Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 654
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(20): e2402180121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38717859

RESUMO

Membrane tubulation coupled with fission (MTCF) is a widespread phenomenon but mechanisms for their coordination remain unclear, partly because of the lack of assays to monitor dynamics of membrane tubulation and subsequent fission. Using polymer cushioned bilayer islands, we analyze the membrane tubulator Bridging Integrator 1 (BIN1) mixed with the fission catalyst dynamin2 (Dyn2). Our results reveal this mixture to constitute a minimal two-component module that demonstrates MTCF. MTCF is an emergent property and arises because BIN1 facilitates recruitment but inhibits membrane binding of Dyn2 in a dose-dependent manner. MTCF is therefore apparent only at high Dyn2 to BIN1 ratios. Because of their mutual involvement in T-tubules biogenesis, mutations in BIN1 and Dyn2 are associated with centronuclear myopathies and our analysis links the pathology with aberrant MTCF. Together, our results establish cushioned bilayer islands as a facile template for the analysis of membrane tubulation and inform of mechanisms that coordinate MTCF.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Dinamina II , Proteínas Supressoras de Tumor , Dinamina II/metabolismo , Dinamina II/genética , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Membrana Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Dinâmica Mitocondrial/fisiologia , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/metabolismo
2.
J Orthop Surg Res ; 19(1): 321, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812038

RESUMO

BACKGROUND: The larval zebrafish tail fin can completely regenerate in 3 days post amputation. mTOR, the main regulator of cell growth and metabolism, plays an essential role in regeneration. Lots of studies have documented the role of mTOR in regeneration. However, the mechanisms involved are still not fully elucidated. MATERIALS AND RESULTS: This study aimed to explore the role and mechanism of mTOR in the regeneration of larval zebrafish tail fins. Initially, the spatial and temporal expression of mTOR signaling in the larval fin was examined, revealing its activation following tail fin amputation. Subsequently, a mTOR knockout (mTOR-KO) zebrafish line was created using CRISPR/Cas9 gene editing technology. The investigation demonstrated that mTOR depletion diminished the proliferative capacity of epithelial and mesenchymal cells during fin regeneration, with no discernible impact on cell apoptosis. Insight from SMART-seq analysis uncovered alterations in the cell cycle, mitochondrial functions and metabolic pathways when mTOR signaling was suppressed during fin regeneration. Furthermore, mTOR was confirmed to enhance mitochondrial functions and Ca2 + activation following fin amputation. These findings suggest a potential role for mTOR in promoting mitochondrial fission to facilitate tail fin regeneration. CONCLUSION: In summary, our results demonstrated that mTOR played a key role in larval zebrafish tail fin regeneration, via promoting mitochondrial fission and proliferation of blastema cells.


Assuntos
Nadadeiras de Animais , Proliferação de Células , Larva , Mitocôndrias , Regeneração , Serina-Treonina Quinases TOR , Cauda , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Regeneração/genética , Regeneração/fisiologia , Proliferação de Células/genética , Nadadeiras de Animais/fisiologia , Proteínas de Peixe-Zebra/genética , Cauda/fisiologia , Larva/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Transdução de Sinais/genética , Dinâmica Mitocondrial/genética , Dinâmica Mitocondrial/fisiologia
3.
Mil Med Res ; 11(1): 32, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812059

RESUMO

Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.


Assuntos
Mitocôndrias , Mitofagia , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Mitofagia/fisiologia , Mitofagia/efeitos dos fármacos , Dinâmica Mitocondrial/fisiologia
4.
Int J Cardiol ; 408: 132149, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723908

RESUMO

BACKGROUND: Ubiquitination is an enzymatic modification involving ubiquitin chains, that can be reversed by deubiquitination (DUB) enzymes. Ubiquitin-specific protease 7 (USP7), which is also known as herpes virus-associated ubiquitin-specific protease (HAUSP), has been shown to play a vital role in cardiovascular diseases. However, the underlying molecular mechanism by which USP7 regulates cardiomyocyte function has not been reported. METHODS: To understand the physiological function of USP7 in the heart, we constructed cardiomyocyte-specific USP7 conditional knockout mice. RESULTS: We found that homozygous knockout mice died approximately three weeks after birth, while heterozygous knockout mice grew normally into adulthood. Severe cardiac dysfunction, hypertrophy, fibrosis, and cell apoptosis were observed in cardiomyocyte-specific USP7 knockout mice, and these effects were accompanied by disordered mitochondrial dynamics and cardiometabolic-related proteins. CONCLUSIONS: In summary, we investigated changes in the growth status and cardiac function of cardiomyocyte-specific USP7 knockout mice, and preliminarily explored the underlying mechanism.


