Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Genet ; 1002021.
Artigo em Inglês | MEDLINE | ID: mdl-33764336

RESUMO

Knockout Dnah17 rats were generated due to its potential involvement in myopia. Subsequent study suggested that the homozygous truncation variants in DNAH17 is associated with male fertility but not myopia. Sperm count and sperm motility were measured in male rats. HE staining, immunofluorescence staining and TUNEL staining were used to observe the gross and histopathology of testis in homozygous and wild rats. Dnah17 knockout rats were generated by CRISPR/Cas9 gene editing. In the process of breeding rats, homozygous male rats were noted to be infertile, with significantly decreased number of sperm suggesting cryptozoospermia that was further confirmed by histologic studies. TUNEL assay showed an increased apoptosis in homozygous testes compared with wild type (P<0.001). A significant reduction of spermatocytes was observed in homozygotes compared with wild type (P=0.025) by immunofluorescence. These results suggest that DNAH17 is critical for spermatogenesis in male rats.


Assuntos
Dineínas do Axonema/fisiologia , Sistemas CRISPR-Cas , Infertilidade Masculina/patologia , Espermatogênese , Testículo/patologia , Animais , Dineínas do Axonema/antagonistas & inibidores , Homozigoto , Infertilidade Masculina/etiologia , Masculino , Ratos , Ratos Sprague-Dawley , Motilidade dos Espermatozoides , Testículo/metabolismo
2.
Mol Microbiol ; 112(6): 1718-1730, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31515877

RESUMO

The flagellated eukaryote Trypanosoma brucei alternates between the insect vector and the mammalian host and proliferates through an unusual mode of cell division. Cell division requires flagellum motility-generated forces, but flagellum motility exerts distinct effects between different life cycle forms. Motility is required for the final cell abscission of the procyclic form in the insect vector, but is necessary for the initiation of cell division of the bloodstream form in the mammalian host. The underlying mechanisms remain elusive. Here we carried out functional analyses of a flagellar axonemal inner-arm dynein complex in the bloodstream form and investigated its mechanistic role in cytokinesis initiation. We showed that the axonemal inner-arm dynein heavy chain TbIAD5-1 and TbCentrin3 form a complex, localize to the flagellum, and are required for viability in the bloodstream form. We further demonstrated the interdependence between TbIAD5-1 and TbCentrin3 for maintenance of protein stability. Finally, we showed that depletion of TbIAD5-1 and TbCentrin3 arrested cytokinesis initiation and disrupted the localization of multiple cytokinesis initiation regulators. These findings identified the essential role of an axonemal inner-arm dynein complex in cell division, and provided molecular insights into the flagellum motility-mediated cytokinesis initiation in the bloodstream form of T. brucei.


Assuntos
Dineínas do Axonema/metabolismo , Proteínas Contráteis/metabolismo , Citocinese/fisiologia , Proteínas de Protozoários/metabolismo , Dineínas do Axonema/fisiologia , Axonema/metabolismo , Divisão Celular/genética , Divisão Celular/fisiologia , Linhagem Celular , Movimento Celular , Proteínas Contráteis/genética , Proteínas Contráteis/fisiologia , Dineínas/metabolismo , Dineínas/fisiologia , Flagelos/metabolismo , Flagelos/fisiologia , Estágios do Ciclo de Vida , Proteínas de Protozoários/genética , Proteínas de Protozoários/fisiologia , Interferência de RNA , Trypanosoma brucei brucei/metabolismo
3.
Mol Biol Cell ; 29(9): 1060-1074, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29540525

RESUMO

Motility of cilia/flagella is generated by a coordinated activity of thousands of dyneins. Inner dynein arms (IDAs) are particularly important for the formation of ciliary/flagellar waveforms, but the molecular mechanism of IDA regulation is poorly understood. Here we show using cryoelectron tomography and biochemical analyses of Chlamydomonas flagella that a conserved protein FAP44 forms a complex that tethers IDA f (I1 dynein) head domains to the A-tubule of the axonemal outer doublet microtubule. In wild-type flagella, IDA f showed little nucleotide-dependent movement except for a tilt in the f ß head perpendicular to the microtubule-sliding direction. In the absence of the tether complex, however, addition of ATP and vanadate caused a large conformational change in the IDA f head domains, suggesting that the movement of IDA f is mechanically restricted by the tether complex. Motility defects in flagella missing the tether demonstrates the importance of the IDA f-tether interaction in the regulation of ciliary/flagellar beating.


