Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.944
Filtrar
1.
Sci Rep ; 14(1): 10774, 2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38729999

RESUMO

Muscular dystrophies (MD) are a group of genetic neuromuscular disorders that cause progressive weakness and loss of muscles over time, influencing 1 in 3500-5000 children worldwide. New and exciting treatment options have led to a critical need for a clinical post-marketing surveillance tool to confirm the efficacy and safety of these treatments after individuals receive them in a commercial setting. For MDs, functional gait assessment is a common approach to evaluate the efficacy of the treatments because muscle weakness is reflected in individuals' walking patterns. However, there is little incentive for the family to continue to travel for such assessments due to the lack of access to specialty centers. While various existing sensing devices, such as cameras, force plates, and wearables can assess gait at home, they are limited by privacy concerns, area of coverage, and discomfort in carrying devices, which is not practical for long-term, continuous monitoring in daily settings. In this study, we introduce a novel functional gait assessment system using ambient floor vibrations, which is non-invasive and scalable, requiring only low-cost and sparsely deployed geophone sensors attached to the floor surface, suitable for in-home usage. Our system captures floor vibrations generated by footsteps from patients while they walk around and analyzes such vibrations to extract essential gait health information. To enhance interpretability and reliability under various sensing scenarios, we translate the signal patterns of floor vibration to pathological gait patterns related to MD, and develop a hierarchical learning algorithm that aggregates insights from individual footsteps to estimate a person's overall gait performance. When evaluated through real-world experiments with 36 subjects (including 15 patients with MD), our floor vibration sensing system achieves a 94.8% accuracy in predicting functional gait stages for patients with MD. Our approach enables accurate, accessible, and scalable functional gait assessment, bringing MD progressive tracking into real life.


Assuntos
Marcha , Distrofias Musculares , Vibração , Humanos , Criança , Marcha/fisiologia , Distrofias Musculares/fisiopatologia , Distrofias Musculares/diagnóstico , Distrofias Musculares/terapia , Masculino , Feminino , Análise da Marcha/métodos , Análise da Marcha/instrumentação , Adolescente
2.
Am J Physiol Cell Physiol ; 322(3): C382-C394, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35044855

RESUMO

Sarcolipin (SLN) is a small regulatory protein that inhibits the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pump. When bound to SERCA, SLN reduces the apparent Ca2+ affinity of SERCA and uncouples SERCA Ca2+ transport from its ATP consumption. As such, SLN plays a direct role in altering skeletal muscle relaxation and energy expenditure. Interestingly, the expression of SLN is dynamic during times of muscle adaptation, in that large increases in SLN content are found in response to development, atrophy, overload, and disease. Several groups have suggested that increases in SLN, especially in dystrophic muscle, are deleterious as it may reduce muscle function and exacerbate already abhorrent intracellular Ca2+ levels. However, there is also significant evidence to show that increased SLN content is a beneficial adaptive mechanism that protects the SERCA pump and activates Ca2+ signaling and adaptive remodeling during times of cell stress. In this review, we first discuss the role for SLN in healthy muscle during both development and overload, where SLN has been shown to activate Ca2+ signaling to promote mitochondrial biogenesis, fiber-type shifts, and muscle hypertrophy. Then, with respect to muscle disease, we summarize the discrepancies in the literature as to whether SLN upregulation is adaptive or maladaptive in nature. This review is the first to offer the concept of SLN hormesis in muscle disease, wherein both too much and too little SLN are detrimental to muscle health. Finally, the underlying mechanisms which activate SLN upregulation are discussed, specifically acknowledging a potential positive feedback loop between SLN and Ca2+ signaling molecules.


Assuntos
Desenvolvimento Muscular , Proteínas Musculares/metabolismo , Músculo Esquelético/enzimologia , Atrofia Muscular/enzimologia , Distrofias Musculares/enzimologia , Proteolipídeos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Sinalização do Cálcio , Humanos , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Distrofias Musculares/patologia , Distrofias Musculares/fisiopatologia
3.
Neuromuscul Disord ; 31(12): 1235-1240, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34857438

