Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 764
Filtrar
1.
CNS Neurosci Ther ; 30(3): e14662, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38477221

RESUMO

BACKGROUND: Intermittent hypoxia (IH) is emerging as a cost-effective nonpharmacological method for vital organ protection. We aimed to assess the effects of a short-term moderate intermittent hypoxia preconditioning protocol (four cycles of 13% hypoxia lasting for 10 min with 5-min normoxia intervals) on acute hypoxic injury induced by sustained hypoxic exposure (oxygen concentration of 11.8% for 6 h). METHODS: One hundred healthy volunteers were recruited and randomized to the IH group and the control group to receive IH or sham-IH preconditioning for 5 days, respectively, and then were sent to a hypoxic chamber for simulated acute high-altitude exposure (4500 m). RESULTS: The overall incidence of acute mountain sickness was 27% (27/100), with 14% (7/50) in the IH group and 40% (20/50) in the control group (p = 0.003). After 6-h simulated high-altitude exposure, the mean Lake Louise Score was lower in the IH group as compared to controls (1.30 ± 1.27 vs. 2.04 ± 1.89, p = 0.024). Mean peripheral oxygen saturations (SpO2 ) and intracranial pressure (ICP) measures after acute hypoxic exposure exhibited significant differences, with the IH group showing significantly greater SpO2 values (85.47 ± 5.14 vs. 83.10 ± 5.15%, p = 0.026) and lower ICP levels than the control group (115.59 ± 32.15 vs. 130.36 ± 33.83 mmH2 O, p = 0.028). IH preconditioning also showed greater effects on serum protein gene product 9.5 (3.89 vs. 29.16 pg/mL; p = 0.048) and C-reactive protein (-0.28 vs. 0.41 mg/L; p = 0.023). CONCLUSION: The short-term moderate IH improved the tolerance to hypoxia and exerted protection against acute hypoxic injury induced by exposure to sustained normobaric hypoxia, which provided a novel method and randomized controlled trial evidence to develop treatments for hypoxia-related disease.


Assuntos
Doença da Altitude , Hipóxia , Humanos , Hipóxia/metabolismo , Doença da Altitude/metabolismo , Doença da Altitude/prevenção & controle , Doença Aguda , Condicionamento Psicológico , Oxigênio
2.
BMC Med ; 22(1): 4, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166913

RESUMO

BACKGROUND: We aimed to determine whether and how the combination of acetazolamide and remote ischemic preconditioning (RIPC) reduced the incidence and severity of acute mountain sickness (AMS). METHODS: This is a prospective, randomized, open-label, blinded endpoint (PROBE) study involving 250 healthy volunteers. Participants were randomized (1:1:1:1:1) to following five groups: Ripc (RIPC twice daily, 6 days), Rapid-Ripc (RIPC four times daily, 3 days), Acetazolamide (twice daily, 2 days), Combined (Acetazolamide plus Rapid-Ripc), and Control group. After interventions, participants entered a normobaric hypoxic chamber (equivalent to 4000 m) and stayed for 6 h. The primary outcomes included the incidence and severity of AMS, and SpO2 after hypoxic exposure. Secondary outcomes included systolic and diastolic blood pressure, and heart rate after hypoxic exposure. The mechanisms of the combined regime were investigated through exploratory outcomes, including analysis of venous blood gas, complete blood count, human cytokine antibody array, ELISA validation for PDGF-AB, and detection of PDGF gene polymorphisms. RESULTS: The combination of acetazolamide and RIPC exhibited powerful efficacy in preventing AMS, reducing the incidence of AMS from 26.0 to 6.0% (Combined vs Control: RR 0.23, 95% CI 0.07-0.70, P = 0.006), without significantly increasing the incidence of adverse reactions. Combined group also showed the lowest AMS score (0.92 ± 1.10). Mechanistically, acetazolamide induced a mild metabolic acidosis (pH 7.30 ~ 7.31; HCO3- 18.1 ~ 20.8 mmol/L) and improved SpO2 (89 ~ 91%) following hypoxic exposure. Additionally, thirty differentially expressed proteins (DEPs) related to immune-inflammatory process were identified after hypoxia, among which PDGF-AB was involved. Further validation of PDGF-AB in all individuals showed that both acetazolamide and RIPC downregulated PDGF-AB before hypoxic exposure, suggesting a possible protective mechanism. Furthermore, genetic analyses demonstrated that individuals carrying the PDGFA rs2070958 C allele, rs9690350 G allele, or rs1800814 G allele did not display a decrease in PDGF-AB levels after interventions, and were associated with a higher risk of AMS. CONCLUSIONS: The combination of acetazolamide and RIPC exerts a powerful anti-hypoxic effect and represents an innovative and promising strategy for rapid ascent to high altitudes. Acetazolamide improves oxygen saturation. RIPC further aids acetazolamide, which synergistically regulates PDGF-AB, potentially involved in the pathogenesis of AMS. TRIAL REGISTRATION: ClinicalTrials.gov NCT05023941.


