Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.252
Filtrar
1.
Methods Mol Biol ; 2557: 53-60, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36512209

RESUMO

The protozoan parasite, Trypanosoma brucei, offers a simple system to study the growth and duplication of the Golgi. Cell lines stably expressing a photoactivatable GFP attached to an endogenous Golgi protein are permeabilized using digitonin. Photoactivation followed by imaging can then be used to follow the formation of the new Golgi.


Assuntos
Parasitos , Trypanosoma brucei brucei , Animais , Trypanosoma brucei brucei/metabolismo , Complexo de Golgi/metabolismo , Digitonina/farmacologia , Digitonina/metabolismo , Parasitos/metabolismo , Proteínas de Protozoários/metabolismo
2.
Int J Biol Macromol ; 195: 30-40, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34863835

RESUMO

Previously we have shown that lactoferrin (LTF), a protein of secondary neutrophilic granules, can be efficiently modified by hypohalous acids (HOCl and HOBr), which are produced at high concentrations during inflammation and oxidative/halogenative stress by myeloperoxidase, an enzyme of azurophilic neutrophilic granules. Here we compared the effects of recombinant human lactoferrin (rhLTF) and its halogenated derivatives (rhLTF-Cl and rhLTF-Br) on functional responses of neutrophils. Our results demonstrated that after halogenative modification, rhLTF lost its ability to induce mobilization of intracellular calcium, actin cytoskeleton reorganization, and morphological changes in human neutrophils. Moreover, both forms of the halogenated rhLTF prevented binding of N-acetylglucosamine-specific plant lectin Triticum vulgaris agglutinin (WGA) to neutrophils and, in contrast to native rhLTF, inhibited respiratory burst of neutrophils induced by N-formyl-L-methionyl-L-leucyl-L-phenylalanine and by two plant lectins (WGA and PHA-L). However, we observed no differences between the effects of rhLTF, rhLTF-Cl, and rhLTF-Br on respiratory burst of neutrophils induced by phorbol 12-myristate 13-acetate (PMA), digitonin, and number of plant lectins with different glycan-binding specificity. Furthermore, all rhLTF forms interfered with PMA- and ionomycin-induced formation of neutrophil extracellular traps. Thus, halogenative modification of LTF is one of the mechanisms involved in modulating a variety of signaling pathways in neutrophils to control their pro-inflammatory activity.


Assuntos
Bromatos/química , Ácido Hipocloroso/química , Lactoferrina/genética , Neutrófilos/metabolismo , Acetilglucosamina/metabolismo , Citoesqueleto de Actina/metabolismo , Cálcio/metabolismo , Digitonina/farmacologia , Humanos , Ionomicina/farmacologia , Lactoferrina/química , Lactoferrina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Triticum/química , Aglutininas do Germe de Trigo/química
3.
Methods Mol Biol ; 2255: 77-86, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34033096

RESUMO

Three-dimensional (3D) in vitro systems closely resemble tissue microenvironments and provide predictive models for studying cytotoxic drug responses. The ability to capture the kinetic profiles of such responses in a dynamic and noninvasive way can further advance the utility of 3D cell cultures. Here, we describe the use of a luminescent lactate dehydrogenase (LDH) toxicity assay for monitoring time- and dose-dependent effects of drug treatment in 3D cancer spheroids. HCT116 spheroids formed in 96-well ultralow attachment plates were treated with increasing drug concentrations. Medium samples were collected at different timepoints, frozen, stored, and analyzed at the end of experiments using the luminescent LDH-Glo™ Assay. High assay sensitivity and low volume sampling enabled drug-induced toxicity profiling in a time- and dose-dependent manner.