RESUMO

Diagnostic journey for people with FKRP mutations participating in a dystroglycanopathy natural history study (n = 68; NCT00313677) was analyzed. Earliest symptoms and age at muscular dystrophy diagnosis were abstracted from subject-reported medical history and record review. Initial signs/symptoms were classified as chronic motor dysfunction (e.g., delayed motor milestones, weakness, falling; n = 40, 59%), elevated transaminases (n = 7, 10%), or acute/intermittent symptoms (myoglobinuria, myalgia, febrile illness-associated acute weakness; n = 21, 31%). Median time from sign/symptom onset to diagnosis was 6.5 years and differed by symptom group: 7.5 years for motor group, 9 years for acute/intermittent group, and 4 years for elevated transaminases group. The sign/symptom category that most commonly resulted in a diagnosis was chronic motor dysfunction (n = 45). Of those without clear weakness as first symptom (n = 55), 36.4% were not diagnosed with MD until weakness became apparent. Median time to diagnosis was shortest for those with febrile illness-associated acute weakness (0.25 years). Median time from first sign/symptom to MD diagnosis has decreased incrementally from 18.8 years for those with onset in the 1970s to < 10 years for symptom onset occurring after 2000. Awareness of disease presentation variability will aid in earlier diagnosis, which is increasingly important with treatments in development.


Assuntos
Distrofias Musculares/diagnóstico , Distrofias Musculares/fisiopatologia , Adolescente , Adulto , Idoso , Criança , Diagnóstico Tardio , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Debilidade Muscular/etiologia , Debilidade Muscular/fisiopatologia , Distrofias Musculares/complicações , Distrofias Musculares/genética , Mioglobinúria/etiologia , Pentosiltransferases/genética , Adulto Jovem
4.
PLoS One ; 16(11): e0260491, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34797883

RESUMO

BACKGROUND: Current investigations into physical behaviour in Muscular Dystrophy (MD) have focussed largely on physical activity (PA). Negative health behaviours such as sedentary behaviour (Physical Behaviour) and sitting time (Posture Classification) are widely recognised to negatively influence health, but by contrast are poorly reported, yet could be easier behaviours to modify. METHODS: 14 ambulant men with MD and 12 healthy controls (CTRL) subjects completed 7-days of free-living with wrist-worn accelerometry, assessing physical behaviour (SB or PA) and Posture Classification (Sitting or Standing), presented at absolute (minutes) or relative (% Waking Hours). Participant body composition (Fat Mass and Fat Free Mass) were assessed by Bioelectrical Impedance, while functional status was assessed by 10 m walk test and a functional scale (Swinyard Scale). RESULTS: Absolute Sedentary Behaviour (2.2 Hours, p = 0.025) and Sitting Time (1.9 Hours, p = 0.030 was greater in adults with MD compared to CTRL and Absolute Physical Activity (3.4 Hours, p < 0.001) and Standing Time (3.2 Hours, p < 0.001) was lower in adults with MD compared to CTRL. Absolute hours of SB was associated with Fat Mass (Kg) (R = 0.643, p < 0.05) in ambulatory adults with MD. DISCUSSION: This study has demonstrated increased Sedentary Behaviour (2.2 hours) and Sitting time (1.9 Hours) in adults with MD compared to healthy controls. Extended waking hours in sitting and SB raises concerns with regards to progression of potential cardio-metabolic diseases and co-morbidities in MD.


Assuntos
Distrofias Musculares/fisiopatologia , Acelerometria/métodos , Adulto , Composição Corporal/fisiologia , Estudos de Avaliação como Assunto , Exercício Físico/fisiologia , Comportamentos Relacionados com a Saúde/fisiologia , Humanos , Masculino , Comportamento Sedentário , Postura Sentada , Teste de Caminhada/métodos
5.
Sci Rep ; 11(1): 15865, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354129

RESUMO

Muscular dystrophies are disorders characterized by progressive muscle loss and weakness that are both genotypically and phenotypically heterogenous. Progression of muscle disease arises from impaired regeneration, plasma membrane instability, defective membrane repair, and calcium mishandling. The ferlin protein family, including dysferlin and myoferlin, are calcium-binding, membrane-associated proteins that regulate membrane fusion, trafficking, and tubule formation. Mice lacking dysferlin (Dysf), myoferlin (Myof), and both dysferlin and myoferlin (Fer) on an isogenic inbred 129 background were previously demonstrated that loss of both dysferlin and myoferlin resulted in more severe muscle disease than loss of either gene alone. Furthermore, Fer mice had disordered triad organization with visibly malformed transverse tubules and sarcoplasmic reticulum, suggesting distinct roles of dysferlin and myoferlin. To assess the physiological role of disorganized triads, we now assessed excitation contraction (EC) coupling in these models. We identified differential abnormalities in EC coupling and ryanodine receptor disruption in flexor digitorum brevis myofibers isolated from ferlin mutant mice. We found that loss of dysferlin alone preserved sensitivity for EC coupling and was associated with larger ryanodine receptor clusters compared to wildtype myofibers. Loss of myoferlin alone or together with a loss of dysferlin reduced sensitivity for EC coupling, and produced disorganized and smaller ryanodine receptor cluster size compared to wildtype myofibers. These data reveal impaired EC coupling in Myof and Fer myofibers and slightly potentiated EC coupling in Dysf myofibers. Despite high homology, dysferlin and myoferlin have differential roles in regulating sarcotubular formation and maintenance resulting in unique impairments in calcium handling properties.