Assuntos
Animais Recém-Nascidos , Camundongos Knockout , Miócitos Cardíacos , Peptidase 7 Específica de Ubiquitina , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Camundongos , Peptidase 7 Específica de Ubiquitina/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Biogênese de Organelas , Dinâmica Mitocondrial/fisiologia , Dinâmica Mitocondrial/genética
5.
PLoS Biol ; 22(4): e3002602, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38669296

RESUMO

Mitofusins are large GTPases that trigger fusion of mitochondrial outer membranes. Similarly to the human mitofusin Mfn2, which also tethers mitochondria to the endoplasmic reticulum (ER), the yeast mitofusin Fzo1 stimulates contacts between Peroxisomes and Mitochondria when overexpressed. Yet, the physiological significance and function of these "PerMit" contacts remain unknown. Here, we demonstrate that Fzo1 naturally localizes to peroxisomes and promotes PerMit contacts in physiological conditions. These contacts are regulated through co-modulation of Fzo1 levels by the ubiquitin-proteasome system (UPS) and by the desaturation status of fatty acids (FAs). Contacts decrease under low FA desaturation but reach a maximum during high FA desaturation. High-throughput genetic screening combined with high-resolution cellular imaging reveal that Fzo1-mediated PerMit contacts favor the transit of peroxisomal citrate into mitochondria. In turn, citrate enters the TCA cycle to stimulate the mitochondrial membrane potential and maintain efficient mitochondrial fusion upon high FA desaturation. These findings thus unravel a mechanism by which inter-organelle contacts safeguard mitochondrial fusion.


Assuntos
Mitocôndrias , Dinâmica Mitocondrial , Peroxissomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Peroxissomos/metabolismo , Dinâmica Mitocondrial/fisiologia , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ácidos Graxos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ciclo do Ácido Cítrico , Potencial da Membrana Mitocondrial/fisiologia , Membranas Mitocondriais/metabolismo , Humanos
6.
Neurosci Biobehav Rev ; 161: 105685, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670299

RESUMO

Alzheimer's Disease (AD) remains a formidable challenge due to its complex pathology, notably involving mitochondrial dysfunction and dysregulated microRNA (miRNA) signaling. This study delves into the underexplored realm of miRNAs' impact on mitochondrial dynamics and their interplay with amyloid-beta (Aß) aggregation and tau pathology in AD. Addressing identified gaps, our research utilizes advanced molecular techniques and AD models, alongside patient miRNA profiles, to uncover miRNAs pivotal in mitochondrial regulation. We illuminate novel miRNAs influencing mitochondrial dynamics, Aß, and tau, offering insights into their mechanistic roles in AD progression. Our findings not only enhance understanding of AD's molecular underpinnings but also spotlight miRNAs as promising therapeutic targets. By elucidating miRNAs' roles in mitochondrial dysfunction and their interactions with hallmark AD pathologies, our work proposes innovative strategies for AD therapy, aiming to mitigate disease progression through targeted miRNA modulation. This contribution marks a significant step toward novel AD treatments, emphasizing the potential of miRNAs in addressing this complex disease.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , MicroRNAs , Microglia , Dinâmica Mitocondrial , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Humanos , Peptídeos beta-Amiloides/metabolismo , Dinâmica Mitocondrial/fisiologia , Animais , Microglia/metabolismo , Transdução de Sinais/fisiologia
7.
Curr Biol ; 34(9): 1904-1917.e6, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38642548

RESUMO

Neurons have differential and fluctuating energy needs across distinct cellular compartments, shaped by brain electrochemical activity associated with cognition. In vitro studies show that mitochondria transport from soma to axons is key to maintaining neuronal energy homeostasis. Nevertheless, whether the spatial distribution of neuronal mitochondria is dynamically adjusted in vivo in an experience-dependent manner remains unknown. In Drosophila, associative long-term memory (LTM) formation is initiated by an early and persistent upregulation of mitochondrial pyruvate flux in the axonal compartment of neurons in the mushroom body (MB). Through behavior experiments, super-resolution analysis of mitochondria morphology in the neuronal soma and in vivo mitochondrial fluorescence recovery after photobleaching (FRAP) measurements in the axons, we show that LTM induction, contrary to shorter-lived memories, is sustained by the departure of some mitochondria from MB neuronal soma and increased mitochondrial dynamics in the axonal compartment. Accordingly, impairing mitochondrial dynamics abolished the increased pyruvate consumption, specifically after spaced training and in the MB axonal compartment, thereby preventing LTM formation. Our results thus promote reorganization of the mitochondrial network in neurons as an integral step in elaborating high-order cognitive processes.


