Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 79(8): 409, 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35810394

RESUMO

Inherited retinal diseases (IRDs) are a heterogeneous group of blinding disorders, which result in dysfunction or death of the light-sensing cone and rod photoreceptors. Despite individual IRDs (Inherited retinal disease) being rare, collectively, they affect up to 1:2000 people worldwide, causing a significant socioeconomic burden, especially when cone-mediated central vision is affected. This study uses the Pde6ccpfl1 mouse model of achromatopsia, a cone-specific vision loss IRD (Inherited retinal disease), to investigate the potential gene-independent therapeutic benefits of a histone demethylase inhibitor GSK-J4 on cone cell survival. We investigated the effects of GSK-J4 treatment on cone cell survival in vivo and ex vivo and changes in cone-specific gene expression via single-cell RNA sequencing. A single intravitreal GSK-J4 injection led to transcriptional changes in pathways involved in mitochondrial dysfunction, endoplasmic reticulum stress, among other key epigenetic pathways, highlighting the complex interplay between methylation and acetylation in healthy and diseased cones. Furthermore, continuous administration of GSK-J4 in retinal explants increased cone survival. Our results suggest that IRD (Inherited retinal disease)-affected cones respond positively to epigenetic modulation of histones, indicating the potential of this approach in developing a broad class of novel therapies to slow cone degeneration.


Assuntos
Defeitos da Visão Cromática , Distrofia de Cones , Animais , Defeitos da Visão Cromática/metabolismo , Distrofia de Cones/metabolismo , Modelos Animais de Doenças , Histonas/metabolismo , Humanos , Camundongos , Células Fotorreceptoras Retinianas Cones/metabolismo
2.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34639157

RESUMO

Guanylate cyclase-activating protein 1 (GCAP1), encoded by the GUCA1A gene, is a neuronal calcium sensor protein involved in shaping the photoresponse kinetics in cones and rods. GCAP1 accelerates or slows the cGMP synthesis operated by retinal guanylate cyclase (GC) based on the light-dependent levels of intracellular Ca2+, thereby ensuring a timely regulation of the phototransduction cascade. We found a novel variant of GUCA1A in a patient affected by autosomal dominant cone dystrophy (adCOD), leading to the Asn104His (N104H) amino acid substitution at the protein level. While biochemical analysis of the recombinant protein showed impaired Ca2+ sensitivity of the variant, structural properties investigated by circular dichroism and limited proteolysis excluded major structural rearrangements induced by the mutation. Analytical gel filtration profiles and dynamic light scattering were compatible with a dimeric protein both in the presence of Mg2+ alone and Mg2+ and Ca2+. Enzymatic assays showed that N104H-GCAP1 strongly interacts with the GC, with an affinity that doubles that of the WT. The doubled IC50 value of the novel variant (520 nM for N104H vs. 260 nM for the WT) is compatible with a constitutive activity of GC at physiological levels of Ca2+. The structural region at the interface with the GC may acquire enhanced flexibility under high Ca2+ conditions, as suggested by 2 µs molecular dynamics simulations. The altered interaction with GC would cause hyper-activity of the enzyme at both low and high Ca2+ levels, which would ultimately lead to toxic accumulation of cGMP and Ca2+ in the photoreceptor outer segment, thus triggering cell death.


Assuntos
Distrofia de Cones/patologia , GMP Cíclico/metabolismo , Proteínas Ativadoras de Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Mutação , Retina/enzimologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Adolescente , Cálcio/metabolismo , Criança , Distrofia de Cones/genética , Distrofia de Cones/metabolismo , Feminino , Humanos , Transdução de Sinal Luminoso , Masculino , Pessoa de Meia-Idade , Linhagem , Transdução de Sinais
3.
Pflugers Arch ; 473(9): 1455-1468, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34255151

RESUMO

Light activation of the classical light-sensing retinal neurons, the photoreceptors, results in a graded change in membrane potential that ultimately leads to a reduction in neurotransmitter release to the post-synaptic retinal neurons. Photoreceptors show striking powers of adaptation, and for visual processing to function optimally, they must adjust their gain to remain responsive to different levels of ambient light intensity. The presence of a tightly controlled balance of inward and outward currents modulated by several different types of ion channels is what gives photoreceptors their remarkably dynamic operating range. Part of the resetting and modulation of this operating range is controlled by potassium and calcium voltage-gated channels, which are involved in setting the dark resting potential and synapse signal processing, respectively. Their essential contribution to visual processing is further confirmed in patients suffering from cone dystrophy with supernormal rod response (CDSRR) and congenital stationary night blindness type 2 (CSNB2), both conditions that lead to irreversible vision loss. This review will discuss these two types of voltage-gated ion channels present in photoreceptors, focussing on their structure and physiology, and their role in visual processing. It will also discuss the use and benefits of knockout mouse models to further study the function of these channels and what routes to potential treatments could be applied for CDSRR and CSNB2.