Assuntos
Disferlina/metabolismo , Acoplamento Excitação-Contração/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Membrana Celular/metabolismo , Disferlina/genética , Feminino , Masculino , Fusão de Membrana/fisiologia , Proteínas de Membrana/genética , Camundongos , Camundongos da Linhagem 129 , Contração Muscular/fisiologia , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Distrofias Musculares/fisiopatologia
6.
Cell Death Dis ; 12(7): 677, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226515

RESUMO

Muscular dystrophies are debilitating neuromuscular disorders for which no cure exists. As this disorder affects both cardiac and skeletal muscle, patients would benefit from a cellular therapy that can simultaneously regenerate both tissues. The current protocol to derive bipotent mesodermal progenitors which can differentiate into cardiac and skeletal muscle relies on the spontaneous formation of embryoid bodies, thereby hampering further clinical translation. Additionally, as skeletal muscle is the largest organ in the human body, a high myogenic potential is necessary for successful regeneration. Here, we have optimized a protocol to generate chemically defined human induced pluripotent stem cell-derived mesodermal progenitors (cdMiPs). We demonstrate that these cells contribute to myotube formation and differentiate into cardiomyocytes, both in vitro and in vivo. Furthermore, the addition of valproic acid, a clinically approved small molecule, increases the potential of the cdMiPs to contribute to myotube formation that can be prevented by NOTCH signaling inhibitors. Moreover, valproic acid pre-treated cdMiPs injected in dystrophic muscles increase physical strength and ameliorate the functional performances of transplanted mice. Taken together, these results constitute a novel approach to generate mesodermal progenitors with enhanced myogenic potential using clinically approved reagents.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Mesoderma/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Receptores Notch/metabolismo , Ácido Valproico/farmacologia , Animais , Linhagem da Célula , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Masculino , Mesoderma/citologia , Mesoderma/metabolismo , Mesoderma/transplante , Camundongos , Camundongos Knockout , Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/transplante , Força Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/fisiopatologia , Distrofias Musculares/cirurgia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/transplante , Fenótipo , Ratos , Transdução de Sinais
7.
Ann Clin Transl Neurol ; 8(9): 1906-1912, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34312993

RESUMO

The aim of this study was to analyze patients from two distinct families with a novel distal titinopathy phenotype associated with exactly the same CNV in the TTN gene. We used an integrated strategy combining deep phenotyping and complete molecular analyses in patients. The CNV is the most proximal out-of-frame TTN variant reported and leads to aberrant splicing transcripts leading to a frameshift. In this case, the dominant effect would be due to dominant-negative and/or haploinsufficiency. Few CNV in TTN have been reported to date. Our data represent a novel phenotype-genotype association and provides hypotheses for its dominant effects.


Assuntos
Conectina/genética , Distrofias Musculares/genética , Distrofias Musculares/patologia , Distrofias Musculares/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Variações do Número de Cópias de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo
8.
Neurology ; 97(11): e1150-e1158, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34315782

RESUMO

BACKGROUND AND OBJECTIVES: We aimed to determine the genetic and clinical phenotypes of patients with desmin-related myopathy and long-term outcomes after cardiac transplantation. METHODS: We performed a retrospective review of cardiac and neurologic manifestations of patients with genetically confirmed desmin-related myopathy (January 1, 1999-January 1, 2020). RESULTS: Twenty-five patients in 20 different families were recognized. Median age at onset of symptoms was 20 (range 4-50) years; median follow-up time was 36 (range 1-156) months. Twelve patients initially presented with skeletal muscle involvement, and 13 presented with cardiac disease. Sixteen patients had both cardiac and skeletal muscle involvement. Clinically muscle weakness distribution was distal (n = 11), proximal (n = 4), or both (n = 7) in 22 patients. Skeletal muscle biopsy from patients with missense and splice site variants (n = 12) showed abnormal fibers containing amorphous material in Gomori trichrome-stained sections. Patients with cardiac involvement had atrioventricular conduction abnormalities or cardiomyopathy. The most common ECG abnormality was complete atrioventricular block in 11 patients, all of whom required a permanent pacemaker at a median age of 25 (range 16-48) years. Sudden cardiac death resulting in implantable cardioverter-defibrillator (ICD) shocks or resuscitation was reported in 3 patients; a total of 5 patients had ICDs. Orthotopic cardiac transplantation was performed in 3 patients at 20, 35, and 39 years of age. DISCUSSION: Pathogenic variants in desmin can lead to varied neurologic and cardiac phenotypes beginning at a young age. Two-thirds of the patients have both neurologic and cardiac symptoms, usually starting in the third decade. Heart transplantation was tolerated with improved cardiac function and quality of life.


