Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
2.
PLoS One ; 19(1): e0291411, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38252617

RESUMO

Ectodysplasin A related hypohidrotic ectodermal dysplasia (XLHED) is a well-studied fetal developmental disorder in mammals that mainly affects ectodermal structures. It has been identified in a variety of species, including mice, rats, dogs, cattle, and humans. Here, we report the clinical, histological, and molecular biological analyses of a case of XLHED in Limousin cattle. An affected Limousin calf showed pathognomonic signs of ectodermal dysplasia, i.e. sparse hair and characteristic dental aplasia. Histopathologic comparison of hairy and glabrous skin and computed tomography of the mandible confirmed the phenotypic diagnosis. In addition, a keratoconjunctivitis sicca was noted in one eye, which was also confirmed histopathologically. To identify the causative variant, we resequenced the bovine X-chromosomal ectodysplasin A gene (EDA) of the affected calf and compared the sequences to the bovine reference genome. A single missense variant (rs439722471) at position X:g.80411716T>C (ARS-UCD1.3) was identified. The variant resulted in an amino acid substitution from glutamic acid to glycine within the highly conserved TNF-like domain. To rule out the possibility that the variant was relatively common in the cattle population we genotyped 2,016 individuals including 40% Limousin cattle by fluorescence resonance energy transfer analysis. We also tested 5,116 multibreed samples from Run9 of the 1000 Bull Genomes Project for the said variant. The variant was not detected in any of the cattle tested, confirming the assumption that it was the causative variant. This is the first report of Ectodysplasin A related hypohidrotic ectodermal dysplasia in Limousin cattle and the description of a novel causal variant in cattle.


Assuntos
Doenças dos Bovinos , Displasia Ectodérmica Anidrótica Tipo 1 , Animais , Bovinos , Masculino , Displasia Ectodérmica Anidrótica Tipo 1/genética , Displasia Ectodérmica Anidrótica Tipo 1/veterinária , Ectodisplasinas/genética , Genes Ligados ao Cromossomo X , Mamíferos , Mutação de Sentido Incorreto , Doenças dos Bovinos/genética
3.
BMC Oral Health ; 24(1): 136, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280992

RESUMO

BACKGROUND: The aim of this study was to analyse the differences in the phenotypes of missing teeth between a pair of brothers with hypohidrotic ectodermal dysplasia (HED) and to investigate the underlying mechanism by comparing the mutated gene loci between the brothers with whole-exome sequencing. METHODS: The clinical data of the patients and their mother were collected, and genomic DNA was extracted from peripheral blood samples. By Whole-exome sequencing filtered for a minor allele frequency (MAF) ≤0.05 non-synonymous single-nucleotide variations and insertions/deletions variations in genes previously associated with tooth agenesis, and variations considered as potentially pathogenic were assessed by SIFT, Polyphen-2, CADD and ACMG. Sanger sequencing was performed to detect gene variations. The secondary and tertiary structures of the mutated proteins were predicted by PsiPred 4.0 and AlphaFold 2. RESULTS: Both brothers were clinically diagnosed with HED, but the younger brother had more teeth than the elder brother. An EDA variation (c.878 T > G) was identified in both brothers. Additionally, compound heterozygous variations of WNT10A (c.511C > T and c.637G > A) were identified in the elder brother. Digenic variations in EDA (c.878 T > G) and WNT10A (c.511C > T and c.637G > A) in the same patient have not been reported previously. The secondary structure of the variant WNT10A protein showed changes in the number and position of α-helices and ß-folds compared to the wild-type protein. The tertiary structure of the WNT10A variant and molecular simulation docking showed that the site and direction where WNT10A binds to FZD5 was changed. CONCLUSIONS: Compound heterozygous WNT10A missense variations may exacerbate the number of missing teeth in HED caused by EDA variation.


