysis, ligand-recognition processes and protein-protein interactions. However, their direct visualization by diffraction techniques is challenging. Macromolecular X-ray crystallography affords the localization of only the most ordered H atoms at (sub-)atomic resolution (around 1.2 Šor higher). However, many H atoms of biochemical significance remain undetectable by this method. In contrast, neutron diffraction methods enable the visualization of most H atoms, typically in the form of deuterium (2H) atoms, at much more common resolution values (better than 2.5 Å). Thus, neutron crystallography, although technically demanding, is often the method of choice when direct information on protonation states is sought. REFMAC5 from the Collaborative Computational Project No. 4 (CCP4) is a program for the refinement of macromolecular models against X-ray crystallographic and cryo-EM data. This contribution describes its extension to include the refinement of structural models obtained from neutron crystallographic data. Stereochemical restraints with accurate bond distances between H atoms and their parent atom nuclei are now part of the CCP4 Monomer Library, the source of prior chemical information used in the refinement. One new feature for neutron data analysis in REFMAC5 is refinement of the protium/deuterium (1H/2H) fraction. This parameter describes the relative 1H/2H contribution to neutron scattering for hydrogen isotopes. The newly developed REFMAC5 algorithms were tested by performing the (re-)refinement of several entries available in the PDB and of one novel structure (FutA) using either (i) neutron data only or (ii) neutron data supplemented by external restraints to a reference X-ray crystallographic structure. Re-refinement with REFMAC5 afforded models characterized by R-factor values that are consistent with, and in some cases better than, the originally deposited values. The use of external reference structure restraints during refinement has been observed to be a valuable strategy, especially for structures at medium-low resolution.


Assuntos
Difração de Nêutrons , Proteínas , Proteínas/química , Deutério , Modelos Moleculares , Cristalografia por Raios X , Difração de Nêutrons/métodos , Hidrogênio/química , Nêutrons , Substâncias Macromoleculares/química
5.
Environ Sci Technol ; 57(26): 9802-9810, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37347651

RESUMO

Aggregation of humic acids (HAs) was studied by small-angle neutron and X-ray scattering techniques. The combination of these techniques enables us to examine the aggregation structures of HA particles. Two HAs with distinctive compositions were examined: a commercial HA (PAHA) and a HA extracted from deep sedimentary groundwater (HHA). While macroscopic coagulation tests showed that these HAs were stable in solutions except for HHA at pH < 6, small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS) revealed that they formed aggregates with sizes exceeding the sub-micrometer length scale. The SAXS curves of PAHA remarkably varied with pD = log aD+, where aD+ stands for the activity of deuterium ions, whereas the SANS curves did not. With the help of theoretical fittings, it was revealed that PAHA aggregates consisted of two domains: poorly hydrated cores and well-hydrated proton-rich shells. The cores were (dis)aggregated with pD inside the aggregates of the shells. The SANS and SAXS curves of HHA resembled each other, and their intensities at low q, where q stands for the scattering vector, increased with a decrease of pD, indicating the formation of homogeneous aggregates within the spatial resolutions of SANS and SAXS. This study revealed that distinctive aggregation behaviors exist in humic substances with nm-scale heterogeneous structures like PAHA, which is important for their roles in the fate of contaminants or nutrients in aqueous environments.


Assuntos
Substâncias Húmicas , Difração de Nêutrons , Espalhamento a Baixo Ângulo , Raios X , Difração de Nêutrons/métodos , Difração de Raios X
6.
Curr Drug Discov Technol ; 20(5): e150523216942, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37190797

RESUMO

Small Angle Neutron Scattering (SANS) is a powerful and novel tool for the study of soft condensed matter, including the microscopic and nanomaterials used for drug discovery and delivery. The sample is exposed to a neutron beam, and neutron scattering occurs, which is studied as a function of the scattering angle to deduce a variety of information about the dynamics and structure of the material. The technique is becoming very popular in biomedical research to investigate the various aspects of structural biology. The low-resolution information on large heterogeneous, solubilized biomacromolecular complexes in solution is obtained with the use of deuterium labelling and solvent contrast variation. The article reviews the basics of the SANS technique, its applications in drug delivery research, and its current status in biomedical research. The article covers and overviews the precise characterization of biological structures (membranes, vesicles, proteins in solution), mesoporous structures, colloids, and surfactants, as well as cyclodextrin complexes, lipid complexes, polymeric nanoparticles, etc., with the help of neutron scattering. SANS is continuously evolving as a medium for exploring the complex world of biomolecules, providing information regarding the structure, composition, and arrangement of various constituents. With improving modelling software automation in data reduction and the development of new neutron research facilities, SANS can be expected to remain mainstream for biomedical research.


Assuntos
Difração de Nêutrons , Nêutrons , Espalhamento a Baixo Ângulo , Difração de Nêutrons/métodos
7.
Food Res Int ; 169: 112810, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254386

RESUMO

In recent years, small and ultra-small angle scattering techniques, collectively known as small angle scattering (SAS) have been used to study various food structures during the digestion process. These techniques play an important role in structural characterisation due to the non-destructive nature (especially when using neutrons), various in situ capabilities and a large length scale (of 1 nm to ∼20 µm) they cover. The application of these techniques in the structural characterisation of dairy products has expanded significantly in recent years. Casein, a major dairy protein, forms the basis of a wide range of gel structures at different length scales. These gel structures have been extensively researched utilising scattering techniques to obtain structural information at the nano and micron scale that complements electron and confocal microscopy. Especially, neutrons have provided opportunity to study these gels in their natural environment by using various in situ options. One such example is understanding changes in casein gel structures during digestion in the gastrointestinal tract, which is essential for designing personalised food structures for a wide range of food-related diseases and improve health outcomes. In this review, we present an overview of casein gels investigated using small angle and ultra-small angle scattering techniques. We also reviewed their digestion using newly built setups recently employed in various research. To gain a greater understanding of micro and nano-scale structural changes during digestion, such as the effect of digestive juices and mechanical breakdown on structure, new setups for semi-solid food materials are needed to be optimised.


Assuntos
Caseínas , Difração de Nêutrons , Espalhamento a Baixo Ângulo , Difração de Nêutrons/métodos , Géis , Digestão
8.
Acta Crystallogr D Struct Biol ; 79(Pt 5): 420-434, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37092970

RESUMO

The contrast-variation method in small-angle neutron scattering (SANS) is a uniquely powerful technique for determining the structure of individual components in biomolecular systems containing regions of different neutron scattering length density ρ. By altering the ρ of the target solute and the solvent through judicious incorporation of deuterium, the scattering of desired solute features can be highlighted. Most contrast-variation methods focus on highlighting specific bulk solute elements, but not on how the scattering at specific scattering vectors q, which are associated with specific structural distances, changes with contrast. Indeed, many systems exhibit q-dependent contrast effects. Here, a method is presented for calculating both bulk contrast-match points and q-dependent contrast using 3D models with explicit solute and solvent atoms and SASSENA, an explicit-atom SANS calculator. The method calculates the bulk contrast-match points within 2.4% solvent D2O accuracy for test protein-nucleic acid and lipid nanodisc systems. The method incorporates a general model for the incorporation of deuterium at non-exchangeable sites that was derived by performing mass spectrometry on green fluorescent protein. The method also decomposes the scattering profile into its component parts and identifies structural features that change with contrast. The method is readily applicable to a variety of systems, will expand the understanding of q-dependent contrast matching and will aid in the optimization of next-generation neutron scattering experiments.


Assuntos
Difração de Nêutrons , Nêutrons , Deutério/química , Espalhamento a Baixo Ângulo , Difração de Nêutrons/métodos , Solventes , Biologia
9.
Methods Enzymol ; 678: 55-96, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36641217

RESUMO

Small-angle neutron scattering (SANS) with contrast variation (CV) is a valuable technique in the structural biology toolchest. Accurate structural parameters-e.g., radii of gyration, volumes, dimensions, and distance distribution(s)-can be derived from the SANS-CV data to yield the shape and disposition of the individual components within stable complexes. Contrast variation is achieved through the substitution of hydrogen isotopes (1H for 2H) in molecules and solvents to alter the neutron scattering properties of each component of a complex. While SANS-CV can be used a stand-alone technique for interrogating the overall structure of biomacromolecules in solution, it also complements other methods such as small-angle X-ray scattering, crystallography, nuclear magnetic resonance, and cryo-electron microscopy. Undertaking a SANS-CV experiment is challenging, due in part to the preparation of significant quantities of monodisperse samples that may require deuterium (2H) labeling. Nevertheless, SANS-CV can be used to study a diverse range biomacromolecular complexes including protein-protein and protein-nucleic acid systems, membrane proteins, and flexible systems resistant to crystallization. This chapter describes how to approach the data analysis and modeling of SANS data, including: (1) Analysis of the forward scattering (I(0)) and calculation of theoretical estimates of contrast; (2) Analysis of the contrast dependence of the radius of gyration using the Stuhrmann plot and parallel axis theorem; (3) Calculation of composite scattering functions to evaluate the size, shape, and dispositions of individual components within a complex, and; (4) Development of real-space models to fit the SANS-CV data using volume-element bead modeling or atomistic rigid body modeling.


Assuntos
Difração de Nêutrons , Nêutrons , Espalhamento a Baixo Ângulo , Microscopia Crioeletrônica , Difração de Nêutrons/métodos , Substâncias Macromoleculares/química , Análise de Dados
10.
Methods Enzymol ; 678: 97-120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36641218

RESUMO

In the present book chapter we illustrate the state-of-the-art of time-resolved small-angle neutron scattering (TR-SANS) by a concrete example of a dynamic bio-macromolecular system, i.e., regulated protein degradation by the archaeal PAN-20S proteasome complex. We present the specific and unique structural information that can be obtained by this approach, in combination with bio-macromolecular deuteration and online spectrophotometric measurements of a fluorescent substrate (GFP). The complementarity with atomic-resolution structural biology techniques (SAXS, NMR, crystallography and cryo-EM) and with the advent of atomic structure prediction are discussed, as well as the respective limitations and future perspectives.


Assuntos
Difração de Nêutrons , Complexo de Endopeptidases do Proteassoma , Difração de Raios X , Espalhamento a Baixo Ângulo , Proteólise , Difração de Nêutrons/métodos , Substâncias Macromoleculares/química
11.
Methods Enzymol ; 677: 157-189, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36410948

RESUMO

Small angle scattering affords an approach to evaluate the structure of dilute populations of macromolecules in solution where the measured scattering intensities relate to the distribution of scattering-pair distances within each macromolecule. When small angle neutron scattering (SANS) with contrast variation is employed, additional structural information can be obtained regarding the internal organization of biomacromolecule complexes and assemblies. The technique allows for the components of assemblies to be selectively 'matched in' and 'matched out' of the scattering profiles due to the different ways the isotopes of hydrogen-protium 1H, and deuterium 2H (or D)-scatter neutrons. The isotopic substitution of 1H for D in the sample enables the controlled variation of the scattering contrasts. A contrast variation experiment requires trade-offs between neutron beam intensity, q-range, wavelength and q-resolution, isotopic labelling levels, sample concentration and path-length, and measurement times. Navigating these competing aspects to find an optimal combination is a daunting task. Here we provide an overview of how to calculate the neutron scattering contrasts of dilute biological macromolecule samples prior to an experiment and how this then informs the approach to configuring SANS instruments and the measurement of a contrast variation series dataset.


Assuntos
Difração de Nêutrons , Nêutrons , Espalhamento a Baixo Ângulo , Difração de Nêutrons/métodos , Substâncias Macromoleculares/química , Hidrogênio/química
12.
Methods Enzymol ; 677: 263-290, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36410952

RESUMO

We present an overview of time-resolved small-angle neutron scattering (TR-SANS) applied to biological systems, with a focus on bio-macromolecules and assemblies they form, together with practical guidelines. After a brief introduction to the theory and practice of SANS, we present the general setup and specifics of time-resolved experiments, as well as an overview of diverse experimental results and applications from the past ≈25years. Subsequently, we provide guidelines and practical instructions for the design, planning and execution for TR-SANS experiments, as a function of the time- and length-scales of the biological processes of interest, the availability of sample amount and deuterium labeling, and the structural information sought. We conclude with a discussion of the most recent instrumental and sample environment developments and perspectives for the future.


Assuntos
Biologia Molecular , Difração de Nêutrons , Espalhamento a Baixo Ângulo , Difração de Nêutrons/métodos , Biologia Molecular/métodos , Nêutrons , Substâncias Macromoleculares
13.
Biomolecules ; 12(11)2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36358941

RESUMO

Small-angle neutron scattering (SANS) is a powerful tool for studying biological membranes and model lipid bilayer membranes. The length scales probed by SANS, being from 1 nm to over 100 nm, are well-matched to the relevant length scales of the bilayer, particularly when it is in the form of a vesicle. However, it is the ability of SANS to differentiate between isotopes of hydrogen as well as the availability of deuterium labeled lipids that truly enable SANS to reveal details of membranes that are not accessible with the use of other techniques, such as small-angle X-ray scattering. In this work, an overview of the use of SANS for studying unilamellar lipid bilayer vesicles is presented. The technique is briefly presented, and the power of selective deuteration and contrast variation methods is discussed. Approaches to modeling SANS data from unilamellar lipid bilayer vesicles are presented. Finally, recent examples are discussed. While the emphasis is on studies of unilamellar vesicles, examples of the use of SANS to study intact cells are also presented.


Assuntos
Bicamadas Lipídicas , Difração de Nêutrons , Espalhamento a Baixo Ângulo , Difração de Nêutrons/métodos , Nêutrons , Lipossomas Unilamelares
14.
J Chem Phys ; 157(13): 134103, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36209010

RESUMO

Elastic neutron scattering from proteins reflects the motional amplitudes resulting from their internal collective and single-atom dynamics and is observable if the global diffusion of whole molecules is either blocked or cannot be resolved by the spectrometer under consideration. Due to finite instrumental resolution, the measured elastic scattering amplitude always contains contaminations from quasielastic neutron scattering and some model must be assumed to extract the resolution-corrected counterpart from corresponding experimental spectra. Here, we derive a quasi-analytical method for that purpose, assuming that the intermediate scattering function relaxes with a "stretched" Mittag-Leffler function, Eα(-(t/τ)α) (0 < α < 1), toward the elastic amplitude and that the instrumental resolution function has Gaussian form. The corresponding function can be integrated into a fitting procedure and allows for eliminating the elastic intensity as a fit parameter. We illustrate the method for the analysis of two proteins in solution, the intrinsically disordered Myelin Basic Protein, confirming recently published results [Hassani et al., J. Chem. Phys. 156, 025102 (2022)], and the well-folded globular protein myoglobin. We also briefly discuss the consequences of our findings for the extraction of mean square position fluctuations from elastic scans.


Assuntos
Mioglobina , Difração de Nêutrons , Difusão , Proteína Básica da Mielina , Difração de Nêutrons/métodos , Nêutrons
15.
Methods Mol Biol ; 2538: 75-93, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35951294

RESUMO

Small-angle scattering is a powerful technique to obtain structural information on biomacromolecules in aqueous solution at the sub-nanometer and nanometer length scales. It provides the sizes and overall shapes of the scattering particles. While small-angle X-ray scattering (SAXS) has often been used for structural analysis of a single-component system, small-angle neutron scattering (SANS) has been used to reveal the internal organization of a multicomponent system such as protein-protein and protein-DNA complexes. This is due to the fact that the neutron scattering length is largely different between hydrogen and deuterium, and thus it allows to make a specific component in complexes "invisible" to neutrons by changing the H2O/D2O ratio in the solvent with or without molecular deuteration. In this chapter, we describe a method to characterize the biomolecular structures using SANS and SAXS, in particular, focusing on fibrillar proteins such as bacterial amyloids and their complexes with nucleic acids.


Assuntos
Difração de Nêutrons , Nêutrons , Proteínas Amiloidogênicas , DNA , Difração de Nêutrons/métodos , Espalhamento a Baixo Ângulo , Difração de Raios X , Raios X
16.
Acta Crystallogr D Struct Biol ; 78(Pt 8): 1046-1063, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35916228

RESUMO

Modern small-angle scattering (SAS) experiments with neutrons (SANS) or X-rays (SAXS) combined with contrast variation provide comprehensive information about the structure of large multicomponent macromolecules in solution and allow the size, shape and relative arrangement of each component to be mapped out. To obtain such information, it is essential to perform well designed experiments, in which all necessary steps, from assessing sample suitability to structure modeling, are properly executed. This paper describes α-SAS, an integrative approach that is useful for effectively planning a biological contrast-variation SAS experiment. The accurate generation of expected experimental intensities using α-SAS allows the substantial acceleratation of research into the structure and function of biomacromolecules by minimizing the time and costs associated with performing a SAS experiment. The method is validated using a few basic structures with known analytical expressions for scattering intensity and using experimental SAXS data from Arabidopsis ß-amylase 1 protein and SANS data from the histidine kinase-Sda complex and from human dystrophin without and with a membrane-mimicking nanodisk. Simulation of a SANS contrast-variation experiment is performed for synthetic nanobodies that effectively neutralize SARS-CoV-2.


Assuntos
COVID-19 , Difração de Nêutrons , Humanos , Difração de Nêutrons/métodos , Proteínas/química , SARS-CoV-2 , Espalhamento a Baixo Ângulo , Difração de Raios X
17.
Prog Lipid Res ; 87: 101179, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35780913

RESUMO

The plasma membrane is one of the principal structural components of the cell and, therefore, one of the key components of the cellular life. Because the membrane's dynamics links the membrane's structure and function, the complexity and the broad range of the membrane's motions are essential for the enormously diverse functionality of the cell membrane. Even for the main membrane component, the lipid bilayer, considered alone, the range and complexity of the lipid motions are remarkable. Spanning the time scale from sub-picosecond to minutes and hours, the lipid motion in a bilayer is challenging to study even when a broad array of dynamic measurement techniques is employed. Neutron scattering plays a special role among such dynamic measurement techniques, particularly, because it involves the energy transfers commensurate with the typical intra- and inter- molecular dynamics and the momentum transfers commensurate with intra- and inter-molecular distances. Thus, using neutron scattering-based techniques, the spatial and temporal information on the lipid motion can be obtained and analysed simultaneously. Protium vs. deuterium sensitivity and non-destructive character of the neutron probe add to the remarkable prowess of neutron scattering for elucidating the lipid dynamics. Herein we present an overview of the neutron scattering-based studies of lipid dynamics in model membranes, with a discussion of the direct relevance and implications to the real-life cell membranes. The latter are much more complex systems than simple model membranes, consisting of heterogeneous non-stationary domains composed of lipids, proteins, and other small molecules, such as carbohydrates. Yet many fundamental aspects of the membrane behavior and membrane interactions with other molecules can be understood from neutron scattering measurements of the model membranes. For example, such studies can provide a great deal of information on the interactions of antimicrobial compounds with the lipid matrix of a pathogen membrane, or the interactions of drug molecules with the plasma membrane. Finally, we briefly discuss the recently emerging field of neutron scattering membrane studies with a reach far beyond the model membrane systems.


Assuntos
Bicamadas Lipídicas , Difração de Nêutrons , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Difração de Nêutrons/métodos , Nêutrons , Análise Espectral
18.
Biomacromolecules ; 23(8): 3165-3173, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35767422

RESUMO

Stimuli-responsive structural proteins are emerging as promising biocompatible materials for a wide range of biological and nonbiological applications. To understand the physical properties of structural proteins and to replicate their performance in biosynthetic systems, there is a need to understand the molecular mechanisms and relationships that regulate their structure, dynamics, and properties. Here, we study the dynamics of a recombinant squid-inspired protein from Loligo vulgaris (Lv18) by elastic and quasielastic neutron scattering (QENS) to understand the connection between nanostructure, chain dynamics, and mechanical properties. Lv18 is a semicrystalline structural protein, which is plasticized by water above its glass transition temperature at 35 °C. Elastic scans revealed an increased protein chain mobility upon hydration, superimposed dynamic processes, and a decrease in dynamic transition temperatures. Further analysis by QENS revealed that while dry Lv18 protein dynamics are dominated by localized methyl group rotations, hydrated Lv18 dynamics are dominated by the confined diffusion of flexible chains within a ß-sheet nanocrystalline network (8 Å of confinement radius). Our findings establish a relationship between the segment block architecture of Lv18, the diffusive motions within the protein structure, and the mechanical properties of recombinant squid proteins, which will advance the molecular design of novel high-performance protein-inspired materials with tailored dynamics and mechanical properties.


Assuntos
Decapodiformes , Difração de Nêutrons , Animais , Difusão , Difração de Nêutrons/métodos , Nêutrons , Proteínas/química , Análise Espectral , Água/química
19.
Phys Chem Chem Phys ; 24(25): 15406-15415, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35704895

RESUMO

Normal-to-malignant transformation is a poorly understood process associated with cellular biomechanical properties. These are strongly dependent on the dynamical behaviour of water, known to play a fundamental role in normal cellular activity and in the maintenance of the three-dimensional architecture of the tissue and the functional state of biopolymers. In this study, quasi-elastic neutron scattering was used to probe the dynamical behaviour of water in human cancer specimens and their respective surrounding normal tissue from breast and tongue, as an innovative approach for identifying particular features of malignancy. This methodology has been successfully used by the authors in human cells and was the first study of human tissues by neutron scattering techniques. A larger flexibility was observed for breast versus tongue tissues. Additionally, different dynamics were found for malignant and non-malignant specimens, depending on the tissue: higher plasticity for breast invasive cancer versus the normal, and an opposite effect for tongue. The data were interpreted in the light of two different water populations within the samples: one displaying bulk-like dynamics (extracellular and intracellular/cytoplasmic) and another with constrained flexibility (extracellular/interstitial and intracellular/hydration layers).


Assuntos
Neoplasias , Água , Humanos , Difração de Nêutrons/métodos , Nêutrons
20.
ACS Macro Lett ; 11(1): 66-71, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35574783

RESUMO

Structural studies of wormlike micelles have so far mostly focused on the conformational properties of surfactant aggregates. The diffuse ionic atmosphere, which has a profound influence on various micellization phenomena such as thermodynamic stability and structural polymorphism, remains largely unexplored experimentally. In this report a strategy of contrast variation small-angle neutron scattering for this crucial structural study is outlined. Underlined by a general criterion established for unbiasedly identifying the length scale relevant to charge association from the spectral evolution, our analytical framework can provide a quantitative description of counterion distribution in a mathematically tractable manner. Our method can be conveniently extended to facilitate structural studies of complex multicomponent systems using contrast variation neutron scattering.


Assuntos
Micelas , Difração de Nêutrons , Atmosfera , Íons , Difração de Nêutrons/métodos , Nêutrons , Espalhamento a Baixo Ângulo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...