Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Biomolecules ; 14(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540676

RESUMO

Dysferlinopathies refer to a spectrum of muscular dystrophies that cause progressive muscle weakness and degeneration. They are caused by mutations in the DYSF gene, which encodes the dysferlin protein that is crucial for repairing muscle membranes. This review delves into the clinical spectra of dysferlinopathies, their molecular mechanisms, and the spectrum of emerging therapeutic strategies. We examine the phenotypic heterogeneity of dysferlinopathies, highlighting the incomplete understanding of genotype-phenotype correlations and discussing the implications of various DYSF mutations. In addition, we explore the potential of symptomatic, pharmacological, molecular, and genetic therapies in mitigating the disease's progression. We also consider the roles of diet and metabolism in managing dysferlinopathies, as well as the impact of clinical trials on treatment paradigms. Furthermore, we examine the utility of animal models in elucidating disease mechanisms. By culminating the complexities inherent in dysferlinopathies, this write up emphasizes the need for multidisciplinary approaches, precision medicine, and extensive collaboration in research and clinical trial design to advance our understanding and treatment of these challenging disorders.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Animais , Proteínas Musculares/genética , Proteínas de Membrana/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/terapia , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Distrofias Musculares/genética , Mutação
2.
Skelet Muscle ; 14(1): 3, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38389096

RESUMO

BACKGROUND: Human iPSC-derived 3D-tissue-engineered-skeletal muscles (3D-TESMs) offer advanced technology for disease modelling. However, due to the inherent genetic heterogeneity among human individuals, it is often difficult to distinguish disease-related readouts from random variability. The generation of genetically matched isogenic controls using gene editing can reduce variability, but the generation of isogenic hiPSC-derived 3D-TESMs can take up to 6 months, thereby reducing throughput. METHODS: Here, by combining 3D-TESM and shRNA technologies, we developed a disease modelling strategy to induce distinct genetic deficiencies in a single hiPSC-derived myogenic progenitor cell line within 1 week. RESULTS: As proof of principle, we recapitulated disease-associated pathology of Duchenne muscular dystrophy and limb-girdle muscular dystrophy type 2A caused by loss of function of DMD and CAPN3, respectively. shRNA-mediated knock down of DMD or CAPN3 induced a loss of contractile function, disruption of tissue architecture, and disease-specific proteomes. Pathology in DMD-deficient 3D-TESMs was partially rescued by a candidate gene therapy treatment using micro-dystrophin, with similar efficacy compared to animal models. CONCLUSIONS: These results show that isogenic shRNA-based humanized 3D-TESM models provide a fast, cheap, and efficient tool to model muscular dystrophies and are useful for the preclinical evaluation of novel therapies.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofia Muscular de Duchenne , Animais , Humanos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/terapia , Distrofia Muscular do Cíngulo dos Membros/patologia , Contração Muscular , RNA Interferente Pequeno
3.
Nat Med ; 30(1): 199-206, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177855

RESUMO

Limb-girdle muscular dystrophy 2E/R4 is caused by mutations in the ß-sarcoglycan (SGCB) gene, leading to SGCB deficiency and consequent muscle loss. We developed a gene therapy approach based on functional replacement of the deficient SCB protein. Here we report interim results from a first-in-human, open-label, nonrandomized, phase 1/2 trial evaluating the safety and efficacy of bidridistrogene xeboparvovec, an adeno-associated virus-based gene therapy containing a codon-optimized, full-length human SGCB transgene. Patients aged 4-15 years with confirmed SGCB mutations at both alleles received one intravenous infusion of either 1.85 × 1013 vector genome copies kg-1 (Cohort 1, n = 3) or 7.41 × 1013 vector gene copies kg-1 (Cohort 2, n = 3). Primary endpoint was safety, and secondary endpoint was change in SGCB expression in skeletal muscle from baseline to Day 60. We report interim Year 2 results (trial ongoing). The most frequent treatment-related adverse events were vomiting (four of six patients) and gamma-glutamyl transferase increase (three of six patients). Serious adverse events resolved with standard therapies. Robust SGCB expression was observed: Day 60 mean (s.d.) percentage of normal expression 36.2% (2.7%) in Cohort 1 and 62.1% (8.7%) in Cohort 2. Post hoc exploratory analysis showed preliminary motor improvements using the North Star Assessment for Limb-girdle Type Muscular Dystrophies maintained through Year 2. The 2-year safety and efficacy of bidridistrogene xeboparvovec support clinical development advancement. Further studies are necessary to confirm the long-term safety and efficacy of this gene therapy. ClinicalTrials.gov registration: NCT03652259 .