Assuntos
Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Transplante de Coração , Distrofias Musculares/genética , Distrofias Musculares/patologia , Distrofias Musculares/fisiopatologia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
9.
Int J Mol Sci ; 22(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067866

RESUMO

Muscular dystrophies constitute a group of genetic disorders that cause weakness and progressive loss of skeletal muscle mass. Among them, Miyoshi muscular dystrophy 1 (MMD1), limb girdle muscular dystrophy type R2 (LGMDR2/2B), and LGMDR12 (2L) are characterized by mutation in gene encoding key membrane-repair protein, which leads to severe dysfunctions in sarcolemma repair. Cell membrane disruption is a physiological event induced by mechanical stress, such as muscle contraction and stretching. Like many eukaryotic cells, muscle fibers possess a protein machinery ensuring fast resealing of damaged plasma membrane. Members of the annexins A (ANXA) family belong to this protein machinery. ANXA are small soluble proteins, twelve in number in humans, which share the property of binding to membranes exposing negatively-charged phospholipids in the presence of calcium (Ca2+). Many ANXA have been reported to participate in membrane repair of varied cell types and species, including human skeletal muscle cells in which they may play a collective role in protection and repair of the sarcolemma. Here, we discuss the participation of ANXA in membrane repair of healthy skeletal muscle cells and how dysregulation of ANXA expression may impact the clinical severity of muscular dystrophies.


Assuntos
Anexinas/metabolismo , Proteínas de Membrana/metabolismo , Distrofias Musculares/metabolismo , Anexina A1/metabolismo , Anexina A1/fisiologia , Anexinas/fisiologia , Membrana Celular/metabolismo , Humanos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Distrofias Musculares/fisiopatologia
10.
J Ethnopharmacol ; 279: 114359, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34174374

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Muscular dystrophies are a rare, severe, and genetically inherited group of disorders characterized by progressive loss of muscle fibers, leading to muscle weakness. The current treatment plan for muscular dystrophies includes the use of steroids to slow muscle deterioration by dampening the inflammatory response. AIM OF THE STUDY: Chinese herbal medicine (CHM) has been offered as an adjunctive therapy in Taiwan's medical healthcare plan, making it possible to track CHM usage in patients with muscular dystrophic disease. Therefore, we explored the long-term effects of CHM use on the overall mortality of patients with muscular dystrophies. MATERIALS AND METHODS: A total of 581 patients with muscular dystrophies were identified from the database of Registry for Catastrophic Illness Patients in Taiwan. Among them, 80 and 201 patients were CHM users and non-CHM users, respectively. Student's t-test, chi-squared test, Cox proportional hazard model, and Kaplan-Meier curve (log-rank test) were used for evaluation. Association rules and network analyses were performed to explore the combination of CHMs used in muscular dystrophies. RESULTS: Compared to non-CHM users, there were more female patients, more comorbidities, including chronic pulmonary disease and peptic ulcer disease in the CHM user group. Patients with prednisolone usage exhibited a lower risk of overall mortality than those who did not, after adjusting for age, sex, use of CHM, and comorbidities. CHM users showed a lower risk of overall mortality after adjusting for age, sex, prednisolone use, and comorbidities. The cumulative incidence of the overall survival was significantly higher in CHM users. Association rule and network analysis showed that one main CHM cluster was commonly used to treat patients with muscular dystrophies in Taiwan. The cluster includes Yin-Qiao-San, Ban-Xia-Bai-Zhu-Tian-Ma-Tang, Zhi-Ke (Citrus aurantium L.), Yu-Xing-Cao (Houttuynia cordata Thunb.), Che-Qian-Zi (Plantago asiatica L.), and Da-Huang (Rheum palmatum L.). CONCLUSIONS: Our data suggest that adjunctive therapy with CHM may help to reduce the overall mortality among patients with muscular dystrophies. The identification of the CHM cluster allows us to narrow down the key active compounds and may enable future therapeutic developments and clinical trial designs to improve overall survival in these patients.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa/métodos , Distrofias Musculares/tratamento farmacológico , Adolescente , Adulto , Criança , Pré-Escolar , Bases de Dados Factuais , Feminino , Humanos , Masculino , Distrofias Musculares/mortalidade , Distrofias Musculares/fisiopatologia , Sistema de Registros , Estudos Retrospectivos , Taxa de Sobrevida , Taiwan , Resultado do Tratamento , Adulto Jovem
11.
Stem Cell Reports ; 16(9): 2169-2181, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34019816