Assuntos
Dineínas do Axonema/metabolismo , Dineínas do Axonema/fisiologia , Cílios/metabolismo , Animais , Axonema/metabolismo , Movimento Celular , Chlamydomonas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Cílios/fisiologia , Citoesqueleto/metabolismo , Dineínas/metabolismo , Flagelos/metabolismo , Microtúbulos/metabolismo , Transdução de Sinais , Tetrahymena/genética , Tetrahymena/metabolismo
4.
Mol Biol Cell ; 29(9): 1048-1059, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29514928

RESUMO

Motile cilia are essential for propelling cells and moving fluids across tissues. The activity of axonemal dynein motors must be precisely coordinated to generate ciliary motility, but their regulatory mechanisms are not well understood. The tether and tether head (T/TH) complex was hypothesized to provide mechanical feedback during ciliary beating because it links the motor domains of the regulatory I1 dynein to the ciliary doublet microtubule. Combining genetic and biochemical approaches with cryoelectron tomography, we identified FAP44 and FAP43 (plus the algae-specific, FAP43-redundant FAP244) as T/TH components. WT-mutant comparisons revealed that the heterodimeric T/TH complex is required for the positional stability of the I1 dynein motor domains, stable anchoring of CK1 kinase, and proper phosphorylation of the regulatory IC138-subunit. T/TH also interacts with inner dynein arm d and radial spoke 3, another important motility regulator. The T/TH complex is a conserved regulator of I1 dynein and plays an important role in the signaling pathway that is critical for normal ciliary motility.


Assuntos
Dineínas do Axonema/metabolismo , Dineínas do Axonema/fisiologia , Cílios/metabolismo , Animais , Axonema/metabolismo , Chlamydomonas reinhardtii/metabolismo , Cílios/fisiologia , Citoesqueleto/metabolismo , Dineínas/metabolismo , Flagelos/metabolismo , Microtúbulos/metabolismo , Transdução de Sinais , Tetrahymena/genética , Tetrahymena/metabolismo
5.
Evolution ; 72(2): 399-403, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29315521

RESUMO

Sperm competition is a postcopulatory sexual selection mechanism in species in which females mate with multiple males. Despite its evolutionary relevance in shaping male traits, the genetic mechanisms underlying sperm competition are poorly understood. A recently originated multigene family specific to Drosophila melanogaster, Sdic, is important for the outcome of sperm competition in doubly mated females, although the mechanistic nature of this phenotype remained unresolved. Here, we compared doubly mated females, second mated to either Sdic knockout or nonknockout males, and directly visualize sperm dynamics in the female reproductive tract. We found that a less effective removal of first-to-mate male's sperm within the female's sperm storage organs is consistent with a reduced sperm competitive ability of the Sdic knockout males. Our results highlight the role young genes can play in driving the evolution of sperm competition.


Assuntos
Dineínas do Axonema/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Preferência de Acasalamento Animal , Espermatozoides/fisiologia , Animais , Feminino , Técnicas In Vitro , Masculino , Família Multigênica
6.
Mol Biol Cell ; 27(7): 1051-9, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26864626

RESUMO

The outer dynein arm (ODA) is a molecular complex that drives the beating motion of cilia/flagella. Chlamydomonas ODA is composed of three heavy chains (HCs), two ICs, and 11 light chains (LCs). Although the three-dimensional (3D) structure of the whole ODA complex has been investigated, the 3D configurations of the ICs and LCs are largely unknown. Here we identified the 3D positions of the two ICs and three LCs using cryo-electron tomography and structural labeling. We found that these ICs and LCs were all localized at the root of the outer-inner dynein (OID) linker, designated the ODA-Beak complex. Of interest, the coiled-coil domain of IC2 extended from the ODA-Beak to the outer surface of ODA. Furthermore, we investigated the molecular mechanisms of how the OID linker transmits signals to the ODA-Beak, by manipulating the interaction within the OID linker using a chemically induced dimerization system. We showed that the cross-linking of the OID linker strongly suppresses flagellar motility in vivo. These results suggest that the ICs and LCs of the ODA form the ODA-Beak, which may be involved in mechanosignaling from the OID linker to the HCs.


