Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(20)2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37887336

RESUMO

Axonemal dyneins are highly complex microtubule motors that power ciliary motility. These multi-subunit enzymes are assembled at dedicated sites within the cytoplasm. At least nineteen cytosolic factors are specifically needed to generate dynein holoenzymes and/or for their trafficking to the growing cilium. Many proteins are subject to N-terminal processing and acetylation, which can generate degrons subject to the AcN-end rule, alter N-terminal electrostatics, generate new binding interfaces, and affect subunit stoichiometry through targeted degradation. Here, we have used mass spectrometry of cilia samples and electrophoretically purified dynein heavy chains from Chlamydomonas to define their N-terminal processing; we also detail the N-terminal acetylase complexes present in this organism. We identify four classes of dynein heavy chain based on their processing pathways by two distinct acetylases, one of which is dependent on methionine aminopeptidase activity. In addition, we find that one component of both the outer dynein arm intermediate/light chain subcomplex and the docking complex is processed to yield an unmodified Pro residue, which may provide a setpoint to direct the cytosolic stoichiometry of other dynein complex subunits that contain N-terminal degrons. Thus, we identify and describe an additional level of processing and complexity in the pathways leading to axonemal dynein formation in cytoplasm.


Assuntos
Dineínas do Axonema , Chlamydomonas , Dineínas do Axonema/química , Microtúbulos/metabolismo , Chlamydomonas/metabolismo , Cílios/metabolismo , Axonema/metabolismo
2.
FEBS Lett ; 597(17): 2149-2160, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37400274

RESUMO

Axonemal dynein is an ATP-dependent microtubular motor protein responsible for cilia and flagella beating, and its dysfunction can cause diseases such as primary ciliary dyskinesia and sperm dysmotility. Despite its biological importance, structure-based mechanisms underlying axonemal dynein motors remain unclear. Here, we determined the X-ray crystal structure of the human inner-arm dynein-d (DNAH1) stalk region, which contains a long antiparallel coiled-coil and a microtubule-binding domain (MTBD), at 2.7 Å resolution. Notably, differences in the relative orientation of the coiled-coil and MTBD in comparison with other dyneins, as well as the diverse orientations of the MTBD flap region among various isoforms, lead us to propose a 'spike shoe model' with an altered stepping angle for the interaction between IAD-d and microtubules. Based on these findings, we discuss isoform-specific functions of the axonemal dynein stalk MTBDs.


Assuntos
Dineínas do Axonema , Dineínas , Masculino , Humanos , Dineínas do Axonema/química , Dineínas do Axonema/metabolismo , Dineínas/metabolismo , Sítios de Ligação , Sêmen , Ligação Proteica , Microtúbulos/metabolismo
3.
Nature ; 618(7965): 625-633, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258679

RESUMO

Motile cilia and flagella beat rhythmically on the surface of cells to power the flow of fluid and to enable spermatozoa and unicellular eukaryotes to swim. In humans, defective ciliary motility can lead to male infertility and a congenital disorder called primary ciliary dyskinesia (PCD), in which impaired clearance of mucus by the cilia causes chronic respiratory infections1. Ciliary movement is generated by the axoneme, a molecular machine consisting of microtubules, ATP-powered dynein motors and regulatory complexes2. The size and complexity of the axoneme has so far prevented the development of an atomic model, hindering efforts to understand how it functions. Here we capitalize on recent developments in artificial intelligence-enabled structure prediction and cryo-electron microscopy (cryo-EM) to determine the structure of the 96-nm modular repeats of axonemes from the flagella of the alga Chlamydomonas reinhardtii and human respiratory cilia. Our atomic models provide insights into the conservation and specialization of axonemes, the interconnectivity between dyneins and their regulators, and the mechanisms that maintain axonemal periodicity. Correlated conformational changes in mechanoregulatory complexes with their associated axonemal dynein motors provide a mechanism for the long-hypothesized mechanotransduction pathway to regulate ciliary motility. Structures of respiratory-cilia doublet microtubules from four individuals with PCD reveal how the loss of individual docking factors can selectively eradicate periodically repeating structures.