Assuntos
Axônios , Proteínas de Drosophila , Drosophila melanogaster , Memória de Longo Prazo , Mitocôndrias , Dinâmica Mitocondrial , Corpos Pedunculados , Animais , Memória de Longo Prazo/fisiologia , Dinâmica Mitocondrial/fisiologia , Axônios/metabolismo , Axônios/fisiologia , Corpos Pedunculados/fisiologia , Corpos Pedunculados/metabolismo , Drosophila melanogaster/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Neurônios/metabolismo , Neurônios/fisiologia
8.
Cell Death Dis ; 15(3): 184, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431611

RESUMO

Dynamin related protein 1 (DRP1), a pivotal mitochondrial fission protein, is post-translationally modified by multiple mechanisms. Here we identify a new post-translational modification of DRP1 by the ubiquitin-like protein, interferon-stimulated gene 15 (ISG15). DRP1 ISGylation is mediated by ISG15 E3 ligase, HERC5; this promotes mitochondrial fission. DeISGylation of DRP1 however leads to hyperfusion. Heterologous expression of SARS-CoV2 PLpro, a deISGylating enzyme, results in similar mitochondrial filamentation, significant decrease in total DRP1 protein levels and efflux of mtDNA. We report that deISGylated DRP1 gets ubiquitylated and degraded by TRIM25, instead of PARKIN and MITOL. While the cytosolic pool of DRP1 is primarily ISGylated, both mitochondrial and cytosolic fractions may be ubiquitylated. It is known that phosphorylation of DRP1 at S616 residue regulates its mitochondrial localisation; we show that ISGylation of phospho-DRP1 (S616) renders fission competence at mitochondria. This is significant because DRP1 ISGylation affects its functionality and mitochondrial dynamics in Alzheimer's disease pathophysiology.


Assuntos
Dinâmica Mitocondrial , RNA Viral , Dinâmica Mitocondrial/fisiologia , Dinaminas/genética , Dinaminas/metabolismo , Processamento de Proteína Pós-Traducional , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
9.
Open Biol ; 14(1): 230279, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38228170

RESUMO

Mitochondria, classically known as the powerhouse of cells, are unique double membrane-bound multifaceted organelles carrying a genome. Mitochondrial content varies between cell types and precisely doubles within cells during each proliferating cycle. Mitochondrial content also increases to a variable degree during cell differentiation triggered after exit from the proliferating cycle. The mitochondrial content is primarily maintained by the regulation of mitochondrial biogenesis, while damaged mitochondria are eliminated from the cells by mitophagy. In any cell with a given mitochondrial content, the steady-state mitochondrial number and shape are determined by a balance between mitochondrial fission and fusion processes. The increase in mitochondrial content and alteration in mitochondrial fission and fusion are causatively linked with the process of differentiation. Here, we critically review the quantitative aspects in the detection methods of mitochondrial content and shape. Thereafter, we quantitatively link these mitochondrial properties in differentiating cells and highlight the implications of such quantitative link on stem cell functionality. Finally, we discuss an example of cell size regulation predicted from quantitative analysis of mitochondrial shape and content. To highlight the significance of quantitative analyses of these mitochondrial properties, we propose three independent rationale based hypotheses and the relevant experimental designs to test them.