RESUMO

Duchenne muscular dystrophy (DMD) is a rare X-linked recessive disease that is associated with severe progressive muscle degeneration culminating in death due to cardiorespiratory failure. We previously observed an unexpected proliferation-independent telomere shortening in cardiomyocytes of a DMD mouse model. Here, we provide mechanistic insights using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Using traction force microscopy, we show that DMD hiPSC-CMs exhibit deficits in force generation on fibrotic-like bioengineered hydrogels, aberrant calcium handling, and increased reactive oxygen species levels. Furthermore, we observed a progressive post-mitotic telomere shortening in DMD hiPSC-CMs coincident with downregulation of shelterin complex, telomere capping proteins, and activation of the p53 DNA damage response. This telomere shortening is blocked by blebbistatin, which inhibits contraction in DMD cardiomyocytes. Our studies underscore the role of fibrotic stiffening in the etiology of DMD cardiomyopathy. In addition, our data indicate that telomere shortening is progressive, contraction dependent, and mechanosensitive, and suggest points of therapeutic intervention.


Assuntos
Distrofias Musculares/genética , Distrofias Musculares/fisiopatologia , Contração Miocárdica/genética , Miócitos Cardíacos/metabolismo , Encurtamento do Telômero/genética , Biomarcadores , Cardiomiopatias/etiologia , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Diferenciação Celular , Células Cultivadas , Microambiente Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Fibrose , Imunofluorescência , Expressão Gênica , Humanos , Imunofenotipagem , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fenômenos Mecânicos , Distrofias Musculares/patologia , Distrofia Muscular de Duchenne/etiologia , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Contração Miocárdica/efeitos dos fármacos
12.
J Pain ; 22(11): 1343-1359, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33933682

RESUMO

Chronic pain is a frequent, yet under-recognized and under-assessed problem in people with muscular dystrophies (MDs). Knowledge of the prevalence and characteristics of chronic pain, and its impact on function and quality of life is limited and lacks systematic exploration. This article aims to systematically review and synthesize existing literature that addresses chronic pain prevalence, characteristics and impact in people with different types of MDs. The present meta-analysis showed that the estimated prevalence of chronic pain in MDs is high and appears to be similar across different diagnostic groups: 68% (95% CI: 52%-82%) in FSHD, 65% (95% CI: 51%-77%) in DM, 62% (95% CI: 50%-73%) in BMD/DMD, and 60% (95% CI: 48%-73%) in LGMD, although it should be noted that heterogeneity was high in some diagnostic groups. On average, people with FSHD and DM present with moderate pain intensity. The lumbar spine, shoulders and legs are the most frequent sites of chronic pain among people with FSHD, DM, BMD/DMD, and LGMD, with little variation. Diffuse pain across multiple body sites was reported by a notable proportion of these individuals. Chronic pain has a negative impact on daily life activities in people with MDs, and may also contribute to decreased quality of life. The protocol for this review has been published on PROSPERO (CRD42020168096). PERSPECTIVES: This is the first systematic review and meta-analysis exploring the prevalence, and nature and impact of chronic pain in people with MDs. The present study demonstrates how common chronic pain is across various MD populations and highlights the need for better recognition and understanding of the nature and impact of pain from health professionals.


Assuntos
Dor Crônica , Distrofias Musculares , Dor Crônica/epidemiologia , Dor Crônica/etiologia , Dor Crônica/fisiopatologia , Humanos , Distrofias Musculares/complicações , Distrofias Musculares/epidemiologia , Distrofias Musculares/fisiopatologia , Prevalência
13.
BMC Neurol ; 21(1): 105, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750322

RESUMO

BACKGROUND: Collagen VI-related dystrophies are a subtype of congenital muscular dystrophy caused by pathogenic variants in COL6A1, COL6A2 or COL6A3 genes affecting skeletal muscles and connective tissue. The clinical phenotype ranges from the milder Bethlem myopathy to the severe Ullrich congenital muscular dystrophy (UCMD). Herein, we report the first consanguineous Sri Lankan family with two children affected with UCMD due to a novel variant in the COL6A1 gene. CASE PRESENTATION: Two sisters, aged 10-years and 7-years, presented with progressive, bilateral proximal muscle weakness. Both probands had delayed motor milestones and demonstrated difficulty in standing from a squatting position, climbing stairs and raising arms above the shoulders. Cognitive, language and social development were age appropriate. Examination showed proximal muscle weakness of the upper and lower extremities and hyperlaxity of the wrist and fingers in both with some variability in clinical severity noted between the two siblings. Serum creatine kinase levels were elevated, and electromyography showed low polyphasic motor unit potentials in the 10-year-old and myopathic features with short duration motor unit potentials with no polyphasia in the 7-year-old. Whole exome sequencing (WES) was performed and a novel, homozygous missense, likely pathogenic variant in exon 25 of COL6A1 gene [NM_001848: c.1667G > T;NP_001839.2:p.Gly556Val] was identified in both probands. This variant was validated by Sanger sequencing in proband 1 as well as proband 2, and the parents and an unaffected sibling were found to be heterozygote carriers for the same variant. CONCLUSIONS: The findings in this family add to the expanding number of COL6A1 variants identified and provides a better understanding of the genotype-phenotype correlations associated with UCMD.