Assuntos
Axonema , Cílios , Transtornos da Motilidade Ciliar , Flagelos , Mecanotransdução Celular , Humanos , Masculino , Inteligência Artificial , Dineínas do Axonema/química , Dineínas do Axonema/metabolismo , Dineínas do Axonema/ultraestrutura , Axonema/química , Axonema/metabolismo , Axonema/ultraestrutura , Cílios/química , Cílios/metabolismo , Cílios/ultraestrutura , Microscopia Crioeletrônica , Flagelos/química , Flagelos/metabolismo , Flagelos/ultraestrutura , Microtúbulos/metabolismo , Chlamydomonas reinhardtii , Transtornos da Motilidade Ciliar/metabolismo , Transtornos da Motilidade Ciliar/patologia , Transtornos da Motilidade Ciliar/fisiopatologia , Movimento , Conformação Proteica
4.
EMBO J ; 42(12): e112466, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37051721

RESUMO

Axonemal outer dynein arm (ODA) motors generate force for ciliary beating. We analyzed three states of the ODA during the power stroke cycle using in situ cryo-electron tomography, subtomogram averaging, and classification. These states of force generation depict the prepower stroke, postpower stroke, and intermediate state conformations. Comparison of these conformations to published in vitro atomic structures of cytoplasmic dynein, ODA, and the Shulin-ODA complex revealed differences in the orientation and position of the dynein head. Our analysis shows that in the absence of ATP, all dynein linkers interact with the AAA3/AAA4 domains, indicating that interactions with the adjacent microtubule doublet B-tubule direct dynein orientation. For the prepower stroke conformation, there were changes in the tail that is anchored on the A-tubule. We built models starting with available high-resolution structures to generate a best-fitting model structure for the in situ pre- and postpower stroke ODA conformations, thereby showing that ODA in a complex with Shulin adopts a similar conformation as the active prepower stroke ODA in the axoneme.


Assuntos
Dineínas , Tomografia com Microscopia Eletrônica , Dineínas/metabolismo , Dineínas do Axonema/química , Dineínas do Axonema/metabolismo , Axonema/metabolismo , Cílios/metabolismo , Trifosfato de Adenosina , Flagelos/metabolismo
5.
Cells ; 10(8)2021 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-34440654

RESUMO

Although ubiquitously present, the relevance of cilia for vertebrate development and health has long been underrated. However, the aberration or dysfunction of ciliary structures or components results in a large heterogeneous group of disorders in mammals, termed ciliopathies. The majority of human ciliopathy cases are caused by malfunction of the ciliary dynein motor activity, powering retrograde intraflagellar transport (enabled by the cytoplasmic dynein-2 complex) or axonemal movement (axonemal dynein complexes). Despite a partially shared evolutionary developmental path and shared ciliary localization, the cytoplasmic dynein-2 and axonemal dynein functions are markedly different: while cytoplasmic dynein-2 complex dysfunction results in an ultra-rare syndromal skeleto-renal phenotype with a high lethality, axonemal dynein dysfunction is associated with a motile cilia dysfunction disorder, primary ciliary dyskinesia (PCD) or Kartagener syndrome, causing recurrent airway infection, degenerative lung disease, laterality defects, and infertility. In this review, we provide an overview of ciliary dynein complex compositions, their functions, clinical disease hallmarks of ciliary dynein disorders, presumed underlying pathomechanisms, and novel developments in the field.