Assuntos
Mitocôndrias , Dinâmica Mitocondrial , Mitocôndrias/metabolismo , Diferenciação Celular , Dinâmica Mitocondrial/fisiologia
10.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167022, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38216068

RESUMO

BACKGROUND: CAMK1 has been shown to be involved in human disease progression via regulating mitochondrial dynamics. However, whether CAMK1 mediates mitochondrial dynamics to regulate diabetic nephropathy (DN) process remains unclear. METHODS: Mice were injected with streptozotocin (STZ) to mimic diabetic mice models in vivo, and mice with proximal tubule-specific knockout of CAMK1 (CAMK1-KO) were generated. HK-2 cells were treated with high-glucose (HG) to mimic DN cell model in vitro. Histopathological analysis was performed to confirm kidney injury in mice. ROS production and apoptosis were assessed by DHE staining and TUNEL staining. Mitochondria morphology was observed and analyzed by electron microscopy. Mitochondrial membrane potential was detected by JC-1 staining, and cell proliferation was measured by EdU assay. The mRNA and protein expression were examined by qRT-PCR, western blot and immunostaining. RNA interaction was confirmed by RIP assay and dual-luciferase reporter assay. The mRNA stability was tested by actinomycin D treatment, and m6A level was examined by MeRIP assay. RESULTS: CAMK1 was reduced in DN patients and STZ-induced diabetic mice. Conditional deletion of CAMK1 aggravated kidney injury and promoted mitochondrial fission in diabetic mice. CAMK1 overexpression inhibited mitochondrial fission to alleviate HG-induced HK-2 cell apoptosis. IGF2BP3 promoted the stability of CAMK1 mRNA by m6A modification. IGF2BP3 inhibited mitochondrial fission to repress cell apoptosis in vitro and kidney injury in vivo by increasing CAMK1 expression. CONCLUSION: IGF2BP3-mediated CAMK1 mRNA stability alleviated DN progression by inhibiting mitochondria fission.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Animais , Humanos , Camundongos , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/patologia , Túbulos Renais/patologia , Dinâmica Mitocondrial/fisiologia , RNA Mensageiro/metabolismo
11.
Biochem Soc Trans ; 52(1): 99-110, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38288744

RESUMO

Mitochondria are the powerhouse of the cell. They undergo fission and fusion to maintain cellular homeostasis. In this review, we explore the intricate regulation of mitochondrial fission at various levels, including the protein level, the post-translational modification level, and the organelle level. Malfunctions in mitochondrial fission can have detrimental effects on cells. Therefore, we also examine the association between mitochondrial fission with diseases such as breast cancer and cardiovascular disorders. We anticipate that a comprehensive investigation into the control of mitochondrial fission will pave the way for the development of innovative therapeutic strategies.


Assuntos
Doenças Cardiovasculares , Dinâmica Mitocondrial , Humanos , Dinâmica Mitocondrial/fisiologia , Mitocôndrias/metabolismo , Processamento de Proteína Pós-Traducional , Doenças Cardiovasculares/metabolismo , Proteínas Mitocondriais/metabolismo
12.
Int J Biochem Cell Biol ; 166: 106492, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37931682

RESUMO

Mitochondria are central cellular metabolic hubs. Their function requires proteins encoded by nuclear DNA, but also mitochondrial DNA (mtDNA) whose maintenance is essential for the proper function of the organelle. Defective mtDNA maintenance and distribution are associated with mitochondrial diseases. mtDNA is organized into nucleo-protein complexes called nucleoids that dynamically move along the mitochondrial network and interact with each other. mtDNA replication and nucleoid distribution is an active process regulated by the complex interplay of mitochondrial dynamics, endoplasmic reticulum (ER)-mitochondria contact sites, and cytoskeletal networks. For example, defects in mitochondrial fusion and fission or ER-mitochondria contact sites affect nucleoid maintenance and distribution. In this review, we discuss the process of nucleoid dynamics and the factors regulating nucleoid maintenance and distribution.


Assuntos
DNA Mitocondrial , Dinâmica Mitocondrial , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo
13.
Neuroscience ; 536: 79-91, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-37996053

RESUMO

Mitochondrial oxidative stress is one of the characteristics of secondary brain injury (SBI) after intracerebral hemorrhage (ICH), contributing largely to the apoptosis of neurons. Celastrol, a quinone methide triterpene that possesses antioxidant and mitochondrial protective properties, has emerged as a neuroprotective agent. However, the activity of celastrol has not been tested in ICH-induced SBI. In this study, we found that celastrol could effectively alleviate neurological function deficits and reduce brain oedema and neuronal apoptosis caused by ICH. Through electron microscopy, we found that celastrol could significantly attenuate mitochondrial morphology impairment. Therefore, we tested the regulatory proteins of mitochondrial dynamics and found that celastrol could reverse the downwards trend of OPA1 expression after ICH. In view of this, by culturing OPA1-deficient primary neurons and constructing neuron-specific OPA1 conditional knockout mice, we found that the protective effects of celastrol on mitochondrial morphology and function after ICH were counteracted in the absence of OPA1. Further experiments also showed that OPA1 is indispensable for the protective effects of celastrol on ICH-induced secondary brain injury. In summary, we have demonstrated that celastrol is a potential drug for the treatment of ICH and have revealed a novel mechanism by which celastrol exerts its antioxidant effects by promoting OPA1-mediated mitochondrial fusion.