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Sarcoglicanopatias , Humanos , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Distrofia Muscular do Cíngulo dos Membros/terapia , Sarcoglicanopatias/genética , Sarcoglicanopatias/metabolismo , Sarcoglicanopatias/terapia , Músculo Esquelético/metabolismo , Terapia Genética/efeitos adversos , Terapia Genética/métodos
4.
J Neurol Neurosurg Psychiatry ; 95(5): 442-453, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38124127

RESUMO

INTRODUCTION: Management of muscular dystrophies (MD) relies on conservative non-pharmacological treatments, but evidence of their effectiveness is limited and inconclusive. OBJECTIVE: To investigate the effectiveness of conservative non-pharmacological interventions for MD physical management. METHODS: This systematic review and meta-analysis followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and searched Medline, CINHAL, Embase, AMED and Cochrane Central Register of Controlled Trial (inception to August 2022). Effect size (ES) and 95% Confidence Interval (CI) quantified treatment effect. RESULTS: Of 31,285 identified articles, 39 studies (957 participants), mostly at high risk of bias, were included. For children with Duchenne muscular dystrophy (DMD), trunk-oriented strength exercises and usual care were more effective than usual care alone in improving distal upper-limb function, sitting and dynamic reaching balance (ES range: 0.87 to 2.29). For adults with Facioscapulohumeral dystrophy (FSHD), vibratory proprioceptive assistance and neuromuscular electrical stimulation respectively improved maximum voluntary isometric contraction and reduced pain intensity (ES range: 1.58 to 2.33). For adults with FSHD, Limb-girdle muscular dystrophy (LGMD) and Becker muscular dystrophy (BMD), strength-training improved dynamic balance (sit-to-stand ability) and self-perceived physical condition (ES range: 0.83 to 1.00). A multicomponent programme improved perceived exertion rate and gait in adults with Myotonic dystrophy type 1 (DM1) (ES range: 0.92 to 3.83). CONCLUSIONS: Low-quality evidence suggests that strength training, with or without other exercise interventions, may improve perceived exertion, distal upper limb function, static and dynamic balance, gait and well-being in MD. Although more robust and larger studies are needed, current evidence supports the inclusion of strength training in MD treatment, as it was found to be safe.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofia Muscular de Duchenne , Distrofia Muscular Facioescapuloumeral , Distrofia Miotônica , Adulto , Criança , Humanos , Distrofia Muscular do Cíngulo dos Membros/terapia , Exercício Físico
5.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686363

RESUMO

Dysferlinopathy treatment is an active area of investigation. Gene therapy is one potential approach. We studied muscle regeneration and inflammatory response after injection of an AAV-9 with a codon-optimized DYSF gene. A dual-vector system AAV.DYSF.OVERLAP with overlapping DYSF cDNA sequences was generated. Two AAV vectors were separately assembled by a standard triple-transfection protocol from plasmids carrying parts of the DYSF gene. Artificial myoblasts from dysferlin-deficient fibroblasts were obtained by MyoD overexpression. RT-PCR and Western blot were used for RNA and protein detection in vitro. A dysferlinopathy murine model (Bla/J) was used for in vivo studies. Histological assay, morphometry, and IHC were used for the muscle tissue analysis. Dysferlin was detected in vitro and in vivo at subphysiological levels. RT-PCR and Western Blot detected dysferlin mRNA and protein in AAV.DYSF.OVERLAP-transduced cells, and mRNA reached a 7-fold elevated level compared to the reference gene (GAPDH). In vivo, the experimental group showed intermediate median values for the proportion of necrotic muscle fibers, muscle fibers with internalized nuclei, and cross-sectional area of muscle fibers compared to the same parameters in the control groups of WT and Bla/J mice, although the differences were not statistically significant. The inverse relationship between the dosage and the severity of inflammatory changes in the muscles may be attributed to the decrease in the number of necrotic fibers. The share of transduced myofibers reached almost 35% in the group with the highest dose. The use of two-vector systems based on AAV is justified in terms of therapeutic efficacy. The expression of dysferlin at a subphysiological level, within a short observation period, is capable of inducing the restoration of muscle tissue structure, reducing inflammatory activity, and mitigating necrotic processes. Further research is needed to provide a more detailed assessment of the impact of the transgene and viral vector on the inflammatory component, including longer observation periods.