Assuntos
Canais de Cálcio/metabolismo , Distrofia de Cones/metabolismo , Oftalmopatias Hereditárias/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Miopia/metabolismo , Cegueira Noturna/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Canais de Cálcio/genética , Distrofia de Cones/genética , Oftalmopatias Hereditárias/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Humanos , Miopia/genética , Cegueira Noturna/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo
4.
Int J Mol Sci ; 21(3)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979372

RESUMO

Guanylate Cyclase activating protein 1 (GCAP1) mediates the Ca2+-dependent regulation of the retinal Guanylate Cyclase (GC) in photoreceptors, acting as a target inhibitor at high [Ca2+] and as an activator at low [Ca2+]. Recently, a novel missense mutation (G86R) was found in GUCA1A, the gene encoding for GCAP1, in patients diagnosed with cone-rod dystrophy. The G86R substitution was found to affect the flexibility of the hinge region connecting the N- and C-domains of GCAP1, resulting in decreased Ca2+-sensitivity and abnormally enhanced affinity for GC. Based on a structural model of GCAP1, here, we tested the hypothesis of a cation-π interaction between the positively charged R86 and the aromatic W94 as the main mechanism underlying the impaired activator-to-inhibitor conformational change. W94 was mutated to F or L, thus, resulting in the double mutants G86R+W94L/F. The double mutants showed minor structural and stability changes with respect to the single G86R mutant, as well as lower affinity for both Mg2+ and Ca2+, moreover, substitutions of W94 abolished "phase II" in Ca2+-titrations followed by intrinsic fluorescence. Interestingly, the presence of an aromatic residue in position 94 significantly increased the aggregation propensity of Ca2+-loaded GCAP1 variants. Finally, atomistic simulations of all GCAP1 variants in the presence of Ca2+ supported the presence of two cation-π interactions involving R86, which was found to act as a bridge between W94 and W21, thus, locking the hinge region in an activator-like conformation and resulting in the constitutive activation of the target under physiological conditions.


Assuntos
Distrofia de Cones/metabolismo , Proteínas Ativadoras de Guanilato Ciclase/química , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Guanilato Ciclase/metabolismo , Aminoácidos Aromáticos/química , Cálcio/metabolismo , Cátions/química , Dicroísmo Circular , Distrofia de Cones/genética , Difusão Dinâmica da Luz , Proteínas Ativadoras de Guanilato Ciclase/genética , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes , Termodinâmica
6.
Mol Genet Genomic Med ; 7(6): e660, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30950243

RESUMO

BACKGROUND: Early-onset photoreceptor dystrophies are a major cause of irreversible visual impairment in children and young adults. This clinically heterogeneous group of disorders can be caused by mutations in many genes. Nevertheless, to date, 30%-40% of cases remain genetically unexplained. In view of expanding therapeutic options, it is essential to obtain a molecular diagnosis in these patients as well. In this study, we aimed to identify the genetic cause in two siblings with genetically unexplained retinal disease. METHODS: Whole exome sequencing was performed to identify the causative variants in two siblings in whom a single pathogenic variant in TULP1 was found previously. Patients were clinically evaluated, including assessment of the medical history, slit-lamp biomicroscopy, and ophthalmoscopy. In addition, a functional analysis of the putative splice variant in TULP1 was performed using a midigene assay. RESULTS: Clinical assessment showed a typical early-onset photoreceptor dystrophy in both the patients. Whole exome sequencing identified two pathogenic variants in TULP1, a c.1445G>A (p.(Arg482Gln)) missense mutation and an intronic c.718+23G>A variant. Segregation analysis confirmed that both siblings were compound heterozygous for the TULP1 c.718+23G>A and c.1445G>A variants, while the unaffected parents were heterozygous. The midigene assay for the c.718+23G>A variant confirmed an elongation of exon 7 leading to a frameshift. CONCLUSION: Here, we report the first near-exon RNA splice variant that is not present in a consensus splice site sequence in TULP1, which was found in a compound heterozygous manner with a previously described pathogenic TULP1 variant in two patients with an early-onset photoreceptor dystrophy. We provide proof of pathogenicity for this splice variant by performing an in vitro midigene splice assay, and highlight the importance of analysis of noncoding regions beyond the noncanonical splice sites in patients with inherited retinal diseases.


Assuntos
Distrofia de Cones/genética , Proteínas do Olho/genética , Adolescente , Criança , Distrofia de Cones/metabolismo , Exoma , Éxons , Proteínas do Olho/metabolismo , Feminino , Mutação da Fase de Leitura , Homozigoto , Humanos , Masculino , Mutação , Linhagem , RNA , Sítios de Splice de RNA/genética , Splicing de RNA/genética , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Irmãos , Sequenciamento do Exoma/métodos
7.
eNeuro ; 6(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-30820446