Assuntos
Colágeno Tipo VI/genética , Distrofias Musculares , Esclerose , Criança , Consanguinidade , Feminino , Humanos , Distrofias Musculares/genética , Distrofias Musculares/fisiopatologia , Esclerose/genética , Esclerose/fisiopatologia , Sri Lanka
14.
Neurology ; 96(10): e1413-e1424, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33441455

RESUMO

OBJECTIVE: To accurately categorize the phenotypes of individuals with collagen VI-related dystrophies (COL6-RDs) during the first years of life to predict long-term motor function and pulmonary function, to provide phenotype-specific anticipatory care, and to improve clinical trial readiness. METHODS: This retrospective, multicenter, international study analyzed the relationship of long-term motor and pulmonary function with the initial maximal motor ability achieved in individuals with COL6-RD. RESULTS: We studied 119 patients with COL6-RD from Spain (n = 54) and the United States (n = 65). The early maximal motor milestones of ability to rise from the floor unassisted and ability to climb 4 steps without holding onto a railing demonstrated reliability in distinguishing between 3 COL6-RD phenotypic subgroups: (1) Ullrich congenital muscular dystrophy, (2) intermediate COL6-RD, and (3) Bethlem myopathy. Long-term motor function and pulmonary function are strongly correlated with the maximal motor ability achieved during the first years of life. Maximal motor capacity can predict other disease-relevant events such as the age at loss of ambulation and the need for the initiation of nocturnal noninvasive ventilation. CONCLUSION: This work proposes a prospective phenotypic classification for COL6-RDs that will enable an accurate prediction of a patient's COL6-RD phenotype during the first years of life. The ability to establish a patient's COL6-RD phenotypic classification early will enable a more accurate prognosis of future motor and pulmonary function, thus improving anticipatory clinical care, and it will be instrumental in aiding the design of future clinical trials by allowing early stratification of trial cohorts.


Assuntos
Colágeno Tipo VI/genética , Distrofias Musculares/genética , Distrofias Musculares/psicologia , Desempenho Psicomotor , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Progressão da Doença , Feminino , Genótipo , Humanos , Estimativa de Kaplan-Meier , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Distrofias Musculares/fisiopatologia , Testes de Função Respiratória , Estudos Retrospectivos , Espanha , Resultado do Tratamento , Estados Unidos , Caminhada , Adulto Jovem
15.
Brain Dev ; 43(1): 106-110, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32723526

RESUMO

BACKGROUND: Recent advances in respiratory management have improved survival for patients with Fukuyama congenital muscular dystrophy (FCMD), characterized by congenital muscular dystrophy and brain malformation. Previous studies reported that more than half of patients exhibit seizures in childhood. However, little is known about epilepsy after childhood. METHODS: To elucidate the long-term clinical course of epilepsy, we retrospectively reviewed all medical records in nine patients (6 males, mean age 20.7 years) with FCMD diagnosed between 1981 and 2019. RESULTS: The follow-up periods ranged from 6 to 30 years (mean 18.4 years). A total of 75 EEG recordings were available from nine patients. In some patients, EEGs were normal during early childhood but tended to show paroxysmal discharges with age. Overall, epileptic seizures were observed in six patients. Except for one presenting with afebrile seizure at one year of age, the remaining five patients developed epilepsy between 13 and 22 years of age. The most common seizure type was focal impaired awareness seizure. After adolescence, four patients exhibited status epilepticus. Their convulsive movements of the seizures became less prominent with progression of the disease. At the last evaluation, most patients (5/6) had uncontrolled seizures. CONCLUSIONS: Despite presence of distinct brain malformation, epileptic seizures may develop after childhood in FCMD patients. Our experience suggests that clinicians should be careful not to overlook epileptic seizures, especially in advanced-stage patients who had profound muscle weakness.