Assuntos
Doença da Altitude , Precondicionamento Isquêmico , Humanos , Doença da Altitude/prevenção & controle , Doença da Altitude/diagnóstico , Acetazolamida , Estudos Prospectivos , Doença Aguda , Hipóxia/prevenção & controle
3.
Wilderness Environ Med ; 35(1_suppl): 2S-19S, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37833187

RESUMO

To provide guidance to clinicians about best practices, the Wilderness Medical Society (WMS) convened an expert panel to develop evidence-based guidelines for prevention, diagnosis, and treatment of acute mountain sickness, high altitude cerebral edema, and high altitude pulmonary edema. Recommendations are graded based on the quality of supporting evidence and the balance between the benefits and risks/burdens according to criteria put forth by the American College of Chest Physicians. The guidelines also provide suggested approaches for managing each form of acute altitude illness that incorporate these recommendations as well as recommendations on how to approach high altitude travel following COVID-19 infection. This is an updated version of the original WMS Consensus Guidelines for the Prevention and Treatment of Acute Altitude Illness published in Wilderness & Environmental Medicine in 2010 and the subsequently updated WMS Practice Guidelines for the Prevention and Treatment of Acute Altitude Illness published in 2014 and 2019.


Assuntos
Doença da Altitude , COVID-19 , Humanos , Doença da Altitude/diagnóstico , Doença da Altitude/prevenção & controle , Altitude , COVID-19/diagnóstico , COVID-19/prevenção & controle , Consenso , Sociedades Médicas , Teste para COVID-19
4.
Pflugers Arch ; 476(2): 197-210, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994929

RESUMO

Intermittent hypoxia training (IHT) is a promising approach that has been used to induce acclimatization to hypoxia and subsequently lower the risk of developing acute mountain sickness (AMS). However, the effects of IHT on cognitive and cerebrovascular function after acute hypoxia exposure have not been characterized. In the present study, we first confirmed that the simplified IHT paradigm was effective at relieving AMS at 4300 m. Second, we found that IHT improved participants' cognitive and neural alterations when they were exposed to hypoxia. Specifically, impaired working memory performance, decreased conflict control function, impaired cognitive control, and aggravated mental fatigue induced by acute hypoxia exposure were significantly alleviated in the IHT group. Furthermore, a reversal of brain swelling induced by acute hypoxia exposure was visualized in the IHT group using magnetic resonance imaging. An increase in cerebral blood flow (CBF) was observed in multiple brain regions of the IHT group after hypoxia exposure as compared with the control group. Based on these findings, the simplified IHT paradigm might facilitate hypoxia acclimatization, alleviate AMS symptoms, and increase CBF in multiple brain regions, thus ameliorating brain swelling and cognitive dysfunction.