Assuntos
Dineínas do Axonema/metabolismo , Chlamydomonas reinhardtii/metabolismo , Cílios/metabolismo , Flagelos/metabolismo , Proteínas de Plantas/metabolismo , Dineínas do Axonema/química , Dineínas do Axonema/fisiologia , Axonema/metabolismo , Axonema/fisiologia , Chlamydomonas reinhardtii/fisiologia , Cílios/fisiologia , Tomografia com Microscopia Eletrônica , Flagelos/fisiologia , Complexos Multiproteicos , Proteínas de Plantas/química , Proteínas de Plantas/fisiologia , Estrutura Quaternária de Proteína
7.
Med Sci (Paris) ; 30(11): 955-61, 2014 Nov.
Artigo em Francês | MEDLINE | ID: mdl-25388576

RESUMO

Cilia and flagella are essential organelles in most eukaryotes including human beings. In this review, we will discuss the mode of assembly of these complex organelles that depends on a dynamic process called intraflagellar transport or IFT. IFT delivers structural elements at the distal end of the cilium where assembly takes place, thereby allowing the growth of the organelle. We next discuss the different models for control of cilium length and their alterations in ciliopathies, genetic diseases associated to ciliary defects.


Assuntos
Axonema/ultraestrutura , Cílios/ultraestrutura , Células Eucarióticas/ultraestrutura , Flagelos/ultraestrutura , Animais , Dineínas do Axonema/fisiologia , Transporte Biológico , Movimento Celular , Chlamydomonas reinhardtii/fisiologia , Chlamydomonas reinhardtii/ultraestrutura , Cílios/metabolismo , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/fisiopatologia , Células Eucarióticas/fisiologia , Flagelos/metabolismo , Humanos , Microtúbulos/fisiologia , Microtúbulos/ultraestrutura , Modelos Biológicos , Trypanosoma brucei brucei/fisiologia , Trypanosoma brucei brucei/ultraestrutura , Tubulina (Proteína)/metabolismo
8.
Biochem Biophys Res Commun ; 447(4): 596-601, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24747078

RESUMO

Cilia and flagella are motile organelles that play various roles in eukaryotic cells. Ciliary movement is driven by axonemal dyneins (outer arm and inner arm dyneins) that bind to peripheral microtubule doublets. Elucidating the molecular mechanism of ciliary movement requires the genetic engineering of axonemal dyneins; however, no expression system for axonemal dyneins has been previously established. This study is the first to purify recombinant axonemal dynein with motile activity. In the ciliated protozoan Tetrahymena, recombinant outer arm dynein purified from ciliary extract was able to slide microtubules in a gliding assay. Furthermore, the recombinant dynein moved processively along microtubules in a single-molecule motility assay. This expression system will be useful for investigating the unique properties of diverse axonemal dyneins and will enable future molecular studies on ciliary movement.


Assuntos
Dineínas do Axonema/fisiologia , Proteínas de Protozoários/fisiologia , Tetrahymena/fisiologia , Dineínas do Axonema/genética , Dineínas do Axonema/isolamento & purificação , Cílios/fisiologia , Flagelos/fisiologia , Genes de Protozoários , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/isolamento & purificação , Proteínas de Fluorescência Verde/metabolismo , Microtúbulos/fisiologia , Movimento/fisiologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Tetrahymena/química , Tetrahymena/genética
9.
J Cell Biol ; 204(5): 631-3, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24590169

RESUMO

In this issue, Oda et al. (2014. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201312014) use mutant analysis, protein tagging, and cryoelectron tomography to determine the detailed location of components in flagellar radial spokes-a complex of proteins that connect the peripheral microtubule doublets to the central pair. Remarkably, this approach revealed an interaction between radial spokes and the central pair based on geometry rather than a specific signaling mechanism, highlighting the importance of studying a system in three dimensions.