Assuntos
Epilepsia/epidemiologia , Síndrome de Walker-Warburg/fisiopatologia , Adolescente , Adulto , Eletroencefalografia , Epilepsias Parciais/fisiopatologia , Epilepsia/fisiopatologia , Feminino , Humanos , Japão/epidemiologia , Estudos Longitudinais , Masculino , Distrofias Musculares/fisiopatologia , Malformações do Sistema Nervoso , Estudos Retrospectivos , Convulsões/fisiopatologia , Síndrome de Walker-Warburg/complicações , Síndrome de Walker-Warburg/epidemiologia , Adulto Jovem
16.
Muscle Nerve ; 63(2): 225-230, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33099787

RESUMO

INTRODUCTION: Turns-amplitude, number of small segments (NSS)-activity, and envelope-activity clouds are three methods of electromyography (EMG) interference pattern analysis. Our objective was to evaluate the sensitivity and specificity of each individual cloud analysis and combined clouds analysis to compare with that of quantitative motor unit potential (QMUP) analysis. METHODS: A total of 379 muscles from 100 patients were analyzed by both QMUP and clouds analyses. Calculation of sensitivity and specificity was based on the clinical diagnosis as the "gold standard." RESULTS: For discrimination of abnormal vs normal and neuropathic vs non-neuropathic, combined clouds analysis had greater sensitivity than QMUP analysis and any single cloud analysis, but there were no differences in specificity. For discrimination of myopathic vs non-myopathic, combined clouds analysis and single cloud analysis had greater sensitivity than QMUP analysis, but there were no differences in specificity. DISCUSSION: Combined clouds analysis was superior to QMUP and each single cloud analysis for distinguishing normal, myopathic, and neuropathic muscles.


Assuntos
Eletromiografia/métodos , Doença dos Neurônios Motores/diagnóstico , Músculo Esquelético/fisiopatologia , Doenças Musculares/diagnóstico , Doenças do Sistema Nervoso Periférico/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/fisiopatologia , Dermatomiosite/diagnóstico , Dermatomiosite/fisiopatologia , Diagnóstico Diferencial , Eletrodiagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mononeuropatias/diagnóstico , Mononeuropatias/fisiopatologia , Doença dos Neurônios Motores/fisiopatologia , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/fisiopatologia , Doenças Musculares/fisiopatologia , Distrofias Musculares/diagnóstico , Distrofias Musculares/fisiopatologia , Miosite/diagnóstico , Miosite/fisiopatologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Polineuropatias/diagnóstico , Polineuropatias/fisiopatologia , Radiculopatia/diagnóstico , Radiculopatia/fisiopatologia , Recrutamento Neurofisiológico , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Atrofias Musculares Espinais da Infância/diagnóstico , Atrofias Musculares Espinais da Infância/fisiopatologia , Adulto Jovem
17.
Arch Phys Med Rehabil ; 102(4): 604-610, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33166523

RESUMO

OBJECTIVES: To investigate the responsiveness of the motor function measure (MFM) and determine the minimal clinically important difference (MCID) in individuals with 2 common types of congenital muscular dystrophy (CMD). DESIGN: Observational, prospective, single center, cohort study. SETTING: National Institute of Neurological Disorders and Stroke (NINDS) of the National Institutes of Health (NIH). PARTICIPANTS: Individuals (N=44) with collagen VI-related dystrophies (COL6-RD, n=23) and 21 individuals laminin alpha2-related muscular dystrophy (LAMA2-RD, n=21) enrolled in a 4-year longitudinal natural history study. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Responsiveness of the MFM-32 and the Rasch-scaled MFM-25 and the MCID of the MFM-32 determined from a patient-reported anchor with 2 different methods, within-patient and between-patient. RESULTS: The original MFM-32 and Rasch-scaled MFM-25 performed similarly overall in both the COL6-RD and LAMA2-RD populations, with all subscores (D1, standing and transfers; D2, axial and proximal; D3, distal) showing a significant decrease over time, except MFM D1 and D3 for LAMA2-RD. The MFM D1 subscore was the most sensitive to change for ambulant individuals, whereas the MFM D2 subscore was the most sensitive to change for nonambulant individuals. The MCID for the MFM-32 total score was calculated as 2.5 and 3.9 percentage points according to 2 different methods. CONCLUSIONS: The MFM showed strong responsiveness in individuals with LAMA2-RD and COL6-RD. Because a floor effect was identified more prominently with the Rasch-Scaled MFM-25, the use of the original MFM-32 as a quantitative variable with the assumption of scale linearity appears to be a good compromise. When designing clinical trials in congenital muscular dystrophies, the use of MCID for MFM should be considered to determine if a given intervention effects show not only a statistically significant change but also a clinically meaningful change.