Assuntos
Lesões Encefálicas , Dinâmica Mitocondrial , Camundongos , Animais , Dinâmica Mitocondrial/fisiologia , Hemorragia Cerebral/metabolismo , Lesões Encefálicas/metabolismo , Antioxidantes/farmacologia , Apoptose , Estresse Oxidativo/fisiologia
14.
Food Res Int ; 175: 113794, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129067

RESUMO

Cell cultured meat is a novel and promising technology, but developing specific culture medium for muscle cells remains one of the main technical obstacles. FGF1 signaling is reported to promote proliferation and maintain proliferative capacity of satellite cells. However, the effect of FGF1 as a supplement to serum-free medium on satellite cells in vitro culture is still unclear. In this study, an efficient method for the production of soluble and biologically active recombinant bovine FGF1 (rbFGF1) protein in Escherichia coli was established. The soluble expression level of TrxA-rbFGF1 fusion protein was 562 mg/L in shake flasks, resulting in 5.5 mg of pure rbFGF1 from 0.1 L of starting culture. In serum-free culture conditions, rbFGF1 effectively promoted the proliferation and regulated the mitochondrial morphology and function of C2C12 myoblasts.rbFGF1 activated extracellular signal-regulated kinases1/2 (ERK1/2) signaling in C2C12 myoblasts, which further stimulated dynamin related protein 1 (DRP1) Ser616 phosphorylation. These findings highlighted the potential application of rbFGF1 in developing effective serum-free medium for cultured meat production.


Assuntos
Fator 1 de Crescimento de Fibroblastos , Células Satélites de Músculo Esquelético , Animais , Bovinos , Fator 1 de Crescimento de Fibroblastos/farmacologia , Dinâmica Mitocondrial/fisiologia , Fosforilação , Proliferação de Células
15.
Sci Rep ; 13(1): 21638, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062139

RESUMO

Mitochondria morphology and function, and their quality control by mitophagy, are essential for heart function. We investigated whether these are influenced by time of the day (TOD), sex, and fed or fasting status, using transmission electron microscopy (EM), mitochondrial electron transport chain (ETC) activity, and mito-QC reporter mice. We observed peak mitochondrial number at ZT8 in the fed state, which was dependent on the intrinsic cardiac circadian clock, as hearts from cardiomyocyte-specific BMAL1 knockout (CBK) mice exhibit different TOD responses. In contrast to mitochondrial number, mitochondrial ETC activities do not fluctuate across TOD, but decrease immediately and significantly in response to fasting. Concurrent with the loss of ETC activities, ETC proteins were decreased with fasting, simultaneous with significant increases of mitophagy, mitochondrial antioxidant protein SOD2, and the fission protein DRP1. Fasting-induced mitophagy was lost in CBK mice, indicating a direct role of BMAL1 in regulating mitophagy. This is the first of its kind report to demonstrate the interactions between sex, fasting, and TOD on cardiac mitochondrial structure, function and mitophagy. These studies provide a foundation for future investigations of mitochondrial functional perturbation in aging and heart diseases.


Assuntos
Fatores de Transcrição ARNTL , Miócitos Cardíacos , Camundongos , Animais , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Miócitos Cardíacos/metabolismo , Mitocôndrias/metabolismo , Camundongos Knockout , Jejum , Dinâmica Mitocondrial/fisiologia
16.
BMB Rep ; 56(12): 663-668, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37817437