Assuntos
Doença da Altitude , Edema Encefálico , Disfunção Cognitiva , Humanos , Hipóxia/complicações , Doença da Altitude/prevenção & controle , Aclimatação/fisiologia , Doença Aguda , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/prevenção & controle
5.
Wilderness Environ Med ; 34(4): 498-508, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37923683

RESUMO

INTRODUCTION: AR36 is a pharmaceutical-grade plant extract used to support cardiovascular health in traditional Chinese medicine. Studies suggest that AR36 may prevent acute mountain sickness (AMS) during gradual ascent to high altitude. This randomized, placebo-controlled Phase 2 trial aimed to evaluate dosing regimens and assess efficacy and safety of AR36 for AMS prevention during rapid ascent. METHODS: Participants received placebo, low-dose AR36 (225 mg twice daily for 14 d prior and 5 d at altitude), or high-dose AR36 (12 d placebo, 300 mg twice daily for 2 d prior and 5 d at altitude). The primary efficacy outcome was 1993 Lake Louise Scoring System (LLSS) score on the morning after ascent. Safety was assessed through the proportion of treatment-emergent adverse events (TEAEs). RESULTS: One hundred thirty-two participants were randomized. Mean±SD age was 31.4±8.6 (range, 19-54) y. Baseline characteristics did not differ across groups. Lake Louise Scoring System scores on Day 16 in the placebo, low-dose, and high-dose groups were 4.03 (2.88), 4.42 (3.17), and 3.5 (2.31), respectively (placebo versus low-dose, P=0.462; placebo versus high-dose, P=0.574; n=110). The incidence of AMS on Day 16 was 66.7% in the placebo, 61.1% in the low-dose, and 55.3% in the high-dose group (P=0.66). The proportion of TEAEs in the placebo, low-dose, and high-dose groups was 38.4% (81), 28.4% (60), and 33.2% (70), respectively (P=0.205; n=127). There was no statistical difference between groups in LLSS, incidence of AMS, or TEAEs. CONCLUSIONS: AR36 did not improve LLSS or AMS incidence using the current regimens. AR36 was well tolerated.


Assuntos
Doença da Altitude , Humanos , Doença da Altitude/prevenção & controle , Doença da Altitude/epidemiologia , Doença Aguda , Altitude , Extratos Vegetais/efeitos adversos , Método Duplo-Cego
6.
Sheng Wu Gong Cheng Xue Bao ; 39(9): 3594-3604, 2023 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-37805840

RESUMO

Acute mountain sickness (AMS) is a clinical syndrome of multi-system physiological disorder after acute exposure to low pressure and low oxygen at high altitude. Quantitative proteomics can systematically quantify and describe protein composition and dynamic changes. In recent years, quantitative proteomics has been widely used in the prevention, diagnosis, treatment and pathogenesis of many diseases. This review summarizes the progress of quantitative proteomics techniques and its application in the prevention, diagnosis, treatment of AMS and mechanisms of rapidly acclimatizing to plateau, in order to provide a reference for the pathogenesis, early intervention, clinical treatment and proteomic research of AMS.


Assuntos
Doença da Altitude , Humanos , Doença da Altitude/diagnóstico , Doença da Altitude/etiologia , Doença da Altitude/prevenção & controle , Proteômica , Doença Aguda , Oxigênio/metabolismo
7.
Semin Respir Crit Care Med ; 44(5): 681-695, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816346

RESUMO

With ascent to high altitude, barometric pressure declines, leading to a reduction in the partial pressure of oxygen at every point along the oxygen transport chain from the ambient air to tissue mitochondria. This leads, in turn, to a series of changes over varying time frames across multiple organ systems that serve to maintain tissue oxygen delivery at levels sufficient to prevent acute altitude illness and preserve cognitive and locomotor function. This review focuses primarily on the physiological adjustments and acclimatization processes that occur in the lungs of healthy individuals, including alterations in control of breathing, ventilation, gas exchange, lung mechanics and dynamics, and pulmonary vascular physiology. Because other organ systems, including the cardiovascular, hematologic and renal systems, contribute to acclimatization, the responses seen in these systems, as well as changes in common activities such as sleep and exercise, are also addressed. While the pattern of the responses highlighted in this review are similar across individuals, the magnitude of such responses often demonstrates significant interindividual variability which accounts for subsequent differences in tolerance of the low oxygen conditions in this environment.


