Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oral Dis ; 24(5): 820-828, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29356306

RESUMO

OBJECTIVE: Little consistent evidence is available for the association between the risk of non-syndromic cleft lip with or without cleft palate (NSCL/P) and any of the individual genes in the folate/homocysteine metabolic pathway. We investigated the genes in the folate pathway to further clarify its potential influence on the risk of NSCL/P considering gene-gene (G×G) interaction. SUBJECTS AND METHODS: We selected markers in 18 genes from the pathway and applied Cordell's method to test for G×G interaction using 1,908 NSCL/P case-parent trios ascertained in an international consortium where a genomewide association study (GWAS) of oral clefts was conducted. RESULTS: We found intriguing signals among Asian and European ancestry groups for G×G interaction between markers in betaine-homocysteine methyltransferase gene (BHMT/BHMT2) and dimethylglycine dehydrogenase gene (DMGDH) attaining genomewide significance. In the pooled data, the top significant interaction was found between rs13158309 (BHMT) and rs10514154 (DMGDH, p = 1.45 × 10-12 ). CONCLUSIONS: Our study illustrated the importance of taking into account potential G×G interaction for genetic association analysis in NSCL/P, and this study suggested both BHMT/BHMT2 and DMGDH should be considered as candidate genes for NSCL/P in future studies.


Assuntos
Betaína-Homocisteína S-Metiltransferase/genética , Fenda Labial/genética , Fissura Palatina/genética , Dimetilglicina Desidrogenase/genética , Epistasia Genética , Proteínas Mitocondriais/genética , Povo Asiático/genética , Ácido Fólico/metabolismo , Estudo de Associação Genômica Ampla , Homocisteína/metabolismo , Humanos , Desequilíbrio de Ligação , Redes e Vias Metabólicas , Polimorfismo de Nucleotídeo Único , Fatores de Risco , População Branca/genética
2.
Liver Int ; 37(4): 611-619, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27614103

RESUMO

BACKGROUND AND AIMS: Nonalcoholic fatty liver disease (NAFLD) develops from a complex process, which includes changes in the liver methylome. Betaine plays a pivotal role in the regulation of methylogenesis. We performed a two-stage case-control study, which included patients with biopsy-proven NAFLD to explore circulating levels of betaine and its association with the histological spectrum. We also explored the association between a missense rs1805074, p.Ser646Pro variant in DMGDH (dimethylglycine dehydrogenase mitochondrial) and NAFLD severity (n=390). RESULTS: In the discovery phase (n=48), betaine levels were associated with the disease severity (P=.0030), including liver inflammation (Spearman R:-0.51, P=.001), ballooning degeneration (R: -0.50, P=.01) and fibrosis (R: -0.54, P=.0008). Betaine levels were significantly decreased in nonalcoholic steatohepatitis (NASH) in comparison with nonalcoholic fatty liver (NAFL). Further replication (n=51) showed that betaine levels were associated with advanced NAFLD (P=.0085), and patients with NASH had a 1.26-fold decrease in betaine levels compared with those with NAFL. The rs1805074 was significantly associated with the disease severity (P=.011). CONCLUSION: NAFLD severity is associated with a state of betaine-insufficiency.


Assuntos
Betaína/sangue , Dimetilglicina Desidrogenase/genética , Progressão da Doença , Proteínas Mitocondriais/genética , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/genética , Adulto , Argentina , Biomarcadores , Estudos de Casos e Controles , Fígado Gorduroso/patologia , Feminino , Fibrose , Humanos , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Hepatopatia Gordurosa não Alcoólica/patologia , Análise de Regressão , Índice de Gravidade de Doença
3.
FEBS J ; 283(19): 3587-3603, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27486859

RESUMO

The human dimethylglycine dehydrogenase (hDMGDH) is a flavin adenine dinucleotide (FAD)- and tetrahydrofolate (THF)-dependent, mitochondrial matrix enzyme taking part in choline degradation, one-carbon metabolism and electron transfer to the respiratory chain. The rare natural variant H109R causes dimethylglycine dehydrogenase deficiency leading to increased blood and urinary dimethylglycine concentrations. A detailed biochemical and structural characterization of hDMGDH was thus far hampered by insufficient heterologous expression of the protein. In the present study, we report the development of an intracellular, heterologous expression system in Komagataella phaffii (formerly known as Pichia pastoris) providing the opportunity to determine kinetic parameters, spectroscopic properties, thermostability, and the redox potential of hDMGDH. Moreover, we have successfully crystallized the wild-type enzyme and determined the structure to 3.1-Å resolution. The structure-based analysis of our biochemical data provided new insights into the kinetic properties of the enzyme in particular with respect to oxygen reactivity. A comparative study with the H109R variant demonstrated that the variant suffers from decreased protein stability, cofactor saturation, and substrate affinity. DATABASE: Structural data are available in the PDB database under the accession number 5L46.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Dimetilglicina Desidrogenase/química , Dimetilglicina Desidrogenase/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Mutação Puntual , Dimetilglicina Desidrogenase/isolamento & purificação , Dimetilglicina Desidrogenase/metabolismo , Humanos , Cinética , Proteínas Mitocondriais/isolamento & purificação , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Oxirredução , Domínios Proteicos , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
4.
Am J Clin Nutr ; 103(1): 100-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26675765