RESUMO

C-reactive protein (CRP) is an inflammatory marker and risk factor for atherosclerosis and cardiovascular diseases. However, the mechanism through which CRP induces myocardial damage remains unclear. This study aimed to determine how CRP damages cardiomyocytes via the change of mitochondrial dynamics and whether survivin, an anti-apoptotic protein, exerts a cardioprotective effect in this process. We treated H9c2 cardiomyocytes with CRP and found increased intracellular ROS production and shortened mitochondrial length. CRP treatment phosphorylated ERK1/2 and promoted increased expression, phosphorylation, and translocation of DRP1, a mitochondrial fission-related protein, from the cytoplasm to the mitochondria. The expression of mitophagy proteins PINK1 and PARK2 was also increased by CRP. YAP, a transcriptional regulator of PINK1 and PARK2, was also increased by CRP. Knockdown of YAP prevented CRP-induced increases in DRP1, PINK1, and PARK2. Furthermore, CRP-induced changes in the expression of DRP1 and increases in YAP, PINK1, and PARK2 were inhibited by ERK1/2 inhibition, suggesting that ERK1/2 signaling is involved in CRP-induced mitochondrial fission. We treated H9c2 cardiomyocytes with a recombinant TAT-survivin protein before CRP treatment, which reduced CRP-induced ROS accumulation and reduced mitochondrial fission. CRP-induced activation of ERK1/2 and increases in the expression and activity of YAP and its downstream mitochondrial proteins were inhibited by TAT-survivin. This study shows that mitochondrial fission occurs during CRPinduced cardiomyocyte damage and that the ERK1/2-YAP axis is involved in this process, and identifies that survivin alters these mechanisms to prevent CRP-induced mitochondrial damage. [BMB Reports 2023; 56(12): 663-668].


Assuntos
Dinaminas , Miócitos Cardíacos , Dinaminas/metabolismo , Survivina/metabolismo , Survivina/farmacologia , Dinâmica Mitocondrial/fisiologia , Proteína C-Reativa/metabolismo , Proteína C-Reativa/farmacologia , Sistema de Sinalização das MAP Quinases , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases/metabolismo
17.
Arch Toxicol ; 97(12): 3023-3035, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37707623

RESUMO

Endothelial cells (ECs), found in the innermost layer of blood vessels, are crucial for maintaining the structure and function of coronary microcirculation. Dysregulated coronary microcirculation poses a fundamental challenge in diabetes-related myocardial microvascular injury, impacting myocardial blood perfusion, thrombogenesis, and inflammation. Extensive research aims to understand the mechanistic connection and functional relationship between cardiac EC dysfunction and the development, diagnosis, and treatment of diabetes-related myocardial microvascular injury. Despite the low mitochondrial content in ECs, mitochondria act as sensors of environmental and cellular stress, influencing EC viability, structure, and function. Mitochondrial dynamics and mitophagy play a vital role in orchestrating mitochondrial responses to various stressors by regulating morphology, localization, and degradation. Impaired mitochondrial dynamics or reduced mitophagy is associated with EC dysfunction, serving as a potential molecular basis and promising therapeutic target for diabetes-related myocardial microvascular injury. This review introduces newly recognized mechanisms of damaged coronary microvasculature in diabetes-related microvascular injury and provides updated insights into the molecular aspects of mitochondrial dynamics and mitophagy. Additionally, novel targeted therapeutic approaches against diabetes-related microvascular injury or endothelial dysfunction, focusing on mitochondrial fission and mitophagy in endothelial cells, are summarized.


Assuntos
Diabetes Mellitus , Mitofagia , Humanos , Dinâmica Mitocondrial/fisiologia , Células Endoteliais/metabolismo , Coração , Diabetes Mellitus/metabolismo
18.
Curr Opin Neurobiol ; 81: 102747, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392672

RESUMO

Brain computation is metabolically expensive and requires the supply of significant amounts of energy. Mitochondria are highly specialized organelles whose main function is to generate cellular energy. Due to their complex morphologies, neurons are especially dependent on a set of tools necessary to regulate mitochondrial function locally in order to match energy provision with local demands. By regulating mitochondrial transport, neurons control the local availability of mitochondrial mass in response to changes in synaptic activity. Neurons also modulate mitochondrial dynamics locally to adjust metabolic efficiency with energetic demand. Additionally, neurons remove inefficient mitochondria through mitophagy. Neurons coordinate these processes through signalling pathways that couple energetic expenditure with energy availability. When these mechanisms fail, neurons can no longer support brain function giving rise to neuropathological states like metabolic syndromes or neurodegeneration.