Assuntos
Doença da Altitude , Altitude , Humanos , Pulmão , Doença da Altitude/prevenção & controle , Fenômenos Fisiológicos Cardiovasculares , Oxigênio , Hipóxia
8.
Clin Sports Med ; 42(3): 441-461, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37208058

RESUMO

With the increase in outdoor events, there is an inevitable rise in climate-related environmental emergencies. Heat exposure can place athletes at risk for life-threatening heatstroke which requires emergent diagnosis and rapid in-field management. Cold exposure can lead to hypothermia, frostbite, and other nonfreezing injuries that require prompt evaluation and management to minimize morbidity and mortality. Altitude exposure can lead to acute mountain sickness or other serious neurologic or pulmonary emergencies. Finally, harsh climate exposure can be life-threatening and require appropriate prevention and event planning.


Assuntos
Doença da Altitude , Temperatura Alta , Humanos , Emergências , Altitude , Doença da Altitude/diagnóstico , Doença da Altitude/prevenção & controle , Atletas
9.
Adv Biol (Weinh) ; 7(8): e2200307, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37097708

RESUMO

The prevalence and severity of high-altitude sickness increases with increasing altitude. Prevention of hypoxia caused by high-altitude sickness is an urgent problem. As a novel oxygen-carrying fluid, modified hemoglobin can carry oxygen in a full oxygen partial pressure environment and release oxygen in a low oxygen partial pressure environment. It is unclear whether modified hemoglobin can improve hypoxic injury on a plateau. Using hypobaric chamber rabbit (5000 m) and plateau goat (3600 m) models, general behavioral scores and vital signs, hemodynamic, vital organ functions, and blood gas are measured. The results show that the general behavioral scores and vital signs decrease significantly in the hypobaric chamber or plateau, and the modified hemoglobin can effectively improve the general behavioral scores and vital signs in rabbits and goats, and reduce the degree of damage to vital organs. Further studies reveal that arterial partial pressure of oxygen (PaO2 ) and arterial oxygen saturation (SaO2 ) on the plateau decrease rapidly, and the modified hemoglobin could increase PaO2 and SaO2 ; thus, increasing the oxygen-carrying capacity. Moreover, modified hemoglobin has few side effects on hemodynamics and kidney injury. These results indicate that modified hemoglobin has a protective effect against high-altitude sickness.


Assuntos
Doença da Altitude , Animais , Coelhos , Doença da Altitude/prevenção & controle , Cabras , Hipóxia/etiologia , Oxigênio/uso terapêutico , Hemoglobinas
10.
Ugeskr Laeger ; 185(13)2023 03 27.
Artigo em Dinamarquês | MEDLINE | ID: mdl-36999289

RESUMO

More and more people travel to high altitudes, some develop mountain sickness, a possible life-threatening condition. The most common and benign case of mountain sickness is acute mountain sicknes, this condition is easily treatable by descending or low dose aceatazolamide. Treatment is important to avoid development to the more severe cases of mountain sickness high-altitude cerebral oedema and high-altitude pulmonary oedema. These conditions require early recognition and treatment. This review gives an overview of available treatment of these conditions and how to avoid them in the first place.


Assuntos
Doença da Altitude , Edema Encefálico , Hipertensão Pulmonar , Humanos , Doença da Altitude/diagnóstico , Doença da Altitude/tratamento farmacológico , Doença da Altitude/prevenção & controle , Doença Aguda , Edema Encefálico/tratamento farmacológico , Edema Encefálico/etiologia , Viagem , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/tratamento farmacológico , Altitude
11.
West J Emerg Med ; 24(2): 359-362, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36976605