Assuntos
Anodontia , Displasia Ectodérmica Anidrótica Tipo 1 , Displasia Ectodérmica , Dente , Masculino , Humanos , Displasia Ectodérmica Anidrótica Tipo 1/complicações , Displasia Ectodérmica Anidrótica Tipo 1/genética , Displasia Ectodérmica/genética , Fenótipo , Anodontia/genética , Mutação , Proteínas Wnt/genética
4.
Genes Genet Syst ; 98(4): 171-178, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37673591

RESUMO

Ectodermal dysplasia (ED), which exhibits a wide range of clinical symptoms, may be classified into three major types: hypohidrotic, anhidrotic, and hidrotic. A male child (proband) showing anhidrotic dysplasia was used as the subject of this study. The biopsy of the big toe revealed that the male child had no sweat glands. Genetic analysis of the patient revealed a mutation caused by a homozygous nucleotide substitution in the EDAR-associated death domain (EDARADD) (rs114632254) gene c.439G>A (p.Gly147Arg). Phenotypically, his teeth were sharp, but eight teeth were missing (oligodontia). The patient had normal nails with dry skin, sparse hair, everted lower lip vermilion, hyperpigmented eyelids, and abnormal nasal bridge morphology around the eyes. There is also a homozygous dominant (healthy) female and a heterozygous male in this family, who are cousins (aunt children) to the heterozygous parents. The daughter of the patient was also heterozygous. This mutation represents homozygous recessive inheritance, which we describe for the first time. Furthermore, we demonstrated that this genetic disorder can be readily diagnosed using the restriction fragment length polymorphism (RFLP) method after digestion with MnII restriction endonuclease.


Assuntos
Displasia Ectodérmica Anidrótica Tipo 1 , Displasia Ectodérmica , Criança , Humanos , Masculino , Feminino , Polimorfismo de Fragmento de Restrição , Domínio de Morte , Displasia Ectodérmica Anidrótica Tipo 1/genética , Displasia Ectodérmica Anidrótica Tipo 1/patologia , Displasia Ectodérmica/genética , Mutação , Receptores da Ectodisplasina/genética
6.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108325

RESUMO

X-linked hypohidrotic ectodermal dysplasia (XLHED), caused by a genetic deficiency of ectodysplasin A1 (EDA1), is a rare developmental disorder of ectodermal derivatives such as hair, sweat glands, and teeth. The absence of sweat glands and perspiration can evoke life-threatening hyperthermia. As molecular genetic findings are not always conclusive, the concentrations of circulating EDA1 may help to distinguish between total and partial EDA1 deficiencies. We previously treated nine male patients with obvious signs of XLHED with a recombinant EDA1 replacement protein, Fc-EDA, either shortly after birth (n = 3) or by prenatal administration in gestational week 26 and beyond (n = 6). Here, we present the long-term follow-up for up to six years. In patients who had received Fc-EDA after birth, neither sweat glands nor sweating ability were detected at the age of 12-60 months. In contrast, prenatal EDA1 replacement resulted in ample sweat gland development and pilocarpine-inducible sweating in all treated subjects, who also attained more permanent teeth than their untreated affected relatives. Normal perspiration has persisted for six years in the two oldest boys treated repeatedly with Fc-EDA in utero. When they had a sauna, adequate thermoregulation was evidenced. Lower sweat production after single prenatal dosing may indicate a dose-response relationship. The absence of circulating EDA1 in five prenatally treated subjects proved that these children would have been unable to perspire if they had been left untreated. The sixth infant was shown to produce an EDA1 molecule that, albeit interacting with its cognate receptor, cannot activate EDA1 signaling. In conclusion, a causal treatment of XLHED before birth is feasible.


Assuntos
Displasia Ectodérmica Anidrótica Tipo 1 , Displasia Ectodérmica , Criança , Gravidez , Feminino , Lactente , Humanos , Masculino , Pré-Escolar , Displasia Ectodérmica Anidrótica Tipo 1/genética , Displasia Ectodérmica Anidrótica Tipo 1/terapia , Ectodisplasinas/genética , Displasia Ectodérmica/genética , Sudorese , Cabelo , Proteínas Recombinantes
7.
Arch Oral Biol ; 150: 105689, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37001412