RESUMO

BACKGROUND: Low selenium status in pregnancy has been associated with a number of adverse conditions. In nonpregnant populations, the selenium status or response to supplementation has been associated with polymorphisms in dimethylglycine dehydrogenase (DMGDH), selenoprotein P (SEPP1) and the glutathione peroxidases [cytosolic glutathione peroxidase (GPx1) and phospholipid glutathione peroxidase (GPx4)]. OBJECTIVE: We hypothesized that, in pregnant women, these candidate polymorphisms would be associated with selenium status in early pregnancy, its longitudinal change, and the interindividual response to selenium supplementation at 60 µg/d. DESIGN: With the use of stored samples and data from the United Kingdom Selenium in Pregnancy Intervention (SPRINT) study in 227 pregnant women, we carried out genetic-association studies, testing for associations between selenium status, its longitudinal change, and response to supplementation and common genetic variation in DMGDH (rs921943), SEPP1 (rs3877899 and rs7579), GPx1 (rs1050450) and GPx4 (rs713041). Selenium status was represented by the concentration of whole-blood selenium at 12 and 35 wk of gestation, the concentration of toenail selenium at 16 wk of gestation, and plasma glutathione peroxidase (GPx3) activity at 12 and 35 wk of gestation. RESULTS: Our results showed that DMGDH rs921943 was significantly associated with the whole-blood selenium concentration at 12 wk of gestation (P = 0.032), which explained ≤2.0% of the variance. This association was replicated with the use of toenail selenium (P = 0.043). In unsupplemented women, SEPP1 rs3877899 was significantly associated with the percentage change in whole-blood selenium from 12 to 35 wk of gestation (P = 0.005), which explained 8% of the variance. In supplemented women, SEPP1 rs3877899 was significantly associated with the percentage change in GPx3 activity from 12 to 35 wk of gestation (P = 0.01), which explained 5.3% of the variance. Selenium status was not associated with GPx1, GPx4, or SEPP1 rs7579. CONCLUSIONS: In agreement with previous studies, we show that the genetic variant rs921943 in DMGDH is significantly associated with selenium status in United Kingdom pregnant women. Notably, our study shows that women who carry the SEPP1 rs3877899 A allele are better able to maintain selenium status during pregnancy, and their GPx3 activity increases more with supplementation, which suggests better protection from low selenium status. The SPRINT study was registered at www.isrctn.com as ISRCTN37927591.


Assuntos
Deficiências Nutricionais/genética , Suplementos Nutricionais , Dimetilglicina Desidrogenase/genética , Estado Nutricional/genética , Polimorfismo de Nucleotídeo Único , Selênio/sangue , Selenoproteína P/genética , Deficiências Nutricionais/prevenção & controle , Feminino , Estudos de Associação Genética , Glutationa Peroxidase/genética , Humanos , Unhas/metabolismo , Gravidez , Complicações na Gravidez/genética , Complicações na Gravidez/prevenção & controle , Selênio/deficiência , Selênio/metabolismo , Selênio/uso terapêutico , Reino Unido
5.
Diabetes ; 64(8): 3010-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25795213

RESUMO

Experimental studies have suggested possible protective effects of dimethylglycine (DMG) on glucose metabolism. DMG is degraded to glycine through a DMG-dehydrogenase (DMGDH)-catalyzed reaction, and this is the only known pathway for the breakdown of DMG in mammals. In this study, we aimed to identify the strongest genetic determinant of circulating DMG concentration and to investigate its associations with metabolic traits and incident diabetes. In the cohort with full metabolomics data (n = 709), low plasma levels of DMG were significantly associated with higher blood glucose levels (P = 3.9E(-4)). In the genome-wide association study (GWAS) of the discovery cohort (n = 5,205), the strongest genetic signal of plasma DMG was conferred by rs2431332 at the DMGDH locus, where the major allele was associated with lower DMG levels (P = 2.5E(-15)). The same genetic variant (major allele of rs2431332) was also significantly associated with higher plasma insulin (P = 0.019), increased HOMA insulin resistance (P = 0.019), and an increased risk of incident diabetes (P = 0.001) in the pooled analysis of the discovery cohort together with the two replication cohorts (n = 20,698 and n = 7,995). These data are consistent with a possible causal role of DMG deficiency in diabetes development and encourage future studies examining if inhibition of DMGDH, or alternatively, supplementation of DMG, might prove useful for the treatment/prevention of diabetes.