Assuntos
Avaliação da Deficiência , Diferença Mínima Clinicamente Importante , Atividade Motora/fisiologia , Distrofias Musculares/fisiopatologia , Distrofias Musculares/reabilitação , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Estudos Longitudinais , Masculino , Estudos Prospectivos , Adulto Jovem
19.
Acta Neuropathol Commun ; 8(1): 204, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239111

RESUMO

Oculopharyngodistal myopathy (OPDM) is a rare hereditary muscle disease characterized by progressive distal limb weakness, ptosis, ophthalmoplegia, bulbar muscle weakness and rimmed vacuoles on muscle biopsy. Recently, CGG repeat expansions in the noncoding regions of two genes, LRP12 and GIPC1, have been reported to be causative for OPDM. Furthermore, neuronal intranuclear inclusion disease (NIID) has been recently reported to be caused by CGG repeat expansions in NOTCH2NLC. We aimed to identify and to clinicopathologically characterize patients with OPDM who have CGG repeat expansions in NOTCH2NLC (OPDM_NOTCH2NLC). Note that 211 patients from 201 families, who were clinically or clinicopathologically diagnosed with OPDM or oculopharyngeal muscular dystrophy, were screened for CGG expansions in NOTCH2NLC by repeat primed-PCR. Clinical information and muscle pathology slides of identified patients with OPDM_NOTCH2NLC were re-reviewed. Intra-myonuclear inclusions were evaluated using immunohistochemistry and electron microscopy (EM). Seven Japanese OPDM patients had CGG repeat expansions in NOTCH2NLC. All seven patients clinically demonstrated ptosis, ophthalmoplegia, dysarthria and muscle weakness; they myopathologically had intra-myonuclear inclusions stained with anti-poly-ubiquitinated proteins, anti-SUMO1 and anti-p62 antibodies, which were diagnostic of NIID (typically on skin biopsy), in addition to rimmed vacuoles. The sample for EM was available only from one patient, which demonstrated intranuclear inclusions of 12.6 ± 1.6 nm in diameter. We identified seven patients with OPDM_NOTCH2NLC. Our patients had various additional central and/or peripheral nervous system involvement, although all were clinicopathologically compatible; thus, they were diagnosed as having OPDM and expanding a phenotype of the neuromyodegenerative disease caused by CGG repeat expansions in NOTCH2NLC.


Assuntos
Músculo Esquelético/fisiopatologia , Distrofias Musculares/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Adulto , Idoso , Feminino , Humanos , Lactente , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Distrofias Musculares/diagnóstico por imagem , Distrofias Musculares/patologia , Distrofias Musculares/fisiopatologia , Receptores Notch/genética , Expansão das Repetições de Trinucleotídeos , Adulto Jovem
20.
Sci Rep ; 10(1): 20585, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239684

RESUMO

Muscular dystrophies (MDs) are inherited disorders characterized by progressive muscle weakness. Previously, we have shown that resveratrol (3,5,4'-trihydroxy-trans-stilbene), an antioxidant and an activator of the protein deacetylase SIRT1, decreases muscular and cardiac oxidative damage and improves pathophysiological conditions in animal MD models. To determine whether resveratrol provides therapeutic benefits to patients with MDs, an open-label, single-arm, phase IIa trial of resveratrol was conducted in 11 patients with Duchenne, Becker or Fukuyama MD. The daily dose of resveratrol was 500 mg/day, which was increased every 8 weeks to 1000 and then 1500 mg/day. Primary outcomes were motor function, evaluated by a motor function measure (MFM) scale, muscular strength, monitored with quantitative muscle testing (QMT), and serum creatine kinase (CK) levels. Adverse effects and tolerability were evaluated as secondary outcomes. Despite the advanced medical conditions of the patients, the mean MFM scores increased significantly from 34.6 to 38.4 after 24 weeks of medication. A twofold increase was found in the mean QMT scores of scapula elevation and shoulder abduction. Mean CK levels decreased considerably by 34%. Diarrhoea and abdominal pain was noted in six and three patients, respectively. Resveratrol may provide some benefit to MD patients.


Assuntos
Atividade Motora/efeitos dos fármacos , Distrofias Musculares/tratamento farmacológico , Resveratrol/uso terapêutico , Adolescente , Adulto , Antioxidantes/uso terapêutico , Criança , Creatina Quinase/análise , Creatina Quinase/sangue , Feminino , Humanos , Japão , Masculino , Força Muscular/efeitos dos fármacos , Debilidade Muscular/tratamento farmacológico , Distrofias Musculares/fisiopatologia , Estilbenos/uso terapêutico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...