RESUMO

OBJECTIVE: Identify the disease-causing mutation in a patient with features of X-linked hypohidrotic ectodermal dysplasia, which is a genetic disorder characterized by hypodontia, hypohidrosis and hypotrichosis. It is caused by mutations in Ectodysplasin A gene, which encodes ectodysplasin A, a member of the tumor necrosis factor superfamily. DESIGN: Genetic analysis, was performed using chromosomal microarray analysis, whole exome sequencing and multiplex ligation-dependent probe amplification analysis in a 4-year-old boy with hypohidrotic ectodermal dysplasia features. Moreover, the boy's parents were tested for clinically significant findings identified in order to elucidate the pattern of inheritance of the finding detected in the proband. RESULTS: A novel deletion of entire exon 4 in Ectodysplasin A gene identified in the 4-year-old patient. This deletion was found in heterozygous state in the mother of the proband and was not detected in his father. RNA analysis revealed an in-frame deletion r.527_706del, p.(176_236del) in exon 4 of the Ectodysplasin A gene. CONCLUSION: We identified a novel gross deletion in the Ectodysplasin A gene in a male patient with X-linked hypohidrotic ectodermal dysplasia. Clinical and molecular genetic analysis are crucial to set an accurate diagnosis in patients with hypohidrotic ectodermal dysplasia. These results highlight the importance of the collagen domain of Ectodysplasin A, encoded by exon 4, for its function in vivo.


Assuntos
Displasia Ectodérmica Anidrótica Tipo 1 , Humanos , Masculino , Pré-Escolar , Displasia Ectodérmica Anidrótica Tipo 1/genética , Ectodisplasinas/genética , Linhagem , Mutação , Éxons/genética
8.
Ital J Dermatol Venerol ; 158(1): 32-38, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36939501

RESUMO

BACKGROUND: Ectodermal dysplasias (EDs) are a large and complex group of disorders affecting the ectoderm-derived organs; the clinical and genetic heterogeneity of these conditions renders an accurate diagnosis more challenging. The aim of this study is to demonstrate the clinical utility of a targeted resequencing panel through enhancing the molecular and clinical diagnosis of EDs. Given the recent developments in gene and protein-based therapies for X-linked hypohidrotic ectodermal dysplasia, there is a re-emerging interest in identifying the genetic basis of EDs and the respective phenotypic presentations, in an aim to facilitate potential treatments for affected families. METHODS: We assessed seventeen individuals, from three unrelated families, who presented with diverse phenotypes suggestive of ED. An extensive multidisciplinary clinical evaluation was performed followed by a targeted exome resequencing panel (including genes that are known to cause EDs). MiSeqTM data software was used, variants with Qscore >30 were accepted. RESULTS: Three different previously reported hemizygous EDA mutations were found in the families. However, a complete genotype-phenotype correlation could not be established, neither in our patients nor in the previously reported patients. CONCLUSIONS: Targeted exome resequencing can provide a rapid and accurate diagnosis of EDs, while further contributing to the existing ED genetic data. Moreover, the identification of the disease-causing mutation in an affected family is crucial for proper genetic counseling and the establishment of a genotype-phenotype correlation which will subsequently provide the affected individuals with a more suitable treatment plan.


Assuntos
Displasia Ectodérmica Anidrótica Tipo 1 , Displasia Ectodérmica Hipo-Hidrótica Autossômica Recessiva , Displasia Ectodérmica , Humanos , Ectodisplasinas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Displasia Ectodérmica Anidrótica Tipo 1/diagnóstico , Displasia Ectodérmica Anidrótica Tipo 1/genética , Mutação
9.
Nat Commun ; 14(1): 767, 2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36765055

RESUMO

EDA is a tumor necrosis factor (TNF) family member, which functions together with its cognate receptor EDAR during ectodermal organ development. Mutations of EDA have long been known to cause X-linked hypohidrotic dysplasia in humans characterized by primary defects in teeth, hair and sweat glands. However, the structural information of EDA interaction with EDAR is lacking and the pathogenic mechanism of EDA variants is poorly understood. Here, we report the crystal structure of EDA C-terminal TNF homology domain bound to the N-terminal cysteine-rich domains of EDAR. Together with biochemical, cellular and mouse genetic studies, we show that different EDA mutations lead to varying degrees of ectodermal developmental defects in mice, which is consistent with the clinical observations on human patients. Our work extends the understanding of the EDA signaling mechanism, and provides important insights into the molecular pathogenesis of disease-causing EDA variants.