Assuntos
Dineínas do Axonema/fisiologia , Chlamydomonas reinhardtii/metabolismo , Flagelos/fisiologia
10.
J Cell Biol ; 204(5): 807-19, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24590175

RESUMO

Cilia/flagella are conserved organelles that generate fluid flow in eukaryotes. The bending motion of flagella requires concerted activity of dynein motors. Although it has been reported that the central pair apparatus (CP) and radial spokes (RSs) are important for flagellar motility, the molecular mechanism underlying CP- and RS-mediated dynein regulation has not been identified. In this paper, we identified nonspecific intermolecular collision between CP and RS as one of the regulatory mechanisms for flagellar motility. By combining cryoelectron tomography and motility analyses of Chlamydomonas reinhardtii flagella, we show that binding of streptavidin to RS heads paralyzed flagella. Moreover, the motility defect in a CP projection mutant could be rescued by the addition of exogenous protein tags on RS heads. Genetic experiments demonstrated that outer dynein arms are the major downstream effectors of CP- and RS-mediated regulation of flagellar motility. These results suggest that mechanosignaling between CP and RS regulates dynein activity in eukaryotic flagella.


Assuntos
Dineínas do Axonema/fisiologia , Chlamydomonas reinhardtii/metabolismo , Flagelos/fisiologia , Dineínas do Axonema/metabolismo , Chlamydomonas reinhardtii/ultraestrutura , Tomografia com Microscopia Eletrônica , Flagelos/metabolismo , Flagelos/ultraestrutura , Mecanotransdução Celular , Fosforilação , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo
11.
Am J Physiol Heart Circ Physiol ; 302(10): H2102-11, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22408017

RESUMO

Complex congenital heart disease (CHD) is often seen in conjunction with heterotaxy, the randomization of left-right visceral organ situs. However, the link between cardiovascular morphogenesis and left-right patterning is not well understood. To elucidate the role of left-right patterning in cardiovascular development, we examined situs anomalies and CHD in mice with a loss of function allele of Dnaic1, a dynein protein required for motile cilia function and left-right patterning. Dnaic1 mutants were found to have nodal cilia required for left-right patterning, but they were immotile. Half the mutants had concordant organ situs comprising situs solitus or mirror symmetric situs inversus. The remaining half had randomized organ situs or heterotaxy. Looping of the heart tube, the first anatomical lateralization, showed abnormal L-loop bias rather than the expected D-loop orientation in heterotaxy and nonheterotaxy mutants. Situs solitus/inversus mutants were viable with mild or no defects consisting of azygos continuation and/or ventricular septal defects, whereas all heterotaxy mutants had complex CHD. In heterotaxy mutants, but not situs solitus/inversus mutants, the morphological left ventricle was thin and often associated with a hypoplastic transverse aortic arch. Thus, in conclusion, Dnaic1 mutants can achieve situs solitus or inversus even with immotile nodal cilia. However, the finding of abnormal L-loop bias in heterotaxy and nonheterotaxy mutants would suggest motile cilia are required for normal heart looping. Based on these findings, we propose motile nodal cilia patterns heart looping but heart and visceral organ lateralization is driven by signaling not requiring nodal cilia motility.


Assuntos
Padronização Corporal/genética , Cardiopatias Congênitas/genética , Morfogênese/genética , Situs Inversus/genética , Animais , Dineínas do Axonema/genética , Dineínas do Axonema/fisiologia , Padronização Corporal/fisiologia , Transtornos da Motilidade Ciliar/complicações , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/fisiopatologia , Cardiopatias Congênitas/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Modelos Animais , Morfogênese/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Situs Inversus/fisiopatologia
12.
FEBS J ; 278(17): 2964-79, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21777385

RESUMO

Dynein, which is a minus-end-directed microtubule motor, is crucial to a range of cellular processes. The mass of its motor domain is about 10 times that of kinesin, the other microtubule motor. Its large size and the difficulty of expressing and purifying mutants have hampered progress in dynein research. Recently, however, electron microscopy, X-ray crystallography and single-molecule nanometry have shed light on several key unsolved questions concerning how the dynein molecule is organized, what conformational changes in the molecule accompany ATP hydrolysis, and whether two or three motor domains are coordinated in the movements of dynein. This minireview describes our current knowledge of the molecular organization and the force-generating mechanism of dynein, with emphasis on findings from electron microscopy and single-molecule nanometry.