Assuntos
Dineínas do Axonema/metabolismo , Ciliopatias/patologia , Dineínas do Citoplasma/metabolismo , Animais , Dineínas do Axonema/química , Dineínas do Axonema/genética , Cílios/metabolismo , Ciliopatias/genética , Ciliopatias/metabolismo , Dineínas do Citoplasma/química , Dineínas do Citoplasma/genética , Humanos , Síndrome de Kartagener/genética , Síndrome de Kartagener/metabolismo , Síndrome de Kartagener/patologia , Polimorfismo Genético , Síndrome de Costela Curta e Polidactilia/genética , Síndrome de Costela Curta e Polidactilia/metabolismo , Síndrome de Costela Curta e Polidactilia/patologia
6.
PLoS One ; 16(6): e0252786, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34133440

RESUMO

Heterotaxy (HTX), a condition characterized by internal organs not being arranged as expected relative to each other and to the left-right axis, is often accompanied with congenital heart disease (CHD). The purpose was to detect the pathogenic variants in a Chinese family with HTX and CHD. A non-consanguineous Han Chinese family with HTX and CHD, and 200 unrelated healthy subjects were enlisted. Exome sequencing and Sanger sequencing were applied to identify the genetic basis of the HTX family. Compound heterozygous variants, c.3426-1G>A and c.4306C>T (p.(Arg1436Trp)), in the dynein axonemal heavy chain 11 gene (DNAH11) were identified in the proband via exome sequencing and further confirmed by Sanger sequencing. Neither c.3426-1G>A nor c.4306C>T variant in the DNAH11 gene was detected in 200 healthy controls. The DNAH11 c.3426-1G>A variant was predicted as altering the acceptor splice site and most likely affecting splicing. The DNAH11 c.4306C>T variant was predicted to be damaging, which may reduce the phenotype severity. The compound heterozygous variants, c.3426-1G>A and c.4306C>T, in the DNAH11 gene might be the pathogenic alterations resulting in HTX and CHD in this family. These findings broaden the variant spectrum of the DNAH11 gene and increase knowledge used in genetic counseling for the HTX family.


Assuntos
Dineínas do Axonema/genética , Predisposição Genética para Doença/genética , Cardiopatias Congênitas/genética , Síndrome de Heterotaxia/genética , Mutação de Sentido Incorreto , Povo Asiático/genética , Dineínas do Axonema/química , Pré-Escolar , China , Feminino , Predisposição Genética para Doença/etnologia , Cardiopatias Congênitas/etnologia , Cardiopatias Congênitas/patologia , Síndrome de Heterotaxia/etnologia , Síndrome de Heterotaxia/patologia , Heterozigoto , Humanos , Masculino , Linhagem , Fenótipo , Conformação Proteica , Sequenciamento do Exoma/métodos
7.
Science ; 371(6532): 910-916, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33632841

RESUMO

The main force generators in eukaryotic cilia and flagella are axonemal outer dynein arms (ODAs). During ciliogenesis, these ~1.8-megadalton complexes are assembled in the cytoplasm and targeted to cilia by an unknown mechanism. Here, we used the ciliate Tetrahymena to identify two factors (Q22YU3 and Q22MS1) that bind ODAs in the cytoplasm and are required for ODA delivery to cilia. Q22YU3, which we named Shulin, locked the ODA motor domains into a closed conformation and inhibited motor activity. Cryo-electron microscopy revealed how Shulin stabilized this compact form of ODAs by binding to the dynein tails. Our findings provide a molecular explanation for how newly assembled dyneins are packaged for delivery to the cilia.


Assuntos
Dineínas do Axonema/metabolismo , Cílios/metabolismo , Proteínas de Protozoários/metabolismo , Tetrahymena thermophila/fisiologia , Dineínas do Axonema/química , Dineínas do Axonema/genética , Microscopia Crioeletrônica , Citoplasma/metabolismo , Técnicas de Silenciamento de Genes , Processamento de Imagem Assistida por Computador , Microtúbulos/fisiologia , Modelos Moleculares , Movimento , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Tetrahymena thermophila/genética
8.
Nat Commun ; 12(1): 477, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33473120

RESUMO

Axonemal dyneins are tethered to doublet microtubules inside cilia to drive ciliary beating, a process critical for cellular motility and extracellular fluid flow. Axonemal dyneins are evolutionarily and biochemically distinct from cytoplasmic dyneins that transport cargo, and the mechanisms regulating their localization and function are poorly understood. Here, we report a single-particle cryo-EM reconstruction of a three-headed axonemal dynein natively bound to doublet microtubules isolated from cilia. The slanted conformation of the axonemal dynein causes interaction of its motor domains with the neighboring dynein complex. Our structure shows how a heterotrimeric docking complex specifically localizes the linear array of axonemal dyneins to the doublet microtubule by directly interacting with the heavy chains. Our structural analysis establishes the arrangement of conserved heavy, intermediate and light chain subunits, and provides a framework to understand the roles of individual subunits and the interactions between dyneins during ciliary waveform generation.


Assuntos
Dineínas do Axonema/química , Dineínas do Axonema/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Movimento Celular , Chlamydomonas reinhardtii , Cílios/metabolismo , Microscopia Crioeletrônica , Citoesqueleto/metabolismo , Flagelos/química , Flagelos/metabolismo , Simulação de Acoplamento Molecular
9.
Science ; 371(6525)2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33414192

RESUMO

Posttranslational modifications of the microtubule cytoskeleton have emerged as key regulators of cellular functions, and their perturbations have been linked to a growing number of human pathologies. Tubulin glycylation modifies microtubules specifically in cilia and flagella, but its functional and mechanistic roles remain unclear. In this study, we generated a mouse model entirely lacking tubulin glycylation. Male mice were subfertile owing to aberrant beat patterns of their sperm flagella, which impeded the straight swimming of sperm cells. Using cryo-electron tomography, we showed that lack of glycylation caused abnormal conformations of the dynein arms within sperm axonemes, providing the structural basis for the observed dysfunction. Our findings reveal the importance of microtubule glycylation for controlled flagellar beating, directional sperm swimming, and male fertility.


Assuntos
Dineínas do Axonema/metabolismo , Fertilidade/genética , Infertilidade Masculina/enzimologia , Processamento de Proteína Pós-Traducional , Motilidade dos Espermatozoides/genética , Cauda do Espermatozoide/enzimologia , Tubulina (Proteína)/metabolismo , Animais , Dineínas do Axonema/química , Cílios/enzimologia , Microscopia Crioeletrônica , Modelos Animais de Doenças , Tomografia com Microscopia Eletrônica , Infertilidade Masculina/genética , Masculino , Camundongos , Camundongos Knockout , Tubulina (Proteína)/química
10.
Int J Mol Sci ; 21(8)2020 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-32325779

RESUMO

In eukaryotic cilia and flagella, various types of axonemal dyneins orchestrate their distinct functions to generate oscillatory bending of axonemes. The force-generating mechanism of dyneins has recently been well elucidated, mainly in cytoplasmic dyneins, thanks to progress in single-molecule measurements, X-ray crystallography, and advanced electron microscopy. These techniques have shed light on several important questions concerning what conformational changes accompany ATP hydrolysis and whether multiple motor domains are coordinated in the movements of dynein. However, due to the lack of a proper expression system for axonemal dyneins, no atomic coordinates of the entire motor domain of axonemal dynein have been reported. Therefore, a substantial amount of knowledge on the molecular architecture of axonemal dynein has been derived from electron microscopic observations on dynein arms in axonemes or on isolated axonemal dynein molecules. This review describes our current knowledge and perspectives of the force-generating mechanism of axonemal dyneins in solo and in ensemble.


Assuntos
Trifosfato de Adenosina/metabolismo , Dineínas do Axonema/química , Flagelos/metabolismo , Microtúbulos/metabolismo , Animais , Dineínas do Axonema/metabolismo , Dineínas do Axonema/ultraestrutura , Axonema/química , Axonema/metabolismo , Cílios/metabolismo , Cristalografia por Raios X , Dineínas do Citoplasma/metabolismo , Flagelos/ultraestrutura
11.
J Biol Chem ; 295(12): 3982-3989, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32014992

RESUMO

Axonemal dynein is a microtubule-based molecular motor that drives ciliary/flagellar beating in eukaryotes. In axonemal dynein, the outer-arm dynein (OAD) complex, which comprises three heavy chains (α, ß, and γ), produces the main driving force for ciliary/flagellar motility. It has recently been shown that axonemal dynein light chain-1 (LC1) binds to the microtubule-binding domain (MTBD) of OADγ, leading to a decrease in its microtubule-binding affinity. However, it remains unclear how LC1 interacts with the MTBD and controls the microtubule-binding affinity of OADγ. Here, we have used X-ray crystallography and pulldown assays to examine the interaction between LC1 and the MTBD, identifying two important sites of interaction in the MTBD. Solving the LC1-MTBD complex from Chlamydomonas reinhardtii at 1.7 Å resolution, we observed that one site is located in the H5 helix and that the other is located in the flap region that is unique to some axonemal dynein MTBDs. Mutational analysis of key residues in these sites indicated that the H5 helix is the main LC1-binding site. We modeled the ternary structure of the LC1-MTBD complex bound to microtubules based on the known dynein-microtubule complex. This enabled us to propose a structural basis for both formations of the ternary LC1-MTBD-microtubule complex and LC1-mediated tuning of MTBD binding to the microtubule, suggesting a molecular model for how axonemal dynein senses the curvature of the axoneme and tunes ciliary/flagellar beating.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Dineínas/metabolismo , Flagelos/fisiologia , Proteínas de Algas/química , Dineínas do Axonema/química , Dineínas do Axonema/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Dineínas/química , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
12.
Sci Rep ; 10(1): 1080, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974448

RESUMO

Cytoplasmic dynein is a dimeric motor protein which processively moves along microtubule. Its motor domain (head) hydrolyzes ATP and induces conformational changes of linker, stalk, and microtubule binding domain (MTBD) to trigger stepping motion. Here we applied scattering imaging of gold nanoparticle (AuNP) to visualize load-free stepping motion of processive dynein. We observed artificially-dimerized chimeric dynein, which has the head, linker, and stalk from Dictyostelium discoideum cytoplasmic dynein and the MTBD from human axonemal dynein, whose structure has been well-studied by cryo-electron microscopy. One head of a dimer was labeled with 30 nm AuNP, and stepping motions were observed with 100 µs time resolution and sub-nanometer localization precision at physiologically-relevant 1 mM ATP. We found 8 nm forward and backward steps and 5 nm side steps, consistent with on- and off-axes pitches of binding cleft between αß-tubulin dimers on the microtubule. Probability of the forward step was 1.8 times higher than that of the backward step, and similar to those of the side steps. One-head bound states were not clearly observed, and the steps were limited by a single rate constant. Our results indicate dynein mainly moves with biased small stepping motion in which only backward steps are slightly suppressed.


Assuntos
Dineínas do Axonema/química , Dineínas do Citoplasma/química , Dictyostelium/química , Proteínas de Protozoários/química , Dineínas do Axonema/metabolismo , Fenômenos Bioquímicos , Microscopia Crioeletrônica , Dictyostelium/metabolismo , Ouro/química , Humanos , Nanopartículas Metálicas/química , Microtúbulos/química , Microtúbulos/metabolismo , Ligação Proteica , Proteínas de Protozoários/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
13.
Cells ; 8(7)2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31319499

RESUMO

Cilia are highly evolutionarily conserved, microtubule-based cell protrusions present in eukaryotic organisms from protists to humans, with the exception of fungi and higher plants. Cilia can be broadly divided into non-motile sensory cilia, called primary cilia, and motile cilia, which are locomotory organelles. The skeleton (axoneme) of primary cilia is formed by nine outer doublet microtubules distributed on the cilium circumference. In contrast, the skeleton of motile cilia is more complex: in addition to outer doublets, it is composed of two central microtubules and several diverse multi-protein complexes that are distributed periodically along both types of microtubules. For many years, researchers have endeavored to fully characterize the protein composition of ciliary macro-complexes and the molecular basis of signal transduction between these complexes. Genetic and biochemical analyses have suggested that several hundreds of proteins could be involved in the assembly and function of motile cilia. Within the last several years, the combined efforts of researchers using cryo-electron tomography, genetic and biochemical approaches, and diverse model organisms have significantly advanced our knowledge of the ciliary structure and protein composition. Here, we summarize the recent progress in the identification of the subunits of ciliary complexes, their precise intraciliary localization determined by cryo-electron tomography data, and the role of newly identified proteins in cilia.


Assuntos
Dineínas do Axonema/metabolismo , Cílios/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Dineínas do Axonema/química , Dineínas do Axonema/genética , Cílios/química , Cílios/genética , Humanos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética
14.
Elife ; 82019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31264960

RESUMO

Dyneins are motor proteins responsible for transport in the cytoplasm and the beating of axonemes in cilia and flagella. They bind and release microtubules via a compact microtubule-binding domain (MTBD) at the end of a coiled-coil stalk. We address how cytoplasmic and axonemal dynein MTBDs bind microtubules at near atomic resolution. We decorated microtubules with MTBDs of cytoplasmic dynein-1 and axonemal dynein DNAH7 and determined their cryo-EM structures using helical Relion. The majority of the MTBD is rigid upon binding, with the transition to the high-affinity state controlled by the movement of a single helix at the MTBD interface. DNAH7 contains an 18-residue insertion, found in many axonemal dyneins, that contacts the adjacent protofilament. Unexpectedly, we observe that DNAH7, but not dynein-1, induces large distortions in the microtubule cross-sectional curvature. This raises the possibility that dynein coordination in axonemes is mediated via conformational changes in the microtubule.


Assuntos
Dineínas do Axonema/química , Dineínas do Axonema/metabolismo , Microscopia Crioeletrônica , Microtúbulos/química , Microtúbulos/ultraestrutura , Sequência de Aminoácidos , Animais , Dineínas do Axonema/ultraestrutura , Humanos , Camundongos , Microtúbulos/metabolismo , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Tubulina (Proteína)/metabolismo
15.
Int J Mol Sci ; 20(5)2019 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-30832428

RESUMO

This study compares the role of electrostatics in the binding process between microtubules and two dynein microtubule-binding domains (MTBDs): cytoplasmic and axonemal. These two dyneins are distinctively different in terms of their functionalities: cytoplasmic dynein is processive, while axonemal dynein is involved in beating. In both cases, the binding requires frequent association/disassociation between the microtubule and MTBD, and involves highly negatively charged microtubules, including non-structured C-terminal domains (E-hooks), and an MTBD interface that is positively charged. This indicates that electrostatics play an important role in the association process. Here, we show that the cytoplasmic MTBD binds electrostatically tighter to microtubules than to the axonemal MTBD, but the axonemal MTBD experiences interactions with microtubule E-hooks at longer distances compared with the cytoplasmic MTBD. This allows the axonemal MTBD to be weakly bound to the microtubule, while at the same time acting onto the microtubule via the flexible E-hooks, even at MTBD⁻microtubule distances of 45 Å. In part, this is due to the charge distribution of MTBDs: in the cytoplasmic MTBD, the positive charges are concentrated at the binding interface with the microtubule, while in the axonemal MTBD, they are more distributed over the entire structure, allowing E-hooks to interact at longer distances. The dissimilarities of electrostatics in the cases of axonemal and cytoplasmic MTBDs were found not to result in a difference in conformational dynamics on MTBDs, while causing differences in the conformational states of E-hooks. The E-hooks' conformations in the presence of the axonemal MTBD were less restricted than in the presence of the cytoplasmic MTBD. In parallel with the differences, the common effect was found that the structural fluctuations of MTBDs decrease as either the number of contacts with E-hooks increases or the distance to the microtubule decreases.


Assuntos
Dineínas do Axonema/química , Dineínas do Citoplasma/química , Simulação de Dinâmica Molecular , Animais , Dineínas do Axonema/metabolismo , Sítios de Ligação , Dineínas do Citoplasma/metabolismo , Camundongos , Microtúbulos/metabolismo , Ligação Proteica
16.
Nat Commun ; 10(1): 1143, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850601

RESUMO

Motile cilia are microtubule-based organelles that play important roles in most eukaryotes. Although axonemal microtubules are sufficiently stable to withstand their beating motion, it remains unknown how they are stabilized while serving as tracks for axonemal dyneins. To address this question, we have identified two uncharacterized proteins, FAP45 and FAP52, as microtubule inner proteins (MIPs) in Chlamydomonas. These proteins are conserved among eukaryotes with motile cilia. Using cryo-electron tomography (cryo-ET) and high-speed atomic force microscopy (HS-AFM), we show that lack of these proteins leads to a loss of inner protrusions in B-tubules and less stable microtubules. These protrusions are located near the inner junctions of doublet microtubules and lack of both FAP52 and a known inner junction protein FAP20 results in detachment of the B-tubule from the A-tubule, as well as flagellar shortening. These results demonstrate that FAP45 and FAP52 bind to the inside of microtubules and stabilize ciliary axonemes.


Assuntos
Proteínas de Algas/química , Axonema/metabolismo , Chlamydomonas reinhardtii/metabolismo , Cílios/metabolismo , Flagelos/metabolismo , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Dineínas do Axonema/química , Dineínas do Axonema/genética , Dineínas do Axonema/metabolismo , Axonema/genética , Axonema/ultraestrutura , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/ultraestrutura , Cílios/genética , Cílios/ultraestrutura , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Flagelos/genética , Flagelos/ultraestrutura , Expressão Gênica , Microscopia de Força Atômica
17.
PLoS One ; 13(10): e0205422, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30300419

RESUMO

Primary ciliary dyskinesia (PCD) is a rare inherited autosomal recessive or X-linked disorder that mainly affects lungs. Dysfunction of respiratory cilia causes symptoms such as chronic rhinosinusitis, coughing, rhinitis, conductive hearing loss and recurrent lung infections with bronchiectasis. It is now well known that pathogenic genetic changes lead to ciliary dysfunction. Here we report usage of clinical-exome based NGS approach in order to reveal underlying genetic causes in cohort of 21 patient with diagnosis of PCD. By detecting 18 (12 novel) potentially pathogenic genetic variants, we established the genetic cause of 11 (9 unrelated) patients. Genetic variants were detected in six PCD disease-causing genes, as well as in SPAG16 and SPAG17 genes, that were not detected in PCD patients so far, but were related to some symptoms of PCD. The most frequently mutated gene in our cohort was DNAH5 (27.77%). Identified variants were in homozygous, compound heterozygous and trans-heterozygous state. For detailed characterization of one novel homozygous genetic variant in DNAI1 gene (c. 947_948insG, p. Thr318TyrfsTer11), RT-qPCR and Western Blot analysis were performed. Molecular diagnostic approach applied in this study enables analysis of 29 PCD disease-causing and related genes. It resulted in mutation detection rate of 50% and enabled discovery of twelve novel mutations and pointed two possible novel PCD candidate genes.


Assuntos
Variação Genética , Síndrome de Kartagener/diagnóstico , Adolescente , Adulto , Dineínas do Axonema/química , Dineínas do Axonema/genética , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Mutação da Fase de Leitura , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Síndrome de Kartagener/genética , Masculino , Proteínas dos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/genética , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Adulto Jovem
18.
J Cell Biol ; 217(7): 2583-2598, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29743191

RESUMO

The massive dynein motor complexes that drive ciliary and flagellar motility require cytoplasmic preassembly, a process requiring dedicated dynein assembly factors (DNAAFs). How DNAAFs interact with molecular chaperones to control dynein assembly is not clear. By analogy with the well-known multifunctional HSP90-associated cochaperone, R2TP, several DNAAFs have been suggested to perform novel R2TP-like functions. However, the involvement of R2TP itself (canonical R2TP) in dynein assembly remains unclear. Here we show that in Drosophila melanogaster, the R2TP-associated factor, Wdr92, is required exclusively for axonemal dynein assembly, likely in association with canonical R2TP. Proteomic analyses suggest that in addition to being a regulator of R2TP chaperoning activity, Wdr92 works with the DNAAF Spag1 at a distinct stage in dynein preassembly. Wdr92/R2TP function is likely distinct from that of the DNAAFs proposed to form dynein-specific R2TP-like complexes. Our findings thus establish a connection between dynein assembly and a core multifunctional cochaperone.


Assuntos
Dineínas do Axonema/química , Cílios/genética , Proteínas de Choque Térmico HSP90/química , Proteômica , Animais , Dineínas do Axonema/genética , Axonema/química , Axonema/genética , Cílios/química , Drosophila melanogaster/química , Drosophila melanogaster/genética , Proteínas de Choque Térmico HSP90/genética , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Ligação Proteica , Dobramento de Proteína
19.
Biochem Biophys Res Commun ; 483(1): 24-31, 2017 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-28069381

RESUMO

Axonemal dyneins are large AAA+ type motor proteins that exhibit unique motor properties during ciliary beating. This study established a mutation system for Tetrahymena outer arm dynein and characterized four nucleotide-binding loops (P-loops; P1-P4) in the alpha heavy chain (Dyh3p). Macronuclear transformation of the mutant DYH3 genes in DYH3-knockout (KO-DYH3) cells enabled P-loop mutations that abolish the ability of nucleotide binding to be stably maintained in the polyploid genome. This mutation system revealed that the P3 and P4 mutant dyneins rescued lethality in macronuclear KO-DYH3 cells and exhibited normal ciliary localization. Intriguingly, however, an in vitro motility assay showed that the P3 mutation abolished the motor activity of Dyh3p, whereas the P4 mutation did not affect the gliding velocity or gliding index of Dyh3p. In contrast, no P1 or P2 mutant cells were isolated from the KO-DYH3 cells, which suggests that nucleotide binding at the P1 and P2 sites is required for the intracellular function of Dyh3p. This mutation system will be useful for further molecular studies of diverse axonemal dyneins and ciliary motility.


Assuntos
Dineínas do Axonema/química , Dineínas do Axonema/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo , Sequência de Aminoácidos , Animais , Dineínas do Axonema/metabolismo , Sítios de Ligação , Cílios/metabolismo , Técnicas de Silenciamento de Genes , Genes de Protozoários , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Mutação , Proteínas de Protozoários/metabolismo , Homologia de Sequência de Aminoácidos
20.
Artigo em Inglês | MEDLINE | ID: mdl-28003186

RESUMO

Tubulin undergoes several highly conserved posttranslational modifications (PTMs) including acetylation, detyrosination, glutamylation, and glycylation. These PTMs accumulate on a subset of microtubules that are long-lived, including those in the basal bodies and axonemes. Tubulin PTMs are distributed nonuniformly. In the outer doublet microtubules of the axoneme, the B-tubules are highly enriched in the detyrosinated, polyglutamylated, and polyglycylated tubulin, whereas the A-tubules contain mostly unmodified tubulin. The nonuniform patterns of tubulin PTMs may functionalize microtubules in a position-dependent manner. Recent studies indicate that tubulin PTMs contribute to the assembly, disassembly, maintenance, and motility of cilia. In particular, tubulin glutamylation has emerged as a key PTM that affects ciliary motility through regulation of axonemal dynein arms and controls the stability and length of the axoneme.


Assuntos
Cílios/química , Tetrahymena/química , Tubulina (Proteína)/química , Acetilação , Animais , Dineínas do Axonema/química , Axonema/química , Movimento Celular , Difusão , Glutamina/química , Microtúbulos/química , Ligação Proteica , Conformação Proteica , Processamento de Proteína Pós-Traducional , Tirosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...