Assuntos
Displasia Ectodérmica Anidrótica Tipo 1 , Displasia Ectodérmica , Humanos , Camundongos , Animais , Displasia Ectodérmica Anidrótica Tipo 1/genética , Ectodisplasinas/genética , Ectodisplasinas/metabolismo , Displasia Ectodérmica/genética , Transdução de Sinais , Ectoderma/metabolismo , Mutação , Receptor Edar/genética
10.
Genes (Basel) ; 14(1)2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36672894

RESUMO

X-linked hypohidrotic ectodermal dysplasia (XLHED) is a rare genetic disorder characte-rised by abnormal development of the skin and its appendages, such as hair and sweat glands, the teeth, and mucous glands of the airways, resulting in serious, sometimes life-threatening complications like hyperthermia or recurrent respiratory infections. It is caused by pathogenic variants of the ectodysplasin A gene (EDA). Most affected males are hemizygous for EDA null mutations that lead to the absence or inactivity of the signalling protein ectodysplasin A1 (EDA1) and, thus, to the full-blown phenotype with inability to perspire and few if any teeth. There are currently no long-term treatment options for XLHED. ER004 represents a first-in-class protein replacement molecule designed for specific, high-affinity binding to the endogenous EDA1 receptor (EDAR). Its proposed mechanism of action is the replacement of missing EDA1 in yet unborn patients with XLHED. Once bound to EDAR, ER004 activates the EDA/NFκB signalling pathway, which triggers the transcription of genes involved in the normal development of multiple tissues. Following preclinical studies, named-patient use cases demonstrated significant potential of ER004 in affected males treated in utero during the late second and third trimesters of pregnancy. In order to confirm these results, we started the EDELIFE trial, a prospective, open-label, genotype-match controlled, multicentre clinical study to investigate the efficacy and safety of intra-amniotic ER004 administration as a prenatal treatment for male subjects with XLHED. This article summarises the rationale, the study protocol, ethical issues of the trial, and potential pitfalls.


Assuntos
Displasia Ectodérmica Anidrótica Tipo 1 , Displasia Ectodérmica , Feminino , Gravidez , Masculino , Humanos , Displasia Ectodérmica Anidrótica Tipo 1/genética , Estudos Prospectivos , Displasia Ectodérmica/genética , Ectodisplasinas/genética , Pele , Ensaios Clínicos Fase II como Assunto
11.
Mol Genet Genomic Med ; 11(4): e2119, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36448232

RESUMO

BACKGROUND: Hypohidrotic ectodermal dysplasia (HED) mainly results from gene mutations in the EDA/EDAR/NF-κB pathway. Function analysis of the mutations in the collagen domain of ectodysplasin A (EDA)result in HED has been rarely studied. This study aimed at determining the mechanism by which the novel collagen domain mutation of EDA results in HED. METHODS: We analyzed the DNAs from a Chinese family with HED and performed bioinformatics analysis. A new three-dimensional structure model of the EDA trimer was built and used to predict the effect of the mutations on EDA. We performed a western blot to detect EDA1 proteins in cell lysates and supernatants. We then performed coimmunoprecipitation to determine whether the mutation would affect the interaction of EDA1 with the EDA receptor (EDAR). Dual luciferase reporter assay and immunofluorescence were performed to detect the effect of the mutant EDA1 protein on nuclear factor kappa B (NF-κB) activation. RESULTS: A novel missense mutation (c.593G > A, p. Gly198Glu) in the collagen domain of EDA was detected. The mutation was predicted to be disease-causing. A three-dimensional structure model of the EDA trimer was first built in this study, in which the mutation site is located around the receptor binding domain. Functional studies showed that there was no difference in the secretion activity between the mutant EDA1 and the wild-type EDA1. However, the receptor-binding activity and the transcription activation of NF-κB were impaired by the mutation. CONCLUSION: We identified a novel mutation (c.593G > A, p. Gly198Glu) in the collagen domain of EDA. Bioinformatics analysis and functional studies showed this mutation was damaging, indicating that mutations in the collagen domain of EDA could result in HED by affecting the receptor-binding activity of EDA and the transcriptional activity of NF-κB.