Assuntos
Antineoplásicos/farmacologia , Digitonina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , L-Lactato Desidrogenase/metabolismo , Medições Luminescentes/métodos , Neoplasias/patologia , Esferoides Celulares/patologia , Testes de Toxicidade/métodos , Relação Dose-Resposta a Droga , Humanos , Indicadores e Reagentes/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Fatores de Tempo , Células Tumorais Cultivadas
4.
J Immunol Methods ; 489: 112943, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33333059

RESUMO

Lymph nodes (LNs) are essential secondary immune organs where the adaptive immune response is generated against most infections and vaccines. We recently described the use of live ex vivo LN slices to study the dynamics of adaptive immunity. However, when working with reactive lymph nodes from vaccinated animals, the tissues frequently became dislodged from the supportive agarose matrix during slicing, leading to damage that prevented downstream analysis. Because reactive lymph nodes expand into the surrounding adipose tissue, we hypothesized that dislodging was a result of excess lipids on the collagen capsule of the LN, and that a brief wash with a mild detergent would improve LN interaction with the agarose without damaging tissue viability or function. Therefore, we tested the use of digitonin on improving slicing of vaccinated LNs. Prior to embedding, LNs were quickly dipped into a digitonin solution and washed in saline. Lipid droplets were visibly removed by this procedure. A digitonin wash step prior to slicing significantly reduced the loss of LN during slicing from 13 to 75% to 0-25%, without substantial impact on viability. Capture of fluorescent microparticles, uptake and processing of protein antigen, and cytokine secretion in response to a vaccine adjuvant, R848, were all unaffected by the detergent wash. This novel approach will enable ex vivo analysis of the generation of adaptive immune response in LNs in response to vaccinations and other immunotherapies.


Assuntos
Detergentes/farmacologia , Digitonina/farmacologia , Linfonodos/efeitos dos fármacos , Animais , Antígenos/imunologia , Citocinas/imunologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Vacinação
5.
Viruses ; 11(11)2019 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-31684080

RESUMO

Zika virus (ZIKV) infection during pregnancy leads to severe congenital Zika syndrome, which includes microcephaly and other neurological malformations. No therapeutic agents have, so far, been approved for the treatment of ZIKV infection in humans; as such, there is a need for a continuous effort to develop effective and safe antiviral drugs to treat ZIKV-caused diseases. After screening a natural product library, we have herein identified four natural products with anti-ZIKV activity in Vero E6 cells, including gossypol, curcumin, digitonin, and conessine. Except for curcumin, the other three natural products have not been reported before to have anti-ZIKV activity. Among them, gossypol exhibited the strongest inhibitory activity against almost all 10 ZIKV strains tested, including six recent epidemic human strains. The mechanistic study indicated that gossypol could neutralize ZIKV infection by targeting the envelope protein domain III (EDIII) of ZIKV. In contrast, the other natural products inhibited ZIKV infection by targeting the host cell or cell-associated entry and replication stages of ZIKV. A combination of gossypol with any of the three natural products identified in this study, as well as with bortezomib, a previously reported anti-ZIKV compound, exhibited significant combinatorial inhibitory effects against three ZIKV human strains tested. Importantly, gossypol also demonstrated marked potency against all four serotypes of dengue virus (DENV) human strains in vitro. Taken together, this study indicates the potential for further development of these natural products, particularly gossypol, as the lead compound or broad-spectrum inhibitors against ZIKV and other flaviviruses, such as DENV.


Assuntos
Antivirais/farmacologia , Produtos Biológicos/farmacologia , Zika virus/efeitos dos fármacos , Alcaloides/química , Alcaloides/farmacologia , Animais , Antivirais/química , Produtos Biológicos/química , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Curcumina/química , Curcumina/farmacologia , Vírus da Dengue/efeitos dos fármacos , Digitonina/química , Digitonina/farmacologia , Sinergismo Farmacológico , Gossipol/química , Gossipol/farmacologia , Humanos , Estrutura Molecular , Células Vero , Infecção por Zika virus/virologia
6.
Biochim Biophys Acta Bioenerg ; 1860(8): 651-658, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31299182