Assuntos
Alelos , Diabetes Mellitus Tipo 2/genética , Dimetilglicina Desidrogenase/genética , Resistência à Insulina/genética , Metaboloma/genética , Sarcosina/análogos & derivados , Idoso , Diabetes Mellitus Tipo 2/sangue , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Insulina/sangue , Masculino , Pessoa de Meia-Idade , Sarcosina/sangue
6.
Eur J Oral Sci ; 118(4): 325-32, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20662904

RESUMO

Nonsyndromic cleft lip with or without cleft palate (NCL/P) is one of the most common craniofacial malformations; however, its aetiology is still unclear. Because the effects of maternal nutrition on fetal development are well known, we decided to pursue the question of whether polymorphic variants of genes encoding enzymes involved in choline metabolism might be associated with the maternal risk of having a baby with NCL/P. Analysis of 18 single nucleotide polymorphisms (SNPs) of betaine-homocysteine methyltransferase (BHMT), betaine-homocysteine methyltransferase-2 (BHMT2), choline dehydrogenase (CHDH), choline kinase (CHKA), dimethylglycine dehydrogenase (DMGDH), choline-phosphate cytidylyltransferase A (PCYT1A), and phosphatidylethanolamine N-methyltransferase (PEMT) provided evidence that polymorphisms located in the region containing BHMT and BHMT2 were protective factors against NCL/P affected pregnancies in our population. The strongest signal was found for the SNP located in the intronic sequence of BHMT2. Women carrying two copies of the rs625879 T allele had a significantly decreased risk of having offspring with orofacial clefts. These results were significant, even after correction for multiple comparisons. Moreover, the gene-gene interaction analysis revealed a significant epistatic interaction of BHMT2 (rs673752), PEMT (rs12325817), and PCYT1A (rs712012) with maternal NCL/P susceptibility. Altogether, our study identified a novel gene, the nucleotide variants of which were be associated with a decreased risk of having a baby with NCL/P.


Assuntos
Betaína-Homocisteína S-Metiltransferase/genética , Fenda Labial/genética , Fissura Palatina/genética , Polimorfismo de Nucleotídeo Único/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , Alelos , Colina Desidrogenase/genética , Colina Quinase/genética , Colina-Fosfato Citidililtransferase/genética , Cromossomos Humanos Par 5/genética , Dimetilglicina Desidrogenase/genética , Epistasia Genética/genética , Feminino , Frequência do Gene/genética , Predisposição Genética para Doença , Homozigoto , Humanos , Íntrons/genética , Desequilíbrio de Ligação/genética , Proteínas Mitocondriais/genética , Fosfatidiletanolamina N-Metiltransferase/genética , Medição de Risco , Timina
7.
J Inherit Metab Dis ; 31(6): 761-8, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18937046

RESUMO

Dimethylglycine dehydrogenase (DMGDH) is a mitochondrial matrix flavoprotein that catalyses the demethylation of dimethylglycine to form sarcosine, accompanied by the reduction of the covalently bound FAD cofactor. Electron-transfer flavoprotein reoxidizes the reduced flavin and transfers reducing equivalents to the main mitochondrial respiratory chain through the enzyme ETF-ubiquinone oxidoreductase. DMGDH plays a prominent role in choline and 1-carbon metabolism. We have expressed the mature form of human DMGDH and the H109R variant identified in a DMGDH-deficient patient as N-terminally His(6)-tagged proteins in E. coli. The enzymes were purified to homogeneity by nickel affinity and anion exchange chromatography. The presence of FAD in the wild-type enzyme was confirmed by spectrophotometric analysis. The H109R variant, however, had only 47% of the wild-type level of bound flavin as expressed in E. coli, indicating its reduced affinity for FAD As previously described for rat enzyme studies, the wild-type human enzyme exhibited two K (m) values for N,N-dimethylglycine (K (m1) = 0.039 +/- 0.010 mmol/L and K(m2) = 15.4 +/- 1.2 mmol/L). The addition of 4 micromol/L tetrahydrofolate resulted in a slight decrease in specific activity and a substantial decrease in K (m2) (1.10 +/- 0.55 mmol/L). The flavinated H109R variant protein exhibited a 27-fold decrease in specific activity and a 65-fold increase in K (m), explaining its pathogenicity. Additionally, the current expression system represents a significant improvement over a previously described rat DMGDH expression system and will enhance our ability to further study this important metabolic enzyme.