Assuntos
Displasia Ectodérmica Anidrótica Tipo 1 , Displasia Ectodérmica , Doenças Dentárias , Humanos , Displasia Ectodérmica Anidrótica Tipo 1/genética , Ectodisplasinas/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Displasia Ectodérmica/genética , Mutação , Colágeno/genética
12.
J Dermatol ; 50(3): 349-356, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36258277

RESUMO

Hypohidrotic ectodermal dysplasia is a rare condition characterized by hypohidrosis, hypodontia, and hypotrichosis. The disease can show X-linked recessive, autosomal dominant or autosomal recessive inheritance trait. Of these, the autosomal forms are caused by mutations in either EDAR or EDARADD. To date, the underlying pathomechanisms or genotype-phenotype correlations for autosomal forms have not completely been disclosed. In this study, we performed a series of in vitro studies for four missense mutations in the death domain of EDAR protein: p.R358Q, p.G382S, p.I388T, and p.T403M. The results revealed that p.R358Q- and p.T403M-mutant EDAR showed different expression patterns from wild-type EDAR in both western blots and immunostainings. NF-κB reporter assays demonstrated that all the mutant EDAR showed reduced activation of NF-κB, but the reduction by p.G382S- and p.I388T-mutant EDAR was moderate. Co-immunoprecipitation assays showed that p.R358Q- and p.T403M-mutant EDAR did not bind with EDARADD at all, whereas p.G382S- and p.I388T-mutant EDAR maintained the affinity to some extent. Furthermore, we demonstrated that all the mutant EDAR proteins analyzed aberrantly bound with TRAF6. Sum of the data suggest that the degree of loss-of-function is different among the mutant EDAR proteins, which may be associated with the severity of the disease.


Assuntos
Displasia Ectodérmica Anidrótica Tipo 1 , Displasia Ectodérmica , Humanos , Mutação de Sentido Incorreto , Displasia Ectodérmica Anidrótica Tipo 1/diagnóstico , Displasia Ectodérmica Anidrótica Tipo 1/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Receptor Edar/genética , Receptor Edar/metabolismo , Displasia Ectodérmica/genética , Mutação
14.
Genes (Basel) ; 15(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275590

RESUMO

Mutations within the ectodysplasin A (EDA) gene have been associated with congenital hypotrichosis and anodontia (HAD/XHED) in humans, mice, dogs and cattle. We identified a three-generation family of Fleckvieh cattle with male calves exhibiting clinical and histopathological signs consistent with an X-linked recessive HAD (XHED). Whole genome and Sanger sequencing of cDNA showed a perfect association of the missense mutation g.85716041G>A (ss2019497443, rs1114816375) within the EDA gene with all three cases following an X-linked recessive inheritance, but normal EDAR and EDARADD. This mutation causes an exchange of glycine (G) with arginine (R) at amino acid position 227 (p.227G>R) in the second collagen triple helix repeat domain of EDA. The EDA variant was associated with a significant reduction and underdevelopment of hair follicles along with a reduced outgrowth of hairs, a complete loss of seromucous nasolabial and mucous tracheal and bronchial glands and a malformation of and reduction in number of teeth. Thermostability of EDA G227R was reduced, consistent with a relatively mild hair and tooth phenotype. However, incisors and canines were more severely affected in one of the calves, which correlated with the presence of a homozygous missense mutation of RNF111 (g.51306765T>G), a putative candidate gene possibly associated with tooth number in EDA-deficient Fleckvieh calves.


Assuntos
Displasia Ectodérmica Anidrótica Tipo 1 , Displasia Ectodérmica , Hipotricose , Deformidades Congênitas dos Membros , Animais , Bovinos , Masculino , Camundongos , Displasia Ectodérmica/genética , Displasia Ectodérmica Anidrótica Tipo 1/genética , Mutação , Mutação de Sentido Incorreto
15.
Acta Vet Scand ; 64(1): 23, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068608