RESUMO

Mutations in the KCNV2 gene, which encodes the voltage-gated K+ channel protein Kv8.2, cause a distinctive form of cone dystrophy with a supernormal rod response (CDSRR). Kv8.2 channel subunits only form functional channels when combined in a heterotetramer with Kv2.1 subunits encoded by the KCNB1 gene. The CDSRR disease phenotype indicates that photoreceptor adaptation is disrupted. The electroretinogram (ERG) response of affected individuals shows depressed rod and cone activity, but what distinguishes this disease is the supernormal rod response to a bright flash of light. Here, we have utilized knock-out mutations of both genes in the mouse to study the pathophysiology of CDSRR. The Kv8.2 knock-out (KO) mice show many similarities to the human disorder, including a depressed a-wave and an elevated b-wave response with bright light stimulation. Optical coherence tomography (OCT) imaging and immunohistochemistry indicate that the changes in six-month-old Kv8.2 KO retinae are largely limited to the outer nuclear layer (ONL), while outer segments appear intact. In addition, there is a significant increase in TUNEL-positive cells throughout the retina. The Kv2.1 KO and double KO mice also show a severely depressed a-wave, but the elevated b-wave response is absent. Interestingly, in all three KO genotypes, the c-wave is totally absent. The differential response shown here of these KO lines, that either possess homomeric channels or lack channels completely, has provided further insights into the role of K+ channels in the generation of the a-, b-, and c-wave components of the ERG.


Assuntos
Distrofia de Cones/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Retina/metabolismo , Canais de Potássio Shab/metabolismo , Animais , Distrofia de Cones/diagnóstico por imagem , Distrofia de Cones/patologia , Feminino , Técnicas de Inativação de Genes , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Retina/diagnóstico por imagem , Retina/patologia , Canais de Potássio Shab/genética , Transmissão Sináptica , Visão Ocular/fisiologia
8.
Channels (Austin) ; 12(1): 17-33, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29179637

RESUMO

Congenital stationary night blindness 2A (CSNB2A) is an X-linked retinal disorder, characterized by phenotypically variable signs and symptoms of impaired vision. CSNB2A is due to mutations in CACNA1F, which codes for the pore-forming α1F subunit of a L-type voltage-gated calcium channel, Cav1.4. Mouse models of CSNB2A, used for characterizing the effects of various Cacna1f mutations, have revealed greater severity of defects than in human CSNB2A. Specifically, Cacna1f-knockout mice show an apparent lack of visual function, gradual retinal degeneration, and disruption of photoreceptor synaptic terminals. Several reports have also noted cone-specific disruptions, including axonal abnormalities, dystrophy, and cell death. We have explored further the involvement of cones in our 'G305X' mouse model of CSNB2A, which has a premature truncation, loss-of-function mutation in Cacna1f. We show that the expression of genes for several phototransduction-related cone markers is down-regulated, while that of several cellular stress- and damage-related markers is up-regulated; and that cone photoreceptor structure and photopic visual function - measured by immunohistochemistry, optokinetic response and electroretinography - deteriorate progressively with age. We also find that dystrophic cone axons establish synapse-like contacts with rod bipolar cell dendrites, which they normally do not contact in wild-type retinas - ectopically, among rod cell bodies in the outer nuclear layer. These data support a role for Cav1.4 in cone synaptic development, cell viability, and synaptic transmission of cone-dependent visual signals. Although our novel finding of cone-to-rod-bipolar cell contacts in this mouse model of a retinal channelopathy may challenge current views of the role of Cav1.4 in photopic vision, it also suggests a potential new target for restorative therapy.


Assuntos
Canais de Cálcio/metabolismo , Distrofia de Cones/metabolismo , Modelos Animais de Doenças , Oftalmopatias Hereditárias/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Miopia/metabolismo , Cegueira Noturna/metabolismo , Sinapses/metabolismo , Animais , Canais de Cálcio/deficiência , Canais de Cálcio/genética , Canais de Cálcio Tipo L , Oftalmopatias Hereditárias/patologia , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Camundongos , Camundongos Knockout , Mutação , Miopia/patologia , Cegueira Noturna/patologia
9.
Sci Rep ; 7(1): 17004, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29209045

RESUMO

MicroRNAs (miRNAs) are key post-transcriptional regulators of gene expression that play an important role in the control of fundamental biological processes in both physiological and pathological conditions. Their function in retinal cells is just beginning to be elucidated, and a few have been found to play a role in photoreceptor maintenance and function. MiR-211 is one of the most abundant miRNAs in the developing and adult eye. However, its role in controlling vertebrate visual system development, maintenance and function so far remain incompletely unexplored. Here, by targeted inactivation in a mouse model, we identify a critical role of miR-211 in cone photoreceptor function and survival. MiR-211 knockout (-/-) mice exhibited a progressive cone dystrophy accompanied by significant alterations in visual function. Transcriptome analysis of the retina from miR-211-/- mice during cone degeneration revealed significant alteration of pathways related to cell metabolism. Collectively, this study highlights for the first time the impact of miR-211 function in the retina and significantly contributes to unravelling the role of specific miRNAs in cone photoreceptor function and survival.


Assuntos
Distrofia de Cones/etiologia , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica , MicroRNAs/fisiologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Visão Ocular/fisiologia , Animais , Distrofia de Cones/metabolismo , Distrofia de Cones/patologia , Proteínas do Olho/genética , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...