Assuntos
Dimetilglicina Desidrogenase/deficiência , Dimetilglicina Desidrogenase/genética , Erros Inatos do Metabolismo/genética , Cromatografia por Troca Iônica/métodos , Dimetilglicina Desidrogenase/química , Relação Dose-Resposta a Droga , Elétrons , Flavina-Adenina Dinucleotídeo/metabolismo , Flavoproteínas/metabolismo , Humanos , Cinética , Erros Inatos do Metabolismo/diagnóstico , Modelos Químicos , Mutação , Oxigênio/metabolismo , Proteínas Recombinantes/metabolismo , Sarcosina Desidrogenase/metabolismo , Espectrofotometria/métodos
8.
J Biol Chem ; 283(45): 30707-14, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-18782777

RESUMO

The ischemic death of cardiomyocytes is associated in heart disease and heart failure. However, the molecular mechanism underlying ischemic cell death is not well defined. To examine the function of apoptosis repressor with a caspase recruitment domain (ARC) in the ischemic/hypoxic damage of cardiomyocytes, we generated cardio-specific ARC transgenic mice using a mouse alpha-myosin heavy chain promoter. Compared with the control, the hearts of ARC transgenic mice showed a 3-fold overexpression of ARC. Langendoff preparation showed that the hearts isolated from ARC transgenic mice exhibited improved recovery of contractile performance during reperfusion. The cardiomyocytes cultured from neonatal ARC transgenic mice were significantly resistant to hypoxic cell death. Furthermore, the ARC C-terminal calcium-binding domain was as potent to protect cardiomyocytes from hypoxic cell death as ARC. Genome-wide RNA expression profiling uncovered a list of genes whose expression was changed (>2-fold) in ARC transgenic mice. Among them, expressional regulation of developmentally regulated RNA-binding protein 1 (Drbp1) or the dimethylglycine dehydrogenase precursor (pMe(2)GlyDH) affected hypoxic death of cardiomyocytes. These results suggest that ARC may protect cardiomyocytes from hypoxic cell death by regulating its downstream, Drbp1 and pMe(2)GlyDH, shedding new insights into the protection of heart from hypoxic damages.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Dimetilglicina Desidrogenase/biossíntese , Precursores Enzimáticos/biossíntese , Proteínas Mitocondriais/biossíntese , Proteínas Musculares/biossíntese , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/biossíntese , Animais , Morte Celular/genética , Hipóxia Celular/genética , Proteínas do Citoesqueleto/genética , Dimetilglicina Desidrogenase/genética , Precursores Enzimáticos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Camundongos , Camundongos Transgênicos , Proteínas Mitocondriais/genética , Proteínas Musculares/genética , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/patologia , Proteínas do Tecido Nervoso/genética , Especificidade de Órgãos/genética , Estrutura Terciária de Proteína/genética , Proteínas de Ligação a RNA/genética
9.
Int J Biol Macromol ; 42(5): 455-62, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18423846

RESUMO

The precursor of the rat mitochondrial flavoenzyme dimethylglycine dehydrogenase (Me(2)GlyDH) has been produced in Escherichia coli as a C-terminally 6-His-tagged fusion protein, purified by one-step affinity chromatography and identified by ESI-MS/MS. It was correctly processed into its mature form upon incubation with solubilized rat liver mitoplasts. The purified precursor was mainly in its apo-form as demonstrated by immunological and fluorimetric detection of covalently bound flavin adenine dinucleotide (FAD). Results described here definitively demonstrate that: (i) covalent attachment of FAD to Me(2)GlyDH apoenzyme can proceed in vitro autocatalytically, without third reactants; (ii) the removal of mitochondrial presequence by mitochondrial processing peptidase is not required for covalent autoflavinylation.


Assuntos
Dimetilglicina Desidrogenase/isolamento & purificação , Dimetilglicina Desidrogenase/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/isolamento & purificação , Proteínas Mitocondriais/metabolismo , Sequência de Aminoácidos , Animais , Catálise , Clonagem Molecular , Dimetilglicina Desidrogenase/química , Dimetilglicina Desidrogenase/genética , Expressão Gênica , Espectrometria de Massas , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...