RESUMO

BACKGROUND: Hypohidrotic ectodermal dysplasia (HED) is a congenital syndrome of mammals affecting organs and tissues of ectodermal origin characterized by absence or hypoplasia of hair, teeth, and eccrine glands. The disorder has been reported in several species, including humans, mice, dogs and cattle, associated with variants in genes affecting the ectodysplasin pathway, including the X-linked ectodysplasin A (EDA) gene. Until now, nine pathogenic variants have been found in the bovine EDA gene. Here we report a novel variant in EDA in a crossbreed male Belgian Blue calf with HED, and provide an overview of the phenotypic and allelic heterogeneity of EDA-related forms of HED in cattle. CASE PRESENTATION: A 45-day-old male crossbreed British Blue calf was referred with congenital hypotrichosis, oligodontia and omphalitis. On histopathological examination of the nasal planum, nasolabial glands and ducts were not observed. The density of hair follicles was low, and they were small, with a predominance of telogen-phase hairs, and some serocellular crusts. The phenotype of the calf resembled that of HED. Whole-genome sequencing (WGS) was performed and revealed a 21,899 base-pair deletion encompassing the coding exon 2 of EDA, predicted to result in an altered transcript and aberrant protein. CONCLUSIONS: The clinicopathological and genetic findings were consistent with a case of X-linked HED. A very similar EDA deletion has been previously reported in a family of Holstein cattle with HED. The newly identified hemizygous EDA loss-of-function variant is certainly pathogenic and therefore is the genetic cause for the observed phenotype. This case report provides an additional example of the potential of WGS-based precise diagnostics in livestock species such as cattle to increase the diagnostic yield in rare diseases.


Assuntos
Doenças dos Bovinos , Displasia Ectodérmica Anidrótica Tipo 1 , Displasia Ectodérmica , Animais , Bovinos , Doenças dos Bovinos/genética , Displasia Ectodérmica/genética , Displasia Ectodérmica/veterinária , Displasia Ectodérmica Anidrótica Tipo 1/genética , Displasia Ectodérmica Anidrótica Tipo 1/patologia , Displasia Ectodérmica Anidrótica Tipo 1/veterinária , Ectodisplasinas/genética , Éxons , Masculino , Fenótipo
18.
J Eur Acad Dermatol Venereol ; 36(10): 1863-1870, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35611639

RESUMO

BACKGROUND: In X-linked hypohidrotic ectodermal dysplasia (XLHED), ectodysplasin A1 (EDA1) deficiency results in malformation of hair, teeth and sweat glands. Lack of sweating which can cause life-threatening hyperthermia is amenable to intrauterine therapy with recombinant EDA1. OBJECTIVES: This study aimed at evaluating reproductive decision-making by women with XLHED and at clarifying the potential impact of a prenatal treatment option. METHODS: In a retrospective cross-sectional analysis, a 75-item questionnaire filled in by 50 women with XLHED (age 19-49 years) was assessed. RESULTS: Sixteen women (32%) prevented pregnancies because of the risk to pass on XLHED; 15 considered assisted reproduction for the same reason. Twelve women had a history of miscarriage, stillbirth or abortion, and three women reported on previous abortion of affected fetuses. When imagining to be pregnant, all except one showed interest in prenatal diagnosis of XLHED and in the possibility of treatment before birth. In 13 out of 50 women (26%), XLHED if detected prenatally would have impact on the continuation of pregnancy. Among 35 mothers of at least one affected child, XLHED had rarely been diagnosed during the first pregnancy (17%) but regularly during subsequent pregnancies (77%). Becoming aware of the condition before birth had caused a moral conflict for 50% of these women. Subjects with an affected child less frequently considered assisted reproduction to prevent XLHED (P < 0.05). In 69% of the women who reported an effect of XLHED on family planning, a prenatal treatment option for this disease would influence their decision-making. CONCLUSIONS: Many pregnant XLHED carriers who seek prenatal diagnosis experience moral conflicts. A prenatal treatment option would have strong impact on reproductive decisions, underlining the importance of adequate professional counselling.