Assuntos
Mitocôndrias , Neurônios , Neurônios/metabolismo , Mitocôndrias/metabolismo , Transporte Biológico , Transdução de Sinais , Dinâmica Mitocondrial/fisiologia , Metabolismo Energético
19.
Cell Mol Life Sci ; 80(8): 231, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501008

RESUMO

Mitochondrial dynamics are critical for maintaining mitochondrial morphology and function during cardiac ischemia and reperfusion (I/R). The immunoproteasome complex is an inducible isoform of the proteasome that plays a key role in modulating inflammation and some cardiovascular diseases, but the importance of immunoproteasome catalytic subunit ß2i (also known as LMP10 or MECL1) in regulating mitochondrial dynamics and cardiac I/R injury is largely unknown. Here, using ß2i-knockout (KO) mice and rAAV9-ß2i-injected mice, we discovered that ß2i expression and its trypsin-like activity were significantly attenuated in the mouse I/R myocardium and in patients with myocardial infarction (MI). Moreover, ß2i-KO mice exhibited greatly enhanced I/R-mediated cardiac dysfunction, infarct size, myocyte apoptosis and oxidative stress accompanied by excessive mitochondrial fission due to Mfn1/2 and Drp1 imbalance. Conversely, cardiac overexpression of ß2i in mice injected with recombinant adeno-associated virus 9 (rAAV9)-ß2i ameliorated cardiac I/R injury. Mechanistically, I/R injury reduced ß2i expression and activity, which increased the expression of the E3 ligase Parkin protein and promoted the degradation of mitofusin 1/2 (Mfn1/2), leading to excessive mitochondrial fission. In conclusion, our data suggest for the first time that ß2i exerts a protective role against cardiac I/R injury and that increasing ß2i expression may be a new therapeutic option for cardiac ischemic disease in clinical practice. Graphical abstract showing how the immunoproteasome subunit ß2i ameliorates myocardial I/R injury by regulating Parkin-Mfn1/2-mediated mitochondrial fusion.


Assuntos
Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Dinâmica Mitocondrial/fisiologia , Coração , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Apoptose , Camundongos Knockout , Hidrolases/metabolismo , Miócitos Cardíacos/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo
20.
Cells ; 12(14)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37508561

RESUMO

Mitochondria, which generate ATP through aerobic respiration, also have important noncanonical functions. Mitochondria are dynamic organelles, that engage in fission (division), fusion (joining) and translocation. They also regulate intracellular calcium homeostasis, serve as oxygen-sensors, regulate inflammation, participate in cellular and organellar quality control and regulate the cell cycle. Mitochondrial fission is mediated by the large GTPase, dynamin-related protein 1 (Drp1) which, when activated, translocates to the outer mitochondrial membrane (OMM) where it interacts with binding proteins (Fis1, MFF, MiD49 and MiD51). At a site demarcated by the endoplasmic reticulum, fission proteins create a macromolecular ring that divides the organelle. The functional consequence of fission is contextual. Physiological fission in healthy, nonproliferating cells mediates organellar quality control, eliminating dysfunctional portions of the mitochondria via mitophagy. Pathological fission in somatic cells generates reactive oxygen species and triggers cell death. In dividing cells, Drp1-mediated mitotic fission is critical to cell cycle progression, ensuring that daughter cells receive equitable distribution of mitochondria. Mitochondrial fusion is regulated by the large GTPases mitofusin-1 (Mfn1) and mitofusin-2 (Mfn2), which fuse the OMM, and optic atrophy 1 (OPA-1), which fuses the inner mitochondrial membrane. Mitochondrial fusion mediates complementation, an important mitochondrial quality control mechanism. Fusion also favors oxidative metabolism, intracellular calcium homeostasis and inhibits cell proliferation. Mitochondrial lipids, cardiolipin and phosphatidic acid, also regulate fission and fusion, respectively. Here we review the role of mitochondrial dynamics in health and disease and discuss emerging concepts in the field, such as the role of central versus peripheral fission and the potential role of dynamin 2 (DNM2) as a fission mediator. In hyperproliferative diseases, such as pulmonary arterial hypertension and cancer, Drp1 and its binding partners are upregulated and activated, positing mitochondrial fission as an emerging therapeutic target.


Assuntos
Neoplasias , Hipertensão Arterial Pulmonar , Humanos , Dinâmica Mitocondrial/fisiologia , Cálcio , Dinaminas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Ciclo Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...