RESUMO

Light drives photosynthesis. In plants it is absorbed by light-harvesting antenna complexes associated with Photosystem I (PSI) and photosystem II (PSII). As PSI and PSII work in series, it is important that the excitation pressure on the two photosystems is balanced. When plants are exposed to illumination that overexcites PSII, a special pool of the major light-harvesting complex LHCII is phosphorylated and moves from PSII to PSI (state 2). If instead PSI is over-excited the LHCII complex is dephosphorylated and moves back to PSII (state 1). Recent findings have suggested that LHCII might also transfer energy to PSI in state 1. In this work we used a combination of biochemistry and (time-resolved) fluorescence spectroscopy to investigate the PSI antenna size in state 1 and state 2 for Arabidopsis thaliana. Our data shows that 0.7 ± 0.1 unphosphorylated LHCII trimers per PSI are present in the stroma lamellae of state-1 plants. Upon transition to state 2 the antenna size of PSI in the stroma membrane increases with phosphorylated LHCIIs to a total of 1.2 ± 0.1 LHCII trimers per PSI. Both phosphorylated and unphosphorylated LHCII function as highly efficient PSI antenna.


Assuntos
Arabidopsis/enzimologia , Complexos de Proteínas Captadores de Luz/fisiologia , Luz , Complexo de Proteína do Fotossistema I/efeitos da radiação , Arabidopsis/ultraestrutura , Digitonina/farmacologia , Transferência de Energia , Complexos de Proteínas Captadores de Luz/efeitos dos fármacos , Fosforilação , Complexo de Proteína do Fotossistema II/efeitos da radiação , Espectrometria de Fluorescência
7.
Methods Mol Biol ; 1862: 137-149, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30315465

RESUMO

In this chapter, we present an experimental protocol for the targeted metabolic profiling of full cells and mitochondria in selectively permeabilized cells. Mitochondria of adherent cell cultures are made accessible by the addition of digitonin-a compound that selectively permeabilizes the cytosolic membrane without affecting mitochondrial integrity. The generated in situ mitochondria are subsequently used in a stable isotope labeling assay in which their metabolic fluxes can be analyzed without any interfering influence originating from cytosolic components. The protocol is complemented by oxygen consumption measurements of permeabilized cells on a Seahorse XF instrument. The additional data on mitochondrial respiration can be used to validate the functionality of mitochondria in the applied setup but are also a valuable add-on to the stable isotope labeling data.


Assuntos
Técnicas de Cultura de Células/métodos , Espectrometria de Massas/métodos , Análise do Fluxo Metabólico/métodos , Metabolômica/métodos , Técnicas de Cultura de Células/instrumentação , Membrana Celular/metabolismo , Células Cultivadas , Meios de Cultura/química , Digitonina/farmacologia , Metabolismo Energético , Marcação por Isótopo , Espectrometria de Massas/instrumentação , Análise do Fluxo Metabólico/instrumentação , Metabolômica/instrumentação , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Permeabilidade
8.
Curr Protoc Cytom ; 88(1): e54, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30556645

RESUMO

Flow cytometry approaches combined with a genetically encoded targeted fluorescent biosensor are used to determine the subcellular compartmental availability of the oxidized form of nicotinamide adenine dinucleotide (NAD+ ). The availability of free NAD+ can affect the activities of NAD+ -consuming enzymes such as sirtuin, PARP/ARTD, and cyclic ADPR-hydrolase family members. Many methods for measuring the NAD+ available to these enzymes are limited because they cannot determine free NAD+ as it exists in various subcellular compartments distinctly from bound NAD+ or NADH. Here, an approach to express the sensor in mammalian cells, monitor NAD+ -dependent fluorescence intensity changes using flow cytometry approaches, and analyze data obtained is described. The benefit of flow cytometry approaches with the NAD+ sensor is the ability to monitor compartmentalized free NAD+ fluctuations simultaneously within many cells, which greatly facilitates analyses and calibration. © 2018 by John Wiley & Sons, Inc.


Assuntos
Técnicas Biossensoriais/métodos , Citometria de Fluxo/métodos , Espaço Intracelular/metabolismo , NAD/análise , Acrilamidas/farmacologia , Calibragem , Digitonina/farmacologia , Inibidores Enzimáticos/farmacologia , Fluorescência , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/metabolismo , Piperidinas/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Estatística como Assunto
9.
Phytomedicine ; 50: 213-222, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30466981

RESUMO

BACKGROUND: Cancer is one of the most common life-threatening diseases worldwide; many patients develop multidrug resistance after treatment with anticancer drugs. The main mechanism leading to multidrug resistance is the overexpression of ABC transporters in cancer cells. Chemosensitizers are needed to inhibit the activity of ABC transporters, resulting in higer intracellular concentration of anticancer drugs. Some secondary metabolites have been reported to be chemosensitizers by inhibiting ABC transporters. Epigallocatechin gallate (EGCG), tannic acid, and curcumin were employed in this study. Different assays were used to detect whether they have the ability to inhibit P-gp activity and overcome multidrug resistance in cancer cells overexpressing P-gp. Hypothesis/Purpose: CEM/ADR 5000 and Caco-2 cell lines, which overexpress P-gp, are multidrug resistant cell lines. We first detected whether the combination of polyphenols (EGCG, tannic acid, curcumin) and doxorubicin, an anticancer drug, is synergistic or not. To further understand the potential mechanism, EGCG, tannic acid, and curcumin were tested to check whether they have the ability to inhibit P-gp activity. When P-gp activity is inhibited, the intracellular concentration of doxorubicin is higher, resulting in enhanced cytotoxicity of doxorubicin. STUDY DESIGN: The P-gp overexpressing human colon cancer cell line Caco-2 and human T-lymphoblastic leukemia cell line CEM/ADR 5000 were used in this study. Two-drug combinations (doxorubicin + polyphenol) and three-drug combinations (doxorubicin + polyphenol + digitonin) were tested to examine potential synergism. The potential mechanism leading to synergism would be the inhibition of P-gp activity. A Rhodamine 123 assay and Calcein-AM assay in Caco-2 and CEM/ADR 5000, respectively, were used to detect P-gp inhibition by EGCG, curcumin, and tannic acid. METHODS: MTT assay was used to determine the cytotoxicity of doxorubicin, polyphenols and digitonin alone, and then their combinations. Furthermore, Rhodamine 123 and Calcein-AM were used to detect the effects of polyphenols on the activity of P-gp. RESULTS: The results demonstrated that a combination of non-toxic concentrations of each polyphenol with doxorubicin synergistically sensitized Caco-2 and CEM/ADR 5000 cells. Furthermore, three-drug combinations (doxorubicin + polyphenol + digitonin) were much more effective. In addition, the activity of P-gp in Caco-2 and CEM/ADR 5000 cells was measured. Consistent with the combination results, tannic acid and curcumin decreased the activity of P-gp both in Caco-2 and CEM/ADR 5000. EGCG, which weakly affected the activity of P-gp in CEM/ADR 5000, only had an effect on P-gp under higher concentration in Caco-2 cells. CONCLUSION: Our results show that EGCG, curcumin, and tannic acid, when combined with doxorubicin, can exert synergism, mediated by a reduced activity of P-gp. This study suggests that polyphenols, by modulating the activity of P-gp, may be used as chemosensitisers.


Assuntos
Catequina/análogos & derivados , Curcumina/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Taninos/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Células CACO-2 , Catequina/farmacologia , Digitonina/farmacologia , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Fluoresceínas , Humanos , Polifenóis/farmacologia , Rodamina 123
11.
Parasitology ; 145(14): 1884-1889, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29781423

RESUMO

This study assessed the anthelmintic activity of plant-derived compounds against gastrointestinal nematodes of goats using the egg hatch and larval motility assays. The compounds tested were saponins (digitonin and aescin) and their respective sapogenins (aglycones), hecogenin acetate and flavonoids (catechin, hesperidin, isocordoin and a mixture of isocordoin and cordoin). Additionally, cytotoxicity of active substances was analysed on Vero cell through 3-4,5-dimethylthiazol-2-yl,2,5diphenyltetrazolium bromide (MTT) and propidium iodide (PI) tests. Significant reduction on the egg hatching (P 90%). Nevertheless, higher cytotoxicity was observed in the MTT assay, with IC50 of 0.20 mg mL-1 (aescin) and 0.0074 mg mL-1 (digitonin). Aescin and digitonin have a pronounced in vitro anthelmintic effect and the glycone portion of these saponins plays an important role in this activity.


Assuntos
Antinematódeos/farmacologia , Flavonoides/farmacologia , Cabras/parasitologia , Nematoides/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Saponinas/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Digitonina/farmacologia , Trato Gastrointestinal/parasitologia , Concentração Inibidora 50 , Larva/efeitos dos fármacos , Compostos de Espiro/farmacologia , Esteroides/farmacologia , Células Vero
12.
Cell Rep ; 21(13): 3740-3753, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29281824

RESUMO

It is well established that mRNAs encoding secretory or membrane-bound proteins are translated on the surface of the endoplasmic reticulum (ER). The extent to which mRNAs that encode cytosolic proteins associate with the ER, however, remains controversial. To address this question, we quantified the number of cytosolic protein-encoding mRNAs that co-localize with the ER using single-molecule RNA imaging in fixed and living cells. We found that a small but significant number of mRNAs that encode cytosolic proteins associate with the ER and show that this interaction is translation dependent. Furthermore, we demonstrate that cytosolic protein-encoding transcripts can remain on the ER with dwell times consistent with multiple rounds of translation and have higher ribosome occupancies than transcripts translated in the cytosol. These results advance our understanding of the diversity and dynamics of localized translation on the ER.


Assuntos
Retículo Endoplasmático/metabolismo , Biossíntese de Proteínas , Imagem Individual de Molécula , Animais , Linhagem Celular , Citoesqueleto/metabolismo , Citosol/metabolismo , Digitonina/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Humanos , Luciferases/metabolismo , Camundongos , Proteínas Nucleares/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Canais de Translocação SEC/metabolismo
13.
PLoS One ; 12(10): e0185691, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28977033

RESUMO

Quercetin and dehydrosilybin are polyphenols which are known to behave like uncouplers of respiration in isolated mitochondria. Here we investigated whether the effect is conserved in whole cells. Following short term incubation, neither compound uncouples mitochondrial respiration in whole H9c2 cells below 50µM. However, following hypoxia, or long term incubation, leak (state IV with oligomycin) oxygen consumption is increased by quercetin. Both compounds partially protected complex I respiration, but not complex II in H9c2 cells following hypoxia. In a permeabilised H9c2 cell model, the increase in leak respiration caused by quercetin is lowered by increased [ADP] and is increased by adenine nucleotide transporter inhibitor, atractyloside, but not bongkrekic acid. Both quercetin and dehydrosilybin dissipate mitochondrial membrane potential in whole cells. In the case of quercetin, the effect is potentiated post hypoxia. Genetically encoded Ca++ sensors, targeted to the mitochondria, enabled the use of fluorescence microscopy to show that quercetin decreased mitochondrial [Ca++] while dehydrosilybin did not. Likewise, quercetin decreases accumulation of [Ca++] in mitochondria following hypoxia. Fluorescent probes were used to show that both compounds decrease plasma membrane potential and increase cytosolic [Ca++]. We conclude that the uncoupler-like effects of these polyphenols are attenuated in whole cells compared to isolated mitochondria, but downstream effects are nevertheless apparent. Results suggest that the effect of quercetin observed in whole and permeabilised cells may originate in the mitochondria, while the mechanism of action of cardioprotection by dehydrosilybin may be less dependent on mitochondrial uncoupling than originally thought. Rather, protective effects may originate due to interactions at the plasma membrane.


Assuntos
Quercetina/farmacologia , Silimarina/farmacologia , Animais , Cálcio/metabolismo , Linhagem Celular , Digitonina/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia Confocal , Microscopia de Fluorescência , Translocases Mitocondriais de ADP e ATP/metabolismo
14.
Biochim Biophys Acta Biomembr ; 1859(12): 2516-2525, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28947142

RESUMO

OSW-1 is a structurally unique steroidal saponin isolated from the bulbs of Ornithogalum saundersiae, and has exhibited highly potent and selective cytotoxicity in tumor cell lines. This study aimed to investigate the molecular mechanism for the membrane-permeabilizing activity of OSW-1 in comparison with those of other saponins by using various spectroscopic approaches. The membrane effects and hemolytic activity of OSW-1 were markedly enhanced in the presence of membrane cholesterol. Binding affinity measurements using fluorescent cholestatrienol and solid-state NMR spectroscopy of a 3-d-cholesterol probe suggested that OSW-1 interacts with membrane cholesterol without forming large aggregates while 3-O-glycosyl saponin, digitonin, forms cholesterol-containing aggregates. The results suggest that OSW-1/cholesterol interaction is likely to cause membrane permeabilization and pore formation without destroying the whole membrane integrity, which could partly be responsible for its highly potent cell toxicity.


Assuntos
Colestenonas/farmacologia , Colesterol/química , Membrana Eritrocítica/efeitos dos fármacos , Lipídeos de Membrana/química , Ornithogalum/química , Saponinas/farmacologia , Antineoplásicos Fitogênicos , Transporte Biológico/efeitos dos fármacos , Colestenonas/química , Colestenonas/isolamento & purificação , Digitonina/farmacologia , Dimiristoilfosfatidilcolina/química , Membrana Eritrocítica/química , Fluoresceínas/química , Ácido Glicirrízico/farmacologia , Hemólise/efeitos dos fármacos , Humanos , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Fosfatidilcolinas/química , Saponinas/química , Saponinas/isolamento & purificação , Lipossomas Unilamelares/química , beta-Ciclodextrinas/farmacologia
15.
Elife ; 52016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27602576

RESUMO

Stress granules are non-membrane bound RNA-protein (RNP) assemblies that form when translation initiation is limited and contain a biphasic structure with stable core structures surrounded by a less concentrated shell. The order of assembly and disassembly of these two structures remains unknown. Time course analysis of granule assembly suggests that core formation is an early event in granule assembly. Stress granule disassembly is also a stepwise process with shell dissipation followed by core clearance. Perturbations that alter liquid-liquid phase separations (LLPS) driven by intrinsically disordered protein regions (IDR) of RNA binding proteins in vitro have the opposite effect on stress granule assembly in vivo. Taken together, these observations argue that stress granules assemble through a multistep process initiated by stable assembly of untranslated mRNPs into core structures, which could provide sufficient high local concentrations to allow for a localized LLPS driven by IDRs on RNA binding proteins.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , RNA Mensageiro/genética , Ribonucleoproteínas/genética , Saccharomyces cerevisiae/genética , Arsenitos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cicloeximida/farmacologia , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/ultraestrutura , Digitonina/farmacologia , Glicóis/farmacologia , Células HeLa , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Iniciação Traducional da Cadeia Peptídica/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Compostos de Sódio/farmacologia , Estresse Fisiológico , Fatores de Tempo
16.
J Cell Sci ; 129(15): 2905-11, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27284005

RESUMO

The transport of macromolecules into the nucleus is mediated by soluble cellular receptors of the importin ß superfamily and requires the Ran-GTPase cycle. Several studies have provided evidence that there are exceptions to this canonical nuclear import pathway. Here, we report a new unconventional nuclear import mechanism exploited by the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). We found that AcMNPV nucleocapsids entered the nucleus of digitonin-permeabilized cells in the absence of exogenous cytosol or under conditions that blocked the Ran-GTPase cycle. AcMNPV contains a protein that activates the Arp2/3 complex and induces actin polymerization at one end of the rod-shaped nucleocapsid. We show that inhibitors of Arp2/3 blocked nuclear import of nucleocapsids in semi-permeabilized cells. Nuclear import of nucleocapsids was also reconstituted in purified nuclei supplemented with G-actin and Arp2/3 under actin polymerization conditions. Thus, we propose that actin polymerization drives not only migration of baculovirus through the cytoplasm but also pushes the nucleocapsid through the nuclear pore complex to enter the cell nucleus. Our findings point to a very distinct role of actin-based motility during the baculovirus infection cycle.


Assuntos
Actinas/metabolismo , Baculoviridae/metabolismo , Núcleo Celular/metabolismo , Nucleocapsídeo/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Baculoviridae/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Citosol/efeitos dos fármacos , Citosol/metabolismo , Digitonina/farmacologia , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Células HeLa , Humanos , Poro Nuclear/metabolismo , Nucleocapsídeo/efeitos dos fármacos , Nucleopoliedrovírus/efeitos dos fármacos , Nucleopoliedrovírus/metabolismo , Polimerização/efeitos dos fármacos , Quinazolinas/farmacologia , Proteína ran de Ligação ao GTP/metabolismo
17.
Exp Parasitol ; 165: 7-15, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26968775

RESUMO

Trypanosoma evansi is a monomorphic protist that can infect horses and other animal species of economic importance for man. Like the bloodstream form of the closely related species Trypanosoma brucei, T. evansi depends exclusively on glycolysis for its free-energy generation. In T. evansi as in other kinetoplastid organisms, the enzymes of the major part of the glycolytic pathway are present within organelles called glycosomes, which are authentic but specialized peroxisomes. Since T. evansi does not undergo stage-dependent differentiations, it occurs only as bloodstream forms, it has been assumed that the metabolic pattern of this parasite is identical to that of the bloodstream form of T. brucei. However, we report here the presence of two additional enzymes, phosphoenolpyruvate carboxykinase and PPi-dependent pyruvate phosphate dikinase in T. evansi glycosomes. Their colocalization with glycolytic enzymes within the glycosomes of this parasite has not been reported before. Both enzymes can make use of PEP for contributing to the production of ATP within the organelles. The activity of these enzymes in T. evansi glycosomes drastically changes the model assumed for the oxidation of glucose by this parasite.


Assuntos
Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Piruvato Ortofosfato Diquinase/metabolismo , Trypanosoma/enzimologia , Animais , Digitonina/farmacologia , Glucosefosfato Desidrogenase/isolamento & purificação , Glucosefosfato Desidrogenase/metabolismo , Glicólise , Hexoquinase/isolamento & purificação , Hexoquinase/metabolismo , Cavalos , Indicadores e Reagentes/farmacologia , Malato Desidrogenase/isolamento & purificação , Malato Desidrogenase/metabolismo , Camundongos , Microcorpos/enzimologia , Microscopia de Fluorescência , Permeabilidade/efeitos dos fármacos , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/isolamento & purificação , Fosfoglicerato Quinase/isolamento & purificação , Fosfoglicerato Quinase/metabolismo , Fosfopiruvato Hidratase/isolamento & purificação , Fosfopiruvato Hidratase/metabolismo , Piruvato Ortofosfato Diquinase/isolamento & purificação , Coelhos , Ratos , Ratos Wistar , Trypanosoma/efeitos dos fármacos
18.
Biochim Biophys Acta ; 1858(1): 116-22, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26518518

RESUMO

Membranes prepared from rat brain were treated with increasing concentrations of cationic, neutral, anionic and zwitterionic surfactants. Potent inactivation of [(3)H]MK-801 binding to NMDA receptors (NRs) was provided by the cation cetyl pyridinium (IC50 25 µM) and the neutral digitonin (IC50 37 µM). A 2 h incubation of rat brain membranes at 24°C with 100 µM of the neutral Triton X-100 resulted in about 50% reversible inhibition (without inactivation). Reversible inhibition was also effected by the anion deoxycholate (IC50 700 µM), and by the zwitterions N-lauryl sulfobetaine (12-SB(±), 400 µM) and CHAPS (1.5 mM), with inactivation at higher concentrations. Keeping the NR cation channel in the closed state significantly protected against inactivation by cations and by 12-SB(±), but not by the other detergents. Inactivation depended differentially on the amount of the membranes, on the duration of the treatment, and on the temperature. Varying the amount of membranes by a factor 8 yielded for cetyl trimethylammonium (16-NMe3(+)) IC50s of inactivation from 10 to 80 µM, while for deoxycholate the IC50 of inactivation was 1.2 mM for all tissue quantities. Some compounds inactivated within a few min (16-NMe3(+), digitonin, CHAPS), while inactivation by others took at least half an hour (Triton X-100, deoxycholate, 12-SB(±)). These last 3 ones also exhibited the steepest temperature dependence. Knowledge about the influence of various parameters is helpful in selecting appropriate conditions allowing the treatment of brain membranes with amphiphiles without risking irreversible inactivation.