Assuntos
Dineínas/fisiologia , Microtúbulos/metabolismo , Subunidades Proteicas/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Dineínas do Axonema/química , Dineínas do Axonema/fisiologia , Transporte Biológico , Dineínas do Citoplasma/química , Dineínas do Citoplasma/fisiologia , Dineínas/química , Humanos , Microtúbulos/química , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química
14.
Nanomedicine ; 6(4): 510-5, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20060073

RESUMO

Nanoscale mechanical forces generated by motor proteins are crucial to normal cellular and organismal functioning. The ability to measure and exploit such forces is important to developing motile biomimetic nanodevices powered by biological motors for nanomedicine. Axonemal dynein motors positioned inside the sperm flagellum drive microtubule sliding and give rise to rhythmic beating. This force-generating action pushes the sperm cell through viscous media. Here we report new nanoscale information on how the propulsive force is generated by the sperm flagellum and how this force varies over time. Using a modified atomic force microscope, single-cell recordings reveal discrete approximately 50-ms pulses oscillating with amplitude 9.8 +/- 2.6 nN independent of pulse frequency (3.5-19.5 Hz). The average work carried out by each cell is 4.6 x 10(-16) J per pulse, equivalent to the hydrolysis of approximately 5500 molecules of adenosine triphosphate. The mechanochemical coupling at each active dynein head is approximately 2.2 pN per adenosine triphosphate molecule and approximately 3.9 pN per dynein arm. From the clinical editor: In this paper, nanoscale mechanical forces generated by axonemal dynein motors derived from sperm flagellum are examined and reported. These motor proteins are crucial to normal cellular and organismal functioning. The ability to measure and exploit such forces is important to developing motile biomimetic nanodevices powered by biological motors for nanomedicine.


Assuntos
Dineínas do Axonema/fisiologia , Cauda do Espermatozoide/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Bovinos , Masculino , Microscopia de Força Atômica , Proteínas Motores Moleculares/fisiologia , Nanotecnologia , Espermatozoides/química , Espermatozoides/metabolismo
15.
Am J Respir Cell Mol Biol ; 43(1): 55-63, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19675306

RESUMO

Studies of primary ciliary dyskinesia (PCD) have been hampered by the lack of a suitable animal model because disruption of essential ciliary genes in mice results in a high incidence of lethal hydrocephalus. To develop a viable mouse model for long-term studies of PCD, we have generated a transgenic mouse line in which two conserved exons of the mouse intermediate dynein chain gene, Dnaic1, are flanked by loxP sites (Dnaic1(flox/flox)). Dnaic1 is the murine homolog of human DNAI1, which is mutated in approximately 10% of human PCD cases. These mice have been crossed with mice expressing a tamoxifen-inducible Cre recombinase (CreER). Treatment of adult Dnaic1(flox/flox)/CreER(+/-) mice with tamoxifen results in an almost complete deletion of Dnaic1 with no evidence of hydrocephalus. Treated animals have reduced levels of full-length Dnaic1 mRNA, and electron micrographs of cilia demonstrate a loss of outer dynein arm structures. In treated Dnaic1(flox/flox)/CreER(+/-) animals, mucociliary clearance (MCC) was reduced over time. After approximately 3 months, no MCC was observed in the nasopharynx, whereas in the trachea, MCC was observed for up to 6 months, likely reflecting a difference in the turnover of ciliated cells in these tissues. All treated animals developed severe rhinosinusitis, demonstrating the importance of MCC to the health of the upper airways. However, no evidence of lung disease was observed up to 11 months after Dnaic1 deletion, suggesting that other mechanisms are able to compensate for the lack of MCC in the lower airways of mice. This model will be useful for the study of the pathogenesis and treatment of PCD.


Assuntos
Dineínas do Axonema/genética , Dineínas/genética , Deleção de Genes , Síndrome de Kartagener/genética , Sinusite/genética , Animais , Dineínas do Axonema/fisiologia , Doença Crônica , Células Epiteliais/citologia , Hidrocefalia/genética , Integrases/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão/métodos , Modelos Genéticos , Nasofaringe/metabolismo , Traqueia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA