Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 423
Filtrar
1.
Sci Prog ; 107(2): 368504241242278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629201

RESUMO

Treacher Collins syndrome (TCS) is a rare congenital craniofacial disorder, typically inherited as an autosomal dominant condition. Here, we report on a family in which germline mosaicism for TCS was likely present. The proband was diagnosed with TCS based on the typical clinical features and a pathogenic variant TCOF1 (c.4369_4373delAAGAA, p.K1457Efs*12). The mutation was not detected in his parents' peripheral blood DNA samples, suggesting a de novo mutation had occurred in the proband. However, a year later, the proband's mother became pregnant, and the amniotic fluid puncture revealed that the fetus carried the same mutation as the proband. Prenatal ultrasound also indicated a maxillofacial dysplasia with unilateral microtia. The mother then disclosed a previous birth history in which a baby had died of respiratory distress shortly after birth, displaying a TCS-like phenotype. Around the same time, the proband's father was diagnosed with mild bilateral conductive hearing loss. Based on array data, we concluded that the father may have had germline mosaicism for TCOF1 mutation. Our findings highlight the importance of considering germline mosaicism in sporadic de novo TCOF1 mutations when providing genetic consulting, and prenatal diagnosis is important when the proband's parents become pregnant again.


Assuntos
Disostose Mandibulofacial , Mosaicismo , Humanos , Linhagem , Disostose Mandibulofacial/diagnóstico , Disostose Mandibulofacial/genética , Mutação , Células Germinativas
2.
Mol Genet Genomic Med ; 12(4): e2426, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38562046

RESUMO

BACKGROUND: Mandibulofacial dysostosis with microcephaly (MFDM, OMIM# 610536) is a rare monogenic disease that is caused by a mutation in the elongation factor Tu GTP binding domain containing 2 gene (EFTUD2, OMIM* 603892). It is characterized by mandibulofacial dysplasia, microcephaly, malformed ears, cleft palate, growth and intellectual disability. MFDM can be easily misdiagnosed due to its phenotypic overlap with other craniofacial dysostosis syndromes. The clinical presentation of MFDM is highly variable among patients. METHODS: A patient with craniofacial anomalies was enrolled and evaluated by a multidisciplinary team. To make a definitive diagnosis, whole-exome sequencing was performed, followed by validation by Sanger sequencing. RESULTS: The patient presented with extensive facial bone dysostosis, upward slanting palpebral fissures, outer and middle ear malformation, a previously unreported orbit anomaly, and spina bifida occulta. A novel, pathogenic insertion mutation (c.215_216insT: p.Tyr73Valfs*4) in EFTUD2 was identified as the likely cause of the disease. CONCLUSIONS: We diagnosed this atypical case of MFDM by the detection of a novel pathogenetic mutation in EFTUD2. We also observed previously unreported features. These findings enrich both the genotypic and phenotypic spectrum of MFDM.


Assuntos
Deficiência Intelectual , Disostose Mandibulofacial , Microcefalia , Humanos , Microcefalia/patologia , Disostose Mandibulofacial/genética , Disostose Mandibulofacial/patologia , Fenótipo , Mutação , Deficiência Intelectual/genética , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Ribonucleoproteína Nuclear Pequena U5/genética , Ribonucleoproteína Nuclear Pequena U5/metabolismo
3.
Mol Genet Genomic Med ; 12(3): e2405, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38444283

RESUMO

BACKGROUND: Treacher Collins Ι syndrome (TCS1, OMIM:154500) is an autosomal dominant disease with a series of clinical manifestations such as craniofacial dysplasia including eye and ear abnormalities, small jaw deformity, cleft lip, as well as repeated respiratory tract infection and conductive hearing loss. Two cases of Treacher Collins syndrome with TCOF1(OMIM:606847) gene variations were reported in the article, with clinical characteristics, gene variants and the etiology. METHODS: The clinical data of two patients with Treacher Collins syndrome caused by TCOF1 gene variation were retrospectively analyzed. The whole exome sequencing (WES) was performed to detect the pathogenic variants of TCOF1 gene in the patients, and the verification of variants were confirmed by Sanger sequencing. RESULTS: Proband 1 presented with bilateral craniofacial deformities, conductive hearing loss and recurrent respiratory tract infection. Proband 2 showed bilateral craniofacial malformations with cleft palate, which harbored similar manifestations in her family. She died soon after birth due to dyspnea and feeding difficulties. WES identified two novel pathogenic variants of TCOF1 gene in two probands, each with one variant. According to the American College of Medical Genetics and Genomics, the heterozygous variation NM_001371623.1: c.877del (p. Ala293Profs*34) of TCOF1 gene was detected in Proband 1, which was evaluated as a likely pathogenic (LP) and de novo variant. Another variant found in Proband 2 was NM_001135243.1: c.1660_1661del (p. D554Qfs*3) heterozygous variation, which was evaluated as a pathogenic variation and the variant inherited from the mother. To date, the two variants have not been reported before. CONCLUSION: Our study found two novel pathogenic variants of TCOF1 gene and clarified the etiology of Treacher Collins syndrome. We also enriched the phenotypic spectrum of Treacher Collins syndrome and TCOF1 gene variation spectrum in the Chinese population, and provided the basis for clinical diagnosis, treatment and genetic counseling.


Assuntos
Disostose Mandibulofacial , Infecções Respiratórias , Feminino , Humanos , China , Perda Auditiva Condutiva , Disostose Mandibulofacial/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Estudos Retrospectivos
4.
BMC Med Genomics ; 17(1): 75, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500116

RESUMO

BACKGROUND: Treacher Collins syndrome (TCS; OMIM 154500) is a craniofacial developmental disorder. METHODS: To investigate the genetic features of a four-generation Chinese family with TCS, clinical examinations, hearing tests, computed tomography, whole-exome sequencing (WES), Sanger sequencing, reverse transcription (RT)-PCR, and the Minigene assay were performed. RESULTS: The probands, an 11-year-old male and his cousin exhibited typical clinical manifestations of TCS including conductive hearing loss, downward slanting palpebral fissures, and mandibular hypoplasia. Computed tomography revealed bilateral fusion of the anterior and posterior stapedial crura and malformation of the long crura of the incus. WES of both patients revealed a novel heterozygous intronic variant, i.e., c.4342 + 5_4342 + 8delGTGA (NM_001371623.1) in TCOF1. Minigene expression analysis revealed that the c.4342 + 5_4342 + 8delGTGA variant in TCOF1 caused a partial deletion of exon 24 (c.4115_4342del: p.Gly1373_Arg1448del), which was predicted to yield a truncated protein. The deletion was further confirmed via RT-PCR and sequencing of DNA from proband blood cells. A heterozygous variant in the POLR1C gene (NM_203290; exon6; c.525delG) was found almost co-segregated with the TCOF1 pathogenic variant. CONCLUSIONS: In conclusion, we identified a heterozygous TCOF1 splicing variant c.4342 + 5_4342 + 8delGTGA (splicing) in a Chinese TSC family with ossicular chain malformations and facial anomalies. Our findings broadened the spectrum of TCS variants and will facilitate diagnostics and prognostic predictions.


Assuntos
Disostose Mandibulofacial , Masculino , Humanos , Criança , Disostose Mandibulofacial/genética , Mutação , Éxons , Íntrons , China , Proteínas Nucleares/genética , Fosfoproteínas/genética
5.
Sci Rep ; 14(1): 7472, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553547

RESUMO

Treacle ribosome biogenesis factor 1 (TCOF1) is responsible for about 80% of mandibular dysostosis (MD) cases. We have formerly identified a correlation between TCOF1 and CNBP (CCHC-type zinc finger nucleic acid binding protein) expression in human mesenchymal cells. Given the established role of CNBP in gene regulation during rostral development, we explored the potential for CNBP to modulate TCOF1 transcription. Computational analysis for CNBP binding sites (CNBP-BSs) in the TCOF1 promoter revealed several putative binding sites, two of which (Hs791 and Hs2160) overlap with putative G-quadruplex (G4) sequences (PQSs). We validated the folding of these PQSs measuring circular dichroism and fluorescence of appropriate synthetic oligonucleotides. In vitro studies confirmed binding of purified CNBP to the target PQSs (both folded as G4 and unfolded) with Kd values in the nM range. ChIP assays conducted in HeLa cells chromatin detected the CNBP binding to TCOF1 promoter. Transient transfections of HEK293 cells revealed that Hs2160 cloned upstream SV40 promoter increased transcription of downstream firefly luciferase reporter gene. We also detected a CNBP-BS and PQS (Dr2393) in the zebrafish TCOF1 orthologue promoter (nolc1). Disrupting this G4 in zebrafish embryos by microinjecting DNA antisense oligonucleotides complementary to Dr2393 reduced the transcription of nolc1 and recapitulated the craniofacial anomalies characteristic of Treacher Collins Syndrome. Both cnbp overexpression and Morpholino-mediated knockdown in zebrafish induced nolc1 transcription. These results suggest that CNBP modulates the transcriptional expression of TCOF1 through a mechanism involving G-quadruplex folding/unfolding, and that this regulation is active in vertebrates as distantly related as bony fish and humans. These findings may have implications for understanding and treating MD.


Assuntos
Quadruplex G , Disostose Mandibulofacial , Animais , Humanos , DNA/metabolismo , Células HEK293 , Células HeLa , Disostose Mandibulofacial/genética , Disostose Mandibulofacial/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
6.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(3): 322-325, 2024 Mar 10.
Artigo em Chinês | MEDLINE | ID: mdl-38448022

RESUMO

OBJECTIVE: To explore the genetic etiology for a Chinese pedigree affected with Treacher-Collins syndrome (TCS) through whole exome sequencing (WES). METHODS: A TCS pedigree which was diagnosed at the Women and Children's Hospital Affiliated to Qingdao University on February 5, 2020 was selected as the study subject. Following collection of clinical data, WES was carried out. Candidate variant was validated through Sanger sequencing and bioinformatic analysis. RESULTS: The WES results showed that the proband has harbored a heterozygous c.3337C>T variant of the TCOF1 gene, and Sanger sequencing confirmed that his mother and brother also carried the same variant. Based on guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was predicted as pathogenic (PVS1+PM2_Supporting+PP4). CONCLUSION: The heterozygous c.3337C>T variant of the TCOF1 gene probably underlay the pathogenesis of TCS in this pedigree.


Assuntos
Povo Asiático , Disostose Mandibulofacial , Criança , Feminino , Humanos , Masculino , Povo Asiático/genética , China , Sequenciamento do Exoma , Disostose Mandibulofacial/genética , Mães , Proteínas Nucleares/genética , Linhagem , Fosfoproteínas/genética
7.
Int J Biol Macromol ; 266(Pt 2): 131216, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556235

RESUMO

Treacher Collins syndrome-3 (TCS-3) is a rare congenital craniofacial disorder attributed to variants in the RNA pol I subunit C (POLR1C). The pathogenesis of TCS-3 linked to polr1c involves the activation of apoptosis-dependent p53 pathways within neural crest cells (NCCs). This occurs due to disruptions in ribosome biogenesis, and the restoration of polr1c expression in early embryogenesis effectively rescues the observed craniofacial phenotype in polr1c-deficient zebrafish. Clinical variability in TCS patients suggests interactions between genes and factors like oxidative stress. Elevated production of reactive oxygen species (ROS) in epithelial cells may worsen phenotypic outcomes in TCS individuals. Our study confirmed excessive ROS production in facial regions, inducing apoptosis and altering p53 pathways. Deregulated cell-cycle and epithelial-to-mesenchymal transition (EMT) genes were also detected in the TCS-3 model. Utilizing p53 inhibitor (Pifithrin-α; PFT-α) or antioxidants (Glutathione; GSH and N-Acetyl-L-cysteine; NAC) effectively corrected migrated NCC distribution in the pharyngeal arch (PA), suppressed oxidative stress, prevented cell death, and modulated EMT inducers. Crucially, inhibiting p53 activation or applying antioxidants within a specific time window, notably within 30 h post-fertilization (hpf), successfully reversed phenotypic effects induced by polr1c MO.


Assuntos
Antioxidantes , Benzotiazóis , Modelos Animais de Doenças , Disostose Mandibulofacial , Estresse Oxidativo , Espécies Reativas de Oxigênio , Tolueno/análogos & derivados , Proteína Supressora de Tumor p53 , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Disostose Mandibulofacial/genética , Disostose Mandibulofacial/tratamento farmacológico , Antioxidantes/farmacologia , Benzotiazóis/farmacologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Tolueno/farmacologia , Crista Neural/efeitos dos fármacos , Crista Neural/metabolismo , Apoptose/efeitos dos fármacos , RNA Polimerase I/antagonistas & inibidores , RNA Polimerase I/metabolismo , RNA Polimerase I/genética
8.
Eur J Paediatr Dent ; 24(4): 334-336, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38015115

RESUMO

BACKGROUND: Mandibulofacial dysostosis Guion-Almeida Type (MFDGA; OMIM#610536) is a rare autosomal dominant genetic disorder caused by heterozygous pathogenic variants in the EFTUD2 gene. Mandibulofacial dysostoses are characterised by the core triad malar hypoplasia, maxillary hypoplasia and dysplastic ears, all derived by the impaired development of the first and second branchial arches. Differential diagnosis is often challenging. The early genetic diagnosis is extremely useful, not only for the correct management of cranial malformations, but also for the early diagnosis and treatment of the comorbidities associated to the disease, which greatly benefit from early treatment.


Assuntos
Região Branquial , Disostose Mandibulofacial , Humanos , Disostose Mandibulofacial/genética , Diagnóstico Diferencial , Zigoma , Fatores de Alongamento de Peptídeos , Ribonucleoproteína Nuclear Pequena U5
9.
Artigo em Chinês | MEDLINE | ID: mdl-37640998

RESUMO

Objective:By analyzing the clinical phenotypic characteristics and gene sequences of two patients with Treacher Collins syndrome(TCS), the biological causes of the disease were determined. Then discuss the therapeutic effect of hearing intervention after bone bridge implantation. Methods:All clinical data of the two family members were collected, and the patients signed the informed consent. The peripheral blood of the proband and family members was extracted, DNA was extracted for whole exome sequencing, and Sanger sequencing was performed on the family members for the mutation site.TCOF1genetic mutations analysis was performed on the paitents. Then, the hearing threshold and speech recognition rate of family 2 proband were evaluated and compared under the sound field between bare ear and wearing bone bridge. Results:In the two pedigrees, the probands of both families presented with auricle deformity, zygomatic and mandibular hypoplasia, micrognathia, hypotropia of the eye fissure, and hypoplasia of the medial eyelashes. The proband of Family 1 also presents with specific features including right-sided narrow anterior nasal aperture and dental hypoplasia, which were consistent with the clinical diagnosis of Treacher Collins syndrome. Genetic testing was conducted on both families, and two heterozygous mutations were identified in the TCOF1 gene: c. 1350_1351dupGG(p. A451Gfs*43) and c. 4362_4366del(p. K1457Efs*12), resulting in frameshift mutations in the amino acid sequence. Sanger sequencing validation of the TCOF1 gene in the parents of the proband in Family 1 did not detect any mutations. Proband 1 TCOF1 c. 1350_1351dupGG heterozygous variants have not been reported previously. The postoperative monosyllabic speech recognition rate of family 2 proband was 76%, the Categories of Auditory Performance(CAP) score was 6, and the Speech Intelligibility Rating(SIR) score was 4. Assessment using the Meaningful Auditory Integration Scale(MAIS) showed notable improvement in the patient's auditory perception, comprehension, and usage of hearing aids. Evaluation using the Glasgow Children's Benefit Inventory and quality of life assessment revealed significant improvements in the child's self care abilities, daily living and learning, social interactions, and psychological well being, as perceived by the parents. Conclusion:This study has elucidated the biological cause of Treacher Collins syndrome, enriched the spectrum of TCOF1 gene mutations in the Chinese population, and demonstrated that bone bridge implantation can improve the auditory and speech recognition rates in TCS patients.


Assuntos
Disostose Mandibulofacial , Criança , Humanos , Disostose Mandibulofacial/genética , Qualidade de Vida , Fala , Pais , Mutação , Proteínas Nucleares/genética , Fosfoproteínas/genética
10.
Clin Dysmorphol ; 32(4): 156-161, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37646764

RESUMO

Treacher Collins syndrome (TCS) is a rare disorder of craniofacial development following different patterns of inheritance. To date, mutations in four genes ( TCOF1, POLR1D, POLR1C , and POLR1B ) have been found to cause the condition. The molecular defect remains unidentified in a significant proportion of patients. In the current study, whole exome sequencing including analysis of copy number variants was applied for genetic testing of eight Egyptian patients with typical TCS phenotype, representing the first molecular analysis of TCS patients in Egypt as well as in Arab countries. Five heterozygous frameshift mutations were reported, including four variants in the TCOF1 gene (c.3676_3694delinsCTCTGG, c.3984_3985delGA, c.4366_4369delGAAA, and c.3388delC) and one variant in the POLR1D gene (c.60dupA). Four variants were novel extending the disease mutation spectrum. In three affected individuals, no variants of interest were identified in genes associated with TCS or clinically overlapping conditions. Additionally, no relevant variant was detected in genes encoding other subunits of RNA polymerase (pol) I. Molecular analysis is important to provide accurate genetic counseling. It would also contribute to reduced disease incidence. Further studies should be designed to investigate other possible etiologies when no pathogenic variants were revealed in either of the known genes.


Assuntos
Disostose Mandibulofacial , Humanos , Egito , Disostose Mandibulofacial/diagnóstico , Disostose Mandibulofacial/genética , Mutação da Fase de Leitura , Aconselhamento Genético , Testes Genéticos , RNA Polimerases Dirigidas por DNA/genética
11.
Int J Gynaecol Obstet ; 163(3): 778-781, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37231986

RESUMO

Treacher Collins syndrome (TCS) should be suspected if the triad of micrognathia, glossoptosis, and posterior cleft palate, and deformed external ears are observed during prenatal ultrasonography, excepting Pierre Robin sequence. Visualization of the fetal zygomatic bone and down-slanting palpebral fissures are conducive to differentiation. Molecular genetics testing can establish a definite diagnosis. A 28-year-old pregnant Chinese woman was referred for systematic ultrasound examination at 24 weeks. Two-dimensional and three-dimensional ultrasound showed polyhydramnios, micrognathia, absence of nasal bone, microtia, secondary cleft palate, mandibular hypoplasia, glossoptosis, and normal limbs and vertebrae. Pierre Robin sequence was misdiagnosed with the triad of micrognathia, glossoptosis, and posterior cleft palate. Final diagnosis of TCS was confirmed by whole-exome sequencing. Visualization of the fetal zygomatic bone and down-slanting palpebral fissures can facilitate a differential diagnosis between Pierre Robin sequence and TCS, with the triad of micrognathia, glossoptosis, and posterior cleft palate.


Assuntos
Fissura Palatina , Glossoptose , Disostose Mandibulofacial , Micrognatismo , Síndrome de Pierre Robin , Gravidez , Feminino , Humanos , Adulto , Disostose Mandibulofacial/diagnóstico por imagem , Disostose Mandibulofacial/genética , Síndrome de Pierre Robin/diagnóstico por imagem , Síndrome de Pierre Robin/genética , Micrognatismo/diagnóstico por imagem , Micrognatismo/genética , Glossoptose/complicações , Fissura Palatina/diagnóstico por imagem , Fissura Palatina/genética , Diagnóstico Pré-Natal
12.
Eur Rev Med Pharmacol Sci ; 27(3 Suppl): 1-10, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37129330

RESUMO

OBJECTIVE: Treacher Collins syndrome (TCS) is a rare congenital disorder of craniofacial development. TCS occurs with an incidence of 1:50,000, and more than 60% of TCS cases have no previous family history and arise as the result of de novo mutations. The high rate of de novo mutations, together with the extreme variability in the degree to which individuals can be affected, makes the provision of genetic counseling extremely complicated. Consequently, every case of TCS is unique and needs to be assessed individually. Patients with TCS frequently undergo multiple reconstructive surgeries from birth through adulthood, which rarely are fully corrective in the long-term. The nascent field of regenerative medicine offers the promise to improve some of these treatments. In particular, structural fat grafting (SFG) seems to be a good strategy not only to restore the normal volume and contour of the face, but also to provide a source of adipose-derived stem cells (ADSCs) with a multilineage differentiation potential. In this work, we present genetical analyses of ADSC affected by TCS. MATERIALS AND METHODS: ADSCs from were analyzed for their stemness properties and shared many characteristics with those of a healthy subject. Screening of the genome of the TCS patient using array-Comparative Genomic Hybridization allowed us to identify some chromosomal imbalances that are probably associated with TCS. RESULTS: We found that some alterations, involving the TIMELESS gene, were usually associated with embryonic stem cells. CONCLUSIONS: With the aim to improve the final results, we need to consider combining knowledge of genetic alterations and expression profiles as a fundamental step before starting with surgical procedures.


Assuntos
Disostose Mandibulofacial , Procedimentos de Cirurgia Plástica , Feminino , Humanos , Disostose Mandibulofacial/etiologia , Disostose Mandibulofacial/genética , Hibridização Genômica Comparativa , Mutação , Células-Tronco
13.
Am J Hum Genet ; 110(5): 809-825, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37075751

RESUMO

Heterozygous pathogenic variants in POLR1A, which encodes the largest subunit of RNA Polymerase I, were previously identified as the cause of acrofacial dysostosis, Cincinnati-type. The predominant phenotypes observed in the cohort of 3 individuals were craniofacial anomalies reminiscent of Treacher Collins syndrome. We subsequently identified 17 additional individuals with 12 unique heterozygous variants in POLR1A and observed numerous additional phenotypes including neurodevelopmental abnormalities and structural cardiac defects, in combination with highly prevalent craniofacial anomalies and variable limb defects. To understand the pathogenesis of this pleiotropy, we modeled an allelic series of POLR1A variants in vitro and in vivo. In vitro assessments demonstrate variable effects of individual pathogenic variants on ribosomal RNA synthesis and nucleolar morphology, which supports the possibility of variant-specific phenotypic effects in affected individuals. To further explore variant-specific effects in vivo, we used CRISPR-Cas9 gene editing to recapitulate two human variants in mice. Additionally, spatiotemporal requirements for Polr1a in developmental lineages contributing to congenital anomalies in affected individuals were examined via conditional mutagenesis in neural crest cells (face and heart), the second heart field (cardiac outflow tract and right ventricle), and forebrain precursors in mice. Consistent with its ubiquitous role in the essential function of ribosome biogenesis, we observed that loss of Polr1a in any of these lineages causes cell-autonomous apoptosis resulting in embryonic malformations. Altogether, our work greatly expands the phenotype of human POLR1A-related disorders and demonstrates variant-specific effects that provide insights into the underlying pathogenesis of ribosomopathies.


Assuntos
Anormalidades Craniofaciais , Disostose Mandibulofacial , Humanos , Camundongos , Animais , Disostose Mandibulofacial/genética , Apoptose , Mutagênese , Ribossomos/genética , Fenótipo , Crista Neural/patologia , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia
14.
J Clin Invest ; 133(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36637912

RESUMO

Mutations of G protein-coupled receptors (GPCRs) cause various human diseases, but the mechanistic details are limited. Here, we establish p.E303K in the gene encoding the endothelin receptor type A (ETAR/EDNRA) as a recurrent mutation causing mandibulofacial dysostosis with alopecia (MFDA), with craniofacial changes similar to those caused by p.Y129F. Mouse models carrying either of these missense mutations exhibited a partial maxillary-to-mandibular transformation, which was rescued by deleting the ligand endothelin 3 (ET3/EDN3). Pharmacological experiments confirmed the causative ETAR mutations as gain of function, dependent on ET3. To elucidate how an amino acid substitution far from the ligand binding site can increase ligand affinity, we used molecular dynamics (MD) simulations. E303 is located at the intracellular end of transmembrane domain 6, and its replacement by a lysine increased flexibility of this portion of the helix, thus favoring G protein binding and leading to G protein-mediated enhancement of agonist affinity. The Y129F mutation located under the ligand binding pocket reduced the sodium-water network, thereby affecting the extracellular portion of helices in favor of ET3 binding. These findings provide insight into the pathogenesis of MFDA and into allosteric mechanisms regulating GPCR function, which may provide the basis for drug design targeting GPCRs.


Assuntos
Disostose Mandibulofacial , Animais , Camundongos , Humanos , Disostose Mandibulofacial/genética , Mutação com Ganho de Função , Ligantes , Sítios de Ligação , Mutação , Receptores Acoplados a Proteínas G/genética , Ligação Proteica , Alopecia/genética , Sítio Alostérico
15.
Cleft Palate Craniofac J ; 60(8): 1041-1047, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35331022

RESUMO

Nager syndrome (NS) is a rare disease marked with craniofacial and preaxial limb anomalies. In this report, we summarized the current evidence to determine a possible genotype-phenotype association among NS individuals. Twenty-four articles comprising of 84 NS (including 9 patients with a severe form of NS [Rodriguez syndrome]) patients were examined, of which 76% were caused by variants in SF3B4 (OMIM *605593, Splicing Factor 3B, Subunit 4). Within the SF3B4 gene, variants located in exon 3 commonly occurred (20%) from a total identified variant, while hotspot location was identified in exon 1 (12%), and primarily occurred as frameshift variants (64%). Thirty-five distinct pathogenic variants within SF3B4 gene were identified with two common sites, c.1A > G and c.1060dupC in exons 1 and 5, respectively. Although no significant genotype-phenotype association was found, it is notable that patients with frameshift SF3B4 variants and predicted to lead to nonsense-mediated RNA decay (NMD) of the transcripts tended to have a more severe clinical manifestation. Additionally, patients harboring variants in exons 2 and 3 displayed a higher proportion of cardiac malformations. Taken together, this article summarizes the pathogenic variants observed in SF3B4 and provides a possible genotype-phenotype relationship in this disease.


Assuntos
Mutação da Fase de Leitura , Disostose Mandibulofacial , Humanos , Mutação , Disostose Mandibulofacial/genética , Fatores de Processamento de RNA/genética
16.
Clin Genet ; 103(2): 146-155, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36203321

RESUMO

Treacher Collins syndrome (TCS, OMIM: 154500) is a rare congenital craniofacial disorder that is caused by variants in the genes TCOF1, POLR1D, POLR1C, and POLR1B. Studies on the association between phenotypic variability and their relative variants are very limited. This systematic review summarized the 53 literatures from PubMed and Scopus to explore the potential TCS genotype-phenotype correlations with statistical analysis. Studies reporting both complete molecular genetics and clinical data were included. We identified that the molecular anomaly within TCOF1 (88.71%) accounted for most TCS cases. The only true hot spot for TCOF1 was detected in exon 24, with recurrent c.4369_4373delAAGAA variant is identified. While the hot spot for POLR1D, POLR1C, and POLR1B were identified in exons 3, 8, and 15, respectively. Our result suggested that the higher severity level was likely to be observed in Asian patients harboring TCOF1 variants rather than POLR1. Moreover, common 5-bp deletions tended to have a higher severity degree in comparison to any variants within exon 24 of TCOF1. In summary, this report suggested the relationship between genetic and clinical data in TCS. Our findings could be used as a reference for clinical diagnosis and further biological studies.


Assuntos
Estudos de Associação Genética , Disostose Mandibulofacial , Humanos , RNA Polimerases Dirigidas por DNA/genética , Disostose Mandibulofacial/diagnóstico , Disostose Mandibulofacial/genética , Mutação/genética
17.
Genes (Basel) ; 15(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38254920

RESUMO

Nager syndrome is a rare human developmental disorder characterized by craniofacial defects including the downward slanting of the palpebral fissures, cleft palate, limb deformities, mandibular hypoplasia, hypoplasia or absence of thumbs, microretrognathia, and ankylosis of the temporomandibular joint. The prevalence is very rare and the literature describes only about a hundred cases of Nager syndrome. There is evidence of autosomal dominant and autosomal recessive inheritance for Nager syndrome, suggesting genetic heterogeneity. The majority of the described causes of Nager syndrome include pathogenic variants in the SF3B4 gene, which encodes a component of the spliceosome; therefore, the syndrome belongs to the spliceosomopathy group of diseases. The diagnosis is made on the basis of physical and radiological examination and detection of mutations in the SF3B4 gene. Due to the diversity of defects associated with Nager syndrome, patients require multidisciplinary, complex, and long-lasting treatment. Usually, it starts from birth until the age of twenty years. The surgical procedures vary over a patient's lifetime and are related to the needed function. First, breathing and feeding must be facilitated; then, oral and facial clefts should be addressed, followed by correcting eyelid deformities and cheekbone reconstruction. In later age, a surgery of the nose and external ear is performed. Speech and hearing disorders require specialized logopedic treatment. A defect of the thumb is treated by transplanting a tendon and muscle or transferring the position of the index finger. In addition to surgery, in order to maximize a patient's benefit and to reduce functional insufficiency, complementary treatments such as rehabilitation and physiotherapy are recommended. In our study, we describe eight patients of different ages with various cases of Nager syndrome. The aim of our work was to present the actual genetic knowledge on this disease and its treatment procedures.


Assuntos
Fissura Palatina , Disostose Mandibulofacial , Micrognatismo , Criança , Humanos , Adulto Jovem , Adulto , Disostose Mandibulofacial/genética , Disostose Mandibulofacial/terapia , Síndrome , Fatores de Processamento de RNA
18.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1011037

RESUMO

Objective:By analyzing the clinical phenotypic characteristics and gene sequences of two patients with Treacher Collins syndrome(TCS), the biological causes of the disease were determined. Then discuss the therapeutic effect of hearing intervention after bone bridge implantation. Methods:All clinical data of the two family members were collected, and the patients signed the informed consent. The peripheral blood of the proband and family members was extracted, DNA was extracted for whole exome sequencing, and Sanger sequencing was performed on the family members for the mutation site.TCOF1genetic mutations analysis was performed on the paitents. Then, the hearing threshold and speech recognition rate of family 2 proband were evaluated and compared under the sound field between bare ear and wearing bone bridge. Results:In the two pedigrees, the probands of both families presented with auricle deformity, zygomatic and mandibular hypoplasia, micrognathia, hypotropia of the eye fissure, and hypoplasia of the medial eyelashes. The proband of Family 1 also presents with specific features including right-sided narrow anterior nasal aperture and dental hypoplasia, which were consistent with the clinical diagnosis of Treacher Collins syndrome. Genetic testing was conducted on both families, and two heterozygous mutations were identified in the TCOF1 gene: c. 1350_1351dupGG(p. A451Gfs*43) and c. 4362_4366del(p. K1457Efs*12), resulting in frameshift mutations in the amino acid sequence. Sanger sequencing validation of the TCOF1 gene in the parents of the proband in Family 1 did not detect any mutations. Proband 1 TCOF1 c. 1350_1351dupGG heterozygous variants have not been reported previously. The postoperative monosyllabic speech recognition rate of family 2 proband was 76%, the Categories of Auditory Performance(CAP) score was 6, and the Speech Intelligibility Rating(SIR) score was 4. Assessment using the Meaningful Auditory Integration Scale(MAIS) showed notable improvement in the patient's auditory perception, comprehension, and usage of hearing aids. Evaluation using the Glasgow Children's Benefit Inventory and quality of life assessment revealed significant improvements in the child's self care abilities, daily living and learning, social interactions, and psychological well being, as perceived by the parents. Conclusion:This study has elucidated the biological cause of Treacher Collins syndrome, enriched the spectrum of TCOF1 gene mutations in the Chinese population, and demonstrated that bone bridge implantation can improve the auditory and speech recognition rates in TCS patients.


Assuntos
Criança , Humanos , Disostose Mandibulofacial/genética , Qualidade de Vida , Fala , Pais , Mutação , Proteínas Nucleares/genética , Fosfoproteínas/genética
19.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(6): 625-629, 2022 Jun 10.
Artigo em Chinês | MEDLINE | ID: mdl-35773768

RESUMO

OBJECTIVE: To explore the clinical and genetic characteristics of two children with a clinical diagnosis of Treacher Collins syndrome (TCS). METHODS: Whole-exome sequencing was used to screen potential variants in the two children. Confirmation of suspected variants was performed through Sanger sequencing, multiplex ligation dependent probe amplification and real-time PCR in probands and their parents. RESULTS: A heterozygous deletion variant, c.4357_4360delGAAA, was detected in case one, while was de novo and verified by Sanger sequencing. The variant was classified as pathogenic (PVS1 +PM2+PM6) according to ACMG guideline. The heterozygous deletion of exon 1-7 was seen in the same gene in case 2, which MLPA verified as heterozygous deletion of exon 1-6. This deletion was inherited from the father with a normal phenotype, and the father's TCOF1 gene was suspected to be chimeric heterozygous deletion of exon 1-6 verified by MLPA. CONCLUSION: The identified variants in the TCOF1 gene probably underlie the two cases of TCS. There was no apparent correlation between genotype and phenotype. In addition, it shows a high interfamilial variability ranging from normal to full presentation of TCS. Genetic detection provided clinical diagnosis and genetic counselling for TCS patients.


Assuntos
Disostose Mandibulofacial , Éxons , Heterozigoto , Humanos , Disostose Mandibulofacial/genética , Mutação , Sequenciamento do Exoma
20.
Proc Natl Acad Sci U S A ; 119(31): e2116974119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35881792

RESUMO

Ribosomal RNA (rRNA) transcription by RNA polymerase I (Pol I) is a critical rate-limiting step in ribosome biogenesis, which is essential for cell survival. Despite its global function, disruptions in ribosome biogenesis cause tissue-specific birth defects called ribosomopathies, which frequently affect craniofacial development. Here, we describe a cellular and molecular mechanism underlying the susceptibility of craniofacial development to disruptions in Pol I transcription. We show that Pol I subunits are highly expressed in the neuroepithelium and neural crest cells (NCCs), which generate most of the craniofacial skeleton. High expression of Pol I subunits sustains elevated rRNA transcription in NCC progenitors, which supports their high tissue-specific levels of protein translation, but also makes NCCs particularly sensitive to rRNA synthesis defects. Consistent with this model, NCC-specific deletion of Pol I subunits Polr1a, Polr1c, and associated factor Tcof1 in mice cell-autonomously diminishes rRNA synthesis, which leads to p53 protein accumulation, resulting in NCC apoptosis and craniofacial anomalies. Furthermore, compound mutations in Pol I subunits and associated factors specifically exacerbate the craniofacial anomalies characteristic of the ribosomopathies Treacher Collins syndrome and Acrofacial Dysostosis-Cincinnati type. Mechanistically, we demonstrate that diminished rRNA synthesis causes an imbalance between rRNA and ribosomal proteins. This leads to increased binding of ribosomal proteins Rpl5 and Rpl11 to Mdm2 and concomitantly diminished binding between Mdm2 and p53. Altogether, our results demonstrate a dynamic spatiotemporal requirement for rRNA transcription during mammalian cranial NCC development and corresponding tissue-specific threshold sensitivities to disruptions in rRNA transcription in the pathogenesis of congenital craniofacial disorders.


Assuntos
Anormalidades Craniofaciais , RNA Polimerase I , RNA Ribossômico , Proteínas Ribossômicas , Crânio , Transcrição Gênica , Animais , Anormalidades Craniofaciais/genética , Disostose Mandibulofacial/genética , Camundongos , Crista Neural/embriologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA Polimerase I/metabolismo , RNA Ribossômico/genética , Proteínas Ribossômicas/metabolismo , Crânio/embriologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...