Assuntos
Dependovirus , Distrofia Muscular do Cíngulo dos Membros , Animais , Camundongos , Dependovirus/genética , Disferlina/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/terapia , Códon , Fibras Musculares Esqueléticas , RNA Mensageiro
6.
Curr Opin Neurol ; 36(5): 432-440, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678339

RESUMO

PURPOSE OF REVIEW: Missense mutations in valosin-containing protein (VCP) can lead to a multisystem proteinopathy 1 (MSP1) with any combination of limb-girdle distribution inclusion body myopathy (IBM) (present in about 90% of cases), Paget's disease of bone, and frontotemporal dementia (IBMPFD). VCP mutations lead to gain of function activity with widespread disarray in cellular function, with enhanced ATPase activity, increased binding with its cofactors, and reduced mitofusin levels. RECENT FINDINGS: This review highlights novel therapeutic approaches in VCP-MSP in in-vitro and in-vivo models. Furthermore, we also discuss therapies targeting mitochondrial dysfunction, autophagy, TDP-43 pathways, and gene therapies in other diseases with similar pathway involvement which can also be applicable in VCP-MSP. SUMMARY: Being a rare disease, it is challenging to perform large-scale randomized control trials (RCTs) in VCP-MSP. However, it is important to recognize potential therapeutic targets, and assess their safety and efficacy in preclinical models, to initiate RCTs for potential therapies in this debilitating disease.


Assuntos
Demência Frontotemporal , Distrofia Muscular do Cíngulo dos Membros , Humanos , Proteína com Valosina/genética , Demência Frontotemporal/genética , Demência Frontotemporal/terapia , Terapia Genética , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/terapia
7.
Bull Exp Biol Med ; 174(6): 768-773, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37160600

RESUMO

We studied the effects of a dual-vector DYSF gene delivery system based on adeno-associated virus serotype 9 capsids on pathological manifestations of dysferlinopathy in skeletal muscles of Bla/J mice lacking DYSF expression. The mice received intravenous injection of 3×1013 genomic copies of the virus containing the dual-vector system. M. gastrocnemius, m. psoas major, m. vastus lateralis, and m. gluteus superficialis were isolated for histological examination in 3, 6, and 12 weeks after treatment. Healthy wild-type (C57BL/6) mice served as positive control and were sacrificed 3 weeks after injection of 150 µl of 0.9% NaCl into the caudal vein. To detect dysferlin in muscle cryosections, immunohistochemical analysis with diagnostic antibodies was performed; paraffin sections were stained with hematoxylin and eosin for morphometric analysis. After administration of gene-therapeutic constructs, muscle fibers with membrane or cytoplasmic dysferlin location were detected in all examined muscles. The proportion of necrotic muscle fibers decreased, the number of muscle fibers with central location of the nucleus increased, and the mean cross-section area of the muscle fibers decreased.


Assuntos
Músculo Esquelético , Distrofia Muscular do Cíngulo dos Membros , Camundongos , Animais , Disferlina/genética , Disferlina/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/terapia , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Técnicas de Transferência de Genes
8.
Ann Clin Transl Neurol ; 10(5): 686-695, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37026610