Assuntos
Membrana Celular/efeitos dos fármacos , Detergentes/química , Maleato de Dizocilpina/química , Antagonistas de Aminoácidos Excitatórios/química , Receptores de N-Metil-D-Aspartato/química , Animais , Membrana Celular/química , Córtex Cerebral/química , Cetrimônio , Compostos de Cetrimônio/química , Compostos de Cetrimônio/farmacologia , Ácidos Cólicos/química , Ácidos Cólicos/farmacologia , Ácido Desoxicólico/química , Ácido Desoxicólico/farmacologia , Detergentes/farmacologia , Digitonina/química , Digitonina/farmacologia , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/química , Masculino , Octoxinol/química , Octoxinol/farmacologia , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
19.
Molecules ; 20(11): 20146-60, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26569199

RESUMO

In the present investigation we studied the molecular mechanisms of the monodesmosidic saponin digitonin on natural and artificial membranes. We measured the hemolytic activity of digitonin on red blood cells (RBCs). Also different lipid membrane models (large unilamellar vesicles, LUVs, and giant unilamellar vesicles, GUVs) in the presence and absence of cholesterol were employed. The stability and permeability of the different vesicle systems were studied by using calcein release assay, GUVs membrane permeability assay using confocal microscopy (CM) and fluorescence correlation spectroscopy (FCS) and vesicle size measurement by dynamic light scattering (DLS). The results support the essential role of cholesterol in explaining how digitonin can disintegrate biological and artificial membranes. Digitonin induces membrane permeability or causes membrane rupturing only in the presence of cholesterol in an all-or-none mechanism. This effect depends on the concentrations of both digitonin and cholesterol. At low concentrations, digitonin induces membrane permeability while keeping the membrane intact. When digitonin is combined with other drugs, a synergistic potentiation can be observed because it facilitates their uptake.


Assuntos
Membrana Celular/química , Colesterol/química , Digitonina/química , Saponinas/química , Esteroides/química , Animais , Permeabilidade da Membrana Celular/efeitos dos fármacos , Colesterol/metabolismo , Digitonina/farmacologia , Eritrócitos/efeitos dos fármacos , Fluoresceínas/metabolismo , Hemólise/efeitos dos fármacos , Bicamadas Lipídicas/química , Ovinos
20.
Plant Cell ; 27(11): 3213-27, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26508763

RESUMO

Two LHC-like proteins, Photosystem II Subunit S (PSBS) and Light-Harvesting Complex Stress-Related (LHCSR), are essential for triggering excess energy dissipation in chloroplasts of vascular plants and green algae, respectively. The mechanism of quenching was studied in Physcomitrella patens, an early divergent streptophyta (including green algae and land plants) in which both proteins are active. PSBS was localized in grana together with photosystem II (PSII), but LHCSR was located mainly in stroma-exposed membranes together with photosystem I (PSI), and its distribution did not change upon high-light treatment. The quenched conformation can be preserved by rapidly freezing the high-light-treated tissues in liquid nitrogen. When using green fluorescent protein as an internal standard, 77K fluorescence emission spectra on isolated chloroplasts allowed for independent assessment of PSI and PSII fluorescence yield. Results showed that both photosystems underwent quenching upon high-light treatment in the wild type in contrast to mutants depleted of LHCSR, which lacked PSI quenching. Due to the contribution of LHCII, P. patens had a PSI antenna size twice as large with respect to higher plants. Thus, LHCII, which is highly abundant in stroma membranes, appears to be the target of quenching by LHCSR.


Assuntos
Bryopsida/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Bryopsida/efeitos dos fármacos , Bryopsida/efeitos da radiação , Bryopsida/ultraestrutura , Catálise/efeitos dos fármacos , Clorofila/metabolismo , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Digitonina/farmacologia , Glucosídeos/farmacologia , Luz , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/efeitos da radiação , Processos Fotoquímicos/efeitos dos fármacos , Espectrometria de Fluorescência , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/efeitos da radiação , Termodinâmica , Tilacoides/metabolismo , Tilacoides/efeitos da radiação , Tilacoides/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...