Assuntos
Tomada de Decisões , Displasia Ectodérmica Anidrótica Tipo 1 , Deformidades Congênitas dos Membros , Adulto , Estudos Transversais , Displasia Ectodérmica Anidrótica Tipo 1/genética , Ectodisplasinas , Feminino , Humanos , Pessoa de Meia-Idade , Gravidez , Reprodução , Estudos Retrospectivos , Adulto Jovem
19.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 57(2): 155-161, 2022 Feb 09.
Artigo em Chinês | MEDLINE | ID: mdl-35152651

RESUMO

Objective: To detect gene mutation in patients with hypohidrotic ectodermal dysplasia (HED) by using whole exome sequencing, to analyze the pathogenicity of the mutations, and to provide reference for the genetic diagnosis of HED patients. Methods: Peripheral blood genomic DNA was extracted from each of the HED patients and their family members collected in Peking University School and Hospital of Stomatology from August 2016 to August 2021. Whole exome sequencing and sanger sequencing were performed to detect gene mutations. Functions of the rare variants after the database filtering were analyzed by bioinformatics tools. Results: Three reported mutations of ectodysplasin A (EDA) gene (c.2T>C, c.161A>G, c.467G>A) and a mutation of ectodysplasin A receptor (EDAR) gene (c.871G>A) were detected by whole genome sequencing in four HED patients, and were verified by Sanger sequencing in four HED families. The EDAR gene mutation founded in this research was reported in HED patients for the first time. Bioinformatics tools predicted that the mutations of EDA gene detected in this study were highly species conserved and disease-causing. The combined annotation dependent depletion (CADD) scores of EDA gene mutations c.2T>C, c.161A>G and c.467G>A were 22.5, 26.3 and 25.5 respectively, and the genomic evolutionary rate profiling (GERP) scores were 2.16, 2.26 and 2.18 respectively. The EDAR gene mutation c.871G>A detected in this study was species conserved and possibly disease-causing. The CADD and GERP scores of EDAR gene mutation c.871G>A were 22.0 and 1.93 respectively. Conclusions: Three reported mutations of EDA gene and a previously unreported mutation of EDAR gene were detected in four HED families. Different mutations of EDA gene and EDAR gene could make different influence on the protein function and lead to the occurrence of HED.


Assuntos
Displasia Ectodérmica Anidrótica Tipo 1 , Displasia Ectodérmica , Displasia Ectodérmica/genética , Displasia Ectodérmica Anidrótica Tipo 1/genética , Receptor Edar/genética , Humanos , Mutação , Linhagem , Sequenciamento do Exoma
20.
J Cell Biochem ; 123(2): 431-449, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34817077

RESUMO

X-linked hypohidrotic dysplasia (XLHED), caused by mutations in the EDA gene, is a rare genetic disease that affects the development and function of the teeth, hair, nails, and sweat glands. The structural and functional consequences of caused by an ectodysplasin-A (EDA) mutations on protein phenotype, stability, and posttranslational modifications (PTMs) have not been well investigated. The present investigation involves five missense mutations that cause XLHED (L56P, R155C, P220L, V251M, and V322A) in different domains of EDA (TM, furin, collagen, and tumor necrosis factor [TNF]) from previously published papers. The deleterious nature of EDA mutant variants was identified using several computational algorithm tools. The point mutations induce major drifts in the structural flexibility of EDA mutant variants and have a negative impact on their stability, according to the 3D protein modeling tool assay. Using the molecular docking technique, EDA/EDA variants were docked to 10 EDA interacting partners, retrieved from the STRING database. We found a novel biomarker CD68 by molecular docking analysis, suggesting all five EDA variants had lower affinity for EDAR, EDA2R, and CD68, implying that they would affect embryonic signaling between the ectodermal and mesodermal cell layers. In silico research such as gene ontology, subcellular localization, protein-protein interaction, and PTMs investigations indicates major functional alterations would occur in EDA variants. According to molecular simulations, EDA variants influence the structural conformation, compactness, stiffness, and function of the EDA protein. Further studies on cell line and animal models might be useful in determining their specific roles in functional annotations.


Assuntos
Biologia Computacional , Displasia Ectodérmica Anidrótica Tipo 1/genética , Ectodisplasinas/química , Ectodisplasinas/genética , Simulação de Acoplamento Molecular , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Displasia Ectodérmica Anidrótica Tipo 1/metabolismo , Ectodisplasinas/metabolismo , Humanos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...