RESUMO

Valosin-containing protein (VCP)-associated multisystem proteinopathy (MSP) is a rare genetic disorder with abnormalities in the autophagy pathway leading to various combinations of myopathy, bone diseases, and neurodegeneration. Ninety percent of patients with VCP-associated MSP have myopathy, but there is no consensus-based guideline. The goal of this working group was to develop a best practice set of provisional recommendations for VCP myopathy which can be easily implemented across the globe. As an initiative by Cure VCP Disease Inc., a patient advocacy organization, an online survey was initially conducted to identify the practice gaps in VCP myopathy. All prior published literature on VCP myopathy was reviewed to better understand the different aspects of management of VCP myopathy, and several working group sessions were conducted involving international experts to develop this provisional recommendation. VCP myopathy has a heterogeneous clinical phenotype and should be considered in patients with limb-girdle muscular dystrophy phenotype, or any myopathy with an autosomal dominant pattern of inheritance. Genetic testing is the only definitive way to diagnose VCP myopathy, and single-variant testing in the case of a known familial VCP variant, or multi-gene panel sequencing in undifferentiated cases can be considered. Muscle biopsy is important in cases of diagnostic uncertainty or lack of a definitive pathogenic genetic variant since rimmed vacuoles (present in ~40% cases) are considered a hallmark of VCP myopathy. Electrodiagnostic studies and magnetic resonance imaging can also help rule out disease mimics. Standardized management of VCP myopathy will optimize patient care and help future research initiatives.


Assuntos
Doenças Musculares , Distrofia Muscular do Cíngulo dos Membros , Deficiências na Proteostase , Humanos , Proteína com Valosina/genética , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Doenças Musculares/terapia , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/terapia , Fenótipo
9.
Fortschr Neurol Psychiatr ; 91(4): 164-168, 2023 Apr.
Artigo em Alemão | MEDLINE | ID: mdl-36347473

RESUMO

Several types of molecular therapy have become a novel opportunity in the precision treatment of hereditary neuromuscular disorders. This cursive review of gene therapy in hereditary myopathies will focus on selected current phase 1 to 3 trials of common adult hereditary myopathies such as Becker muscular dystrophy, facioscapulohumeral muscular dystrophy, calpainopathy, and dysferlinopathy. The treatment options for Pompe disease serve as an example for hereditary metabolic myopathies.


Assuntos
Doenças Musculares , Distrofia Muscular do Cíngulo dos Membros , Doenças Neuromusculares , Adulto , Humanos , Terapia Genética , Doenças Musculares/genética , Doenças Musculares/terapia , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/terapia , Doenças Neuromusculares/terapia
10.
Continuum (Minneap Minn) ; 28(6): 1698-1714, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36537976

RESUMO

PURPOSE OF REVIEW: The limb-girdle muscular dystrophies (LGMDs) are a group of inherited muscle disorders with a common feature of limb-girdle pattern of weakness, caused by over 29 individual genes. This article describes the classification scheme, common subtypes, and the management of individuals with LGMD. RECENT FINDINGS: Advances in genetic testing and next-generation sequencing panels containing all of the LGMD genes have led to earlier genetic confirmation, but also to more individuals with variants of uncertain significance. The LGMDs include disorders with autosomal recessive inheritance, which are often due to loss-of-function mutations in muscle structural or repair proteins and typically have younger ages of onset and more rapidly progressive presentations, and those with autosomal dominant inheritance, which can have older ages of presentation and chronic progressive disease courses. All cause progressive disability and potential loss of ability to walk or maintain a job due to progressive muscle wasting. Certain mutations are associated with cardiac or respiratory involvement. No disease-altering therapies have been approved by the US Food and Drug Administration (FDA) for LGMDs and standard treatment uses a multidisciplinary clinic model, but recessive LGMDs are potentially amenable to systemic gene replacement therapies, which are already being tested in clinical trials for sarcoglycan and FKRP mutations. The dominant LGMDs may be amenable to RNA-based therapeutic approaches. SUMMARY: International efforts are underway to better characterize LGMDs, help resolve variants of uncertain significance, provide consistent and improved standards of care, and prepare for future clinical trials.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Humanos , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/terapia , Mutação , Testes Genéticos , Terapia Genética , Instituições de Assistência Ambulatorial , Pentosiltransferases/genética
11.
J Clin Invest ; 132(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34981776

RESUMO

Efficient sarcolemmal repair is required for muscle cell survival, with deficits in this process leading to muscle degeneration. Lack of the sarcolemmal protein dysferlin impairs sarcolemmal repair by reducing secretion of the enzyme acid sphingomyelinase (ASM), and causes limb girdle muscular dystrophy 2B (LGMD2B). The large size of the dysferlin gene poses a challenge for LGMD2B gene therapy efforts aimed at restoring dysferlin expression in skeletal muscle fibers. Here, we present an alternative gene therapy approach targeting reduced ASM secretion, the consequence of dysferlin deficit. We showed that the bulk endocytic ability is compromised in LGMD2B patient cells, which was addressed by extracellularly treating cells with ASM. Expression of secreted human ASM (hASM) using a liver-specific adeno-associated virus (AAV) vector restored membrane repair capacity of patient cells to healthy levels. A single in vivo dose of hASM-AAV in the LGMD2B mouse model restored myofiber repair capacity, enabling efficient recovery of myofibers from focal or lengthening contraction-induced injury. hASM-AAV treatment was safe, attenuated fibro-fatty muscle degeneration, increased myofiber size, and restored muscle strength, similar to dysferlin gene therapy. These findings elucidate the role of ASM in dysferlin-mediated plasma membrane repair and to our knowledge offer the first non-muscle-targeted gene therapy for LGMD2B.


Assuntos
Dependovirus , Terapia Genética , Vetores Genéticos , Fígado/enzimologia , Distrofia Muscular do Cíngulo dos Membros , Esfingomielina Fosfodiesterase , Animais , Linhagem Celular Transformada , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Mutantes , Distrofia Muscular do Cíngulo dos Membros/enzimologia , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/terapia , Esfingomielina Fosfodiesterase/biossíntese , Esfingomielina Fosfodiesterase/genética
12.
Neurodegener Dis Manag ; 11(5): 411-429, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34472379

RESUMO

Limb-girdle muscular dystrophies (LGMDs) represent a major group of muscle disorders. Treatment is sorely needed and currently expanding based on safety and efficacy adopting principles of single-dosing gene therapy for monogenic autosomal recessive disorders. Gene therapy has made in-roads for LGMD and this review describes progress that has been achieved for these conditions. This review first provides a background on the definition and classification of LGMDs. The major effort focuses on progress in LGMD gene therapy, from experimental studies to clinical trials. The disorders discussed include the LGMDs where the most work has been done including calpainopathies (LGMD2A/R1), dysferlinopathies (LGMD2B/R2) and sarcoglycanopathies (LGMD2C/R5, LGMD2D/R3, LGMD2E/R4). Early success in clinical trials provides a template to move the field forward and potentially apply emerging technology like CRISPR/Cas9 that may enhance the scope and efficacy of gene therapy applied to patient care.


Lay abstract Limb-girdle muscular dystrophy is a term that is applied to a group of relatively rare forms of muscular dystrophy. The term 'LGMD' was introduced in the 1950's, but there were no strict rules for defining the condition. This changed as a result of the 229th European Neuromuscular Center International Workshop in 2017 providing a clear definition and classification discussed in this article. Limb-girdle muscular dystrophy is now recognized as a genetic muscle disease with an elevated serum creatine kinase and dystrophic changes on muscle histology. Most treatments up to now rely on supportive measures for heart and lungs and assisting the physical limitations. Medications have not proven to be beneficial to stop progression of disease. This article focuses on new innovations of treatment that target the effected gene and the use special methods to replace the abnormal gene.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Sarcoglicanopatias , Humanos , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/terapia
13.
Acta Myol ; 40(2): 101-104, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34355127

RESUMO

We describe the case of a 56-year-old-man with limb-girdle muscular dystrophy affected by acute hypercapnic failure secondary to pneumonia treated with high flow nasal cannula, intermittent abdominal ventilation, and negative pressure ventilation. The patient did not tolerate noninvasive positive pressure ventilation and refused invasive ventilation and tracheostomy. We successfully experienced a novel approach combining high flow nasal cannula with cycles of intermittent abdominal pressure ventilation and negative pressure ventilation.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Ventilação não Invasiva , Insuficiência Respiratória , Cânula , Humanos , Pessoa de Meia-Idade , Distrofia Muscular do Cíngulo dos Membros/complicações , Distrofia Muscular do Cíngulo dos Membros/terapia , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/terapia
14.
J Neuromuscul Dis ; 8(s2): S359-S367, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34151854

RESUMO

This review recollects my initial research focus on revertant fibers (expressing dystrophin in the background of frame-shifting mutation) in Duchenne muscular dystrophy (DMD) muscles in Professor Terrence Partridge's Muscle Cell Biology Laboratory in MRC Clinical Research Science Center, Harmmersmith Hospital, London, UK. Our data indicated that revertant fibers are most likely resulted from epigenetic random events which skip exon(s) flanking the mutated exon, leading to the restoration of the reading frame. Some of these events establish themselves as relatively permanent skipping patterns, a mechanism similar to multiple transcript species established in various cell types. With this hypothesis, antisense oligonucleotide-mediated exon skipping is likely to have a great chance to achieve restoration of therapeutic levels of dystrophin in DMD muscles. This leads to our first reports of local and systemic efficacy of antisense oligonucleotide-mediated exon skipping for DMD treatment. The experience under Terry's mentorship shaped my thinking and led me to explore another revertant feature in the dystroglycanopathy caused by mutations in the Fukutin Related Protein (FKRP) gene which functions as a glycosyltransferase. Mutant FKRPs retain partial function and produce a fraction of normal to no detectable levels of laminin-binding α-dystroglycan (matriglycan) in most of the muscle fibers. Reversion to near normal levels of matriglycan expression in muscles with FKRP mutations depends on muscle regeneration and in muscles of neonate mice, suggesting that changes in metabolism and gene expression could be sufficient to compensate for the reduced function of mutant FKRP genes even those associated with severe congenital muscular dystrophy (CMD). This is now supported by our successful demonstration that supply of FKRP mutant mice with ribitol, a precursor for substrate of FKRP, is sufficient to restore the levels of matriglycan with therapeutic significance. Our data overall suggest that rare events of reversion in muscular dystrophy, and likely other diseases could provide unique insight for mechanisms and therapeutic exploitation.


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Duchenne/terapia , Animais , Éxons , Terapia Genética/métodos , Humanos , Camundongos , Distrofia Muscular do Cíngulo dos Membros/terapia , Mutação , Pentosiltransferases
15.
Protein J ; 40(4): 466-488, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34110586

RESUMO

The limb-girdle muscular dystrophies (LGMD) are a collection of genetic diseases united in their phenotypical expression of pelvic and shoulder area weakness and wasting. More than 30 subtypes have been identified, five dominant and 26 recessive. The increase in the characterization of new genotypes in the family of LGMDs further adds to the heterogeneity of the disease. Meanwhile, better understanding of the phenotype led to the reconsideration of the disease definition, which resulted in eight old subtypes to be no longer recognized officially as LGMD and five new diseases to be added to the LGMD family. The unique variabilities of LGMD stem from genetic mutations, which then lead to protein and ultimately muscle dysfunction. Herein, we review the LGMD pathway, starting with the genetic mutations that encode proteins involved in muscle maintenance and repair, and including the genotype-phenotype relationship of the disease, the epidemiology, disease progression, burden of illness, and emerging treatments.


Assuntos
Genótipo , Distrofia Muscular do Cíngulo dos Membros/classificação , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação , Humanos , Distrofia Muscular do Cíngulo dos Membros/epidemiologia , Distrofia Muscular do Cíngulo dos Membros/terapia
16.
JCI Insight ; 6(10)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33848270

RESUMO

Skeletal muscle can regenerate from muscle stem cells and their myogenic precursor cell progeny, myoblasts. However, precise gene editing in human muscle stem cells for autologous cell replacement therapies of untreatable genetic muscle diseases has not yet been reported. Loss-of-function mutations in SGCA, encoding α-sarcoglycan, cause limb-girdle muscular dystrophy 2D/R3, an early-onset, severe, and rapidly progressive form of muscular dystrophy affecting both male and female patients. Patients suffer from muscle degeneration and atrophy affecting the limbs, respiratory muscles, and heart. We isolated human muscle stem cells from 2 donors, with the common SGCA c.157G>A mutation affecting the last coding nucleotide of exon 2. We found that c.157G>A is an exonic splicing mutation that induces skipping of 2 coregulated exons. Using adenine base editing, we corrected the mutation in the cells from both donors with > 90% efficiency, thereby rescuing the splicing defect and α-sarcoglycan expression. Base-edited patient cells regenerated muscle and contributed to the Pax7+ satellite cell compartment in vivo in mouse xenografts. Here, we provide the first evidence to our knowledge that autologous gene-repaired human muscle stem cells can be harnessed for cell replacement therapies of muscular dystrophies.


Assuntos
Edição de Genes/métodos , Músculo Esquelético/citologia , Mutação/genética , Mioblastos/citologia , Sarcoglicanas/genética , Adolescente , Animais , Sistemas CRISPR-Cas , Terapia Baseada em Transplante de Células e Tecidos , Criança , Feminino , Xenoenxertos , Humanos , Masculino , Camundongos , Desenvolvimento Muscular/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/terapia , Mioblastos/metabolismo , Sarcoglicanas/metabolismo
17.
Hum Gene Ther ; 32(7-8): 390-404, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33349138

RESUMO

Limb-girdle muscular dystrophy type 2D/R3 (LGMD2D/R3) is a progressive muscular dystrophy that manifests with muscle weakness, respiratory abnormalities, and in rare cases cardiomyopathy. LGMD2D/R3 is caused by mutations in the SGCA gene resulting in loss of protein and concomitant loss of some or all components of the dystrophin-associated glycoprotein complex. The sgca-null (sgca-/-) mouse recapitulates the clinical phenotype of patients with LGMD2D/R3, including dystrophic features such as muscle necrosis and fibrosis, elevated serum creatine kinase (CK), and reduction in the generation of absolute muscle force and locomotor activity. Thus, sgca-/- mice provide a relevant model to test the safety and efficacy of gene transfer. We designed a self-complementary AAVrh74 vector containing a codon-optimized full-length human SGCA (hSGCA) transgene driven by a muscle-specific promoter, shortened muscle creatine kinase (tMCK). In this report, we test the efficacy and safety of scAAVrh74.tMCK.hSGCA in sgca-/- mice using a dose-escalation design to evaluate a single systemic injection of 1.0 × 1012, 3.0 × 1012, and 6.0 × 1012 vg total dose compared with vehicle-treatment and wild-type mice. In sgca-/- mice, treatment with scAAVrh74.tMCK.hSGCA resulted in robust expression of α-sarcoglycan protein at the sarcolemma membrane in skeletal muscle at all doses tested. In addition, scAAVrh74.tMCK.hSGCA was effective in improving the histopathology of limb and diaphragm muscle of sgca-/- mice, as indicated by reductions in fibrosis, central nucleation, and normalization of myofiber size. These molecular changes were concomitant with significant increases in specific force generation in the diaphragm and tibialis anterior muscle, protection against eccentric force loss, and reduction in serum CK. Locomotor activity was improved at all doses of vector-treated compared with vehicle-treated sgca-/- mice. Lastly, vector toxicity was not detected in a serum chemistry panel and by gross necropsy. Collectively, these findings provide support for a systemic delivery of scAAVrh74.tMCK.hSGCA in a clinical setting for the treatment of LGMD2D/R3.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Sarcoglicanopatias , Animais , Terapia Genética , Humanos , Camundongos , Músculo Esquelético , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/terapia , Sarcoglicanopatias/genética , Sarcoglicanopatias/terapia , Sarcoglicanas/genética
18.
PLoS One ; 15(9): e0238441, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32881965

RESUMO

Limb-girdle muscular dystrophy type 2B (LGMD2B) is caused by mutations in the dysferlin gene, resulting in non-functional dysferlin, a key protein found in muscle membrane. Treatment options available for patients are chiefly palliative in nature and focus on maintaining ambulation. Our hypothesis is that galectin-1 (Gal-1), a soluble carbohydrate binding protein, increases membrane repair capacity and myogenic potential of dysferlin-deficient muscle cells and muscle fibers. To test this hypothesis, we used recombinant human galectin-1 (rHsGal-1) to treat dysferlin-deficient models. We show that rHsGal-1 treatments of 48 h-72 h promotes myogenic maturation as indicated through improvements in size, myotube alignment, myoblast migration, and membrane repair capacity in dysferlin-deficient myotubes and myofibers. Furthermore, increased membrane repair capacity of dysferlin-deficient myotubes, independent of increased myogenic maturation is apparent and co-localizes on the membrane of myotubes after a brief 10min treatment with labeled rHsGal-1. We show the carbohydrate recognition domain of Gal-1 is necessary for observed membrane repair. Improvements in membrane repair after only a 10 min rHsGal-1treatment suggest mechanical stabilization of the membrane due to interaction with glycosylated membrane bound, ECM or yet to be identified ligands through the CDR domain of Gal-1. rHsGal-1 shows calcium-independent membrane repair in dysferlin-deficient and wild-type myotubes and myofibers. Together our novel results reveal Gal-1 mediates disease pathologies through both changes in integral myogenic protein expression and mechanical membrane stabilization.


Assuntos
Disferlina/genética , Galectina 1/farmacologia , Distrofia Muscular do Cíngulo dos Membros/terapia , Animais , Linhagem Celular , Modelos Animais de Doenças , Disferlina/metabolismo , Galectina 1/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Membranas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Miofibrilas/metabolismo
19.
Skelet Muscle ; 10(1): 22, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727611

RESUMO

The limb-girdle muscular dystrophies (LGMDs) are a genetically pleiomorphic class of inherited muscle diseases that are known to share phenotypic features. Selected LGMD genetic subtypes have been studied extensively in affected humans and various animal models. In some cases, these investigations have led to human clinical trials of potential disease-modifying therapies, including gene replacement strategies for individual subtypes using adeno-associated virus (AAV) vectors. The cellular localizations of most proteins associated with LGMD have been determined. However, the functions of these proteins are less uniformly characterized, thus limiting our knowledge of potential common disease mechanisms across subtype boundaries. Correspondingly, broad therapeutic strategies that could each target multiple LGMD subtypes remain less developed. We believe that three major "functional clusters" of subcellular activities relevant to LGMD merit further investigation. The best known of these is the glycosylation modifications associated with the dystroglycan complex. The other two, mechanical signaling and mitochondrial dysfunction, have been studied less systematically but are just as promising with respect to the identification of significant mechanistic subgroups of LGMD. A deeper understanding of these disease pathways could yield a new generation of precision therapies that would each be expected to treat a broader range of LGMD patients than a single subtype, thus expanding the scope of the molecular medicines that may be developed for this complex array of muscular dystrophies.


Assuntos
Distrofia Muscular do Cíngulo dos Membros/genética , Animais , Terapia Genética/métodos , Humanos , Mitocôndrias Musculares/metabolismo , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Distrofia Muscular do Cíngulo dos Membros/terapia
20.
Medicine (Baltimore) ; 99(28): e20810, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664072

RESUMO

RATIONALE: The limb-girdle muscular dystrophies (LGMDs) are a heterogeneous group of disorders characterized by progressive proximal muscle weakness and have more than 30 different subtypes linked to specific gene loci, which manifest as highly overlapping and heterogeneous phenotypes. PATIENT CONCERNS: A 59-year-old male presented for evaluation of progressive muscle weakness since his late twenties. When he was 38 years old, he had muscle weakness in the upper extremities and had a waddling gait, hyper lordosis of lower back, and anterior pelvic tilt. His gait disturbance and muscle weakness slowly progressed. When he was 55 years old, he could not walk at all and had to use a wheelchair for ambulation. DIAGNOSIS: Next-generation sequencing using a custom target capture-based gene panel including specific genes responsible for muscular dystrophy was performed. As a result, the proband was genetically diagnosed as LGMD type 2B, carrying 2 compound heterozygous mutations (NM_003494.3:c.1663C>T, p.Arg555Trp; rs377735262 and NM_003494.3:c.2997G>T, p.Trp999Cys; rs28937581) of the DYSF gene. INTERVENTIONS: Physical and occupational therapy were prescribed properly for the first time Bracing and assistive devices were adapted specifically to the patient's deficiencies to preserve mobility and function and prevent contractures. OUTCOMES: The patient with LGMD has periodic assessments of physical and occupational therapy for the prevention and management of comorbidities. However, in the 3 years after the gene panel sequencing diagnoses, his weakness was slowly progress and the patient still could not walk. LESSONS: Gene panel sequencing allows for the correct recognition of different LGMD subtypes, improving timely treatment, management, and enrolment of molecularly diagnosed individuals in clinical trials.


Assuntos
Disferlina/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Distrofia Muscular do Cíngulo dos Membros/genética , Braquetes/normas , Transtornos Neurológicos da Marcha/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Debilidade Muscular/etiologia , Distrofia Muscular do Cíngulo dos Membros/patologia , Distrofia Muscular do Cíngulo dos Membros/terapia , Mutação , Terapia Ocupacional/métodos , Administração dos Cuidados ao Paciente/métodos , Medicina Física e Reabilitação/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...