RESUMO

INTRODUCTION: High-altitude pulmonary edema (HAPE) occurs as a result of rapid ascent to altitude faster than the acclimatization processes of the body. Symptoms can begin at an elevation of 2,500 meters above sea level. Our objective in this study was to determine the prevalence and trend of developing B-lines at 2,745 meters above sea level among healthy visitors over four consecutive days. METHODS: We performed a prospective case series on healthy volunteers at Mammoth Mountain, CA, USA. Subjects underwent pulmonary ultrasound for B-lines over four consecutive days. RESULTS: We enrolled 21 male and 21 female participants. There was an increase in the sum of B-lines at both lung bases from day 1 to day 3, with a subsequent decrease from day 3 to day 4(P<0.001). By the third day at altitude, B-lines were detectable at base of lungs of all participants. Similarly, B-lines increased at apex of lungs from day 1 to day 3 and decreased on day 4 (P=0.004). CONCLUSION: By the third day at 2,745 meters altitude, B-lines were detectable in the bases of both lungs of all healthy participants in our study. We assume that increasing the number of B-lines could be considered an early sign of HAPE. Point-of-care ultrasound could be used to detect and monitor B-lines at altitude to facilitate early detection of HAPE, regardless of pre-existing risk factors.


Assuntos
Doença da Altitude , Montanhismo , Edema Pulmonar , Humanos , Masculino , Feminino , Altitude , Sistemas Automatizados de Assistência Junto ao Leito , Edema Pulmonar/diagnóstico por imagem , Doença da Altitude/diagnóstico por imagem , Doença da Altitude/prevenção & controle , Pulmão/diagnóstico por imagem
12.
Br J Sports Med ; 57(14): 906-913, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36898769

RESUMO

OBJECTIVE: During a high-altitude expedition, the association of cardiopulmonary exercise testing (CPET) parameters with the risk of developing acute mountain sickness (AMS) and the chance of reaching the summit were investigated. METHODS: Thirty-nine subjects underwent maximal CPET at lowlands and during ascent to Mount Himlung Himal (7126 m) at 4844 m, before and after 12 days of acclimatisation, and at 6022 m. Daily records of Lake-Louise-Score (LLS) determined AMS. Participants were categorised as AMS+ if moderate to severe AMS occurred. RESULTS: Maximal oxygen uptake (V̇O2max) decreased by 40.5%±13.7% at 6022 m and improved after acclimatisation (all p<0.001). Ventilation at maximal exercise (VEmax) was reduced at 6022 m, but higher VEmax was related to summit success (p=0.031). In the 23 AMS+ subjects (mean LLS 7.4±2.4), a pronounced exercise-induced oxygen desaturation (ΔSpO2exercise) was found after arrival at 4844 m (p=0.005). ΔSpO2exercise >-14.0% identified 74% of participants correctly with a sensitivity of 70% and specificity of 81% for predicting moderate to severe AMS. All 15 summiteers showed higher V̇O2max (p<0.001), and a higher risk of AMS in non-summiteers was suggested but did not reach statistical significance (OR: 3.64 (95% CI: 0.78 to 17.58), p=0.057). V̇O2max ≥49.0 mL/min/kg at lowlands and ≥35.0 mL/min/kg at 4844 m predicted summit success with a sensitivity of 46.7% and 53.3%, and specificity of 83.3% and 91.3%, respectively. CONCLUSION: Summiteers were able to sustain higher VEmax throughout the expedition. Baseline V̇O2max below 49.0 mL/min/kg was associated with a high chance of 83.3% for summit failure, when climbing without supplemental oxygen. A pronounced drop of SpO2exercise at 4844 m may identify climbers at higher risk of AMS.


Assuntos
Doença da Altitude , Humanos , Doença da Altitude/diagnóstico , Doença da Altitude/prevenção & controle , Altitude , Teste de Esforço , Doença Aguda , Oxigênio
13.
High Alt Med Biol ; 24(1): 7-18, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36802203

RESUMO

Doherty, Connor J., Jou-Chung Chang, Benjamin P. Thompson, Erik R. Swenson, Glen E. Foster, and Paolo B. Dominelli. The impact of acetazolamide and methazolamide on exercise performance in normoxia and hypoxia. High Alt Med Biol. 24:7-18, 2023.-Carbonic anhydrase (CA) inhibitors are commonly prescribed for acute mountain sickness (AMS). In this review, we sought to examine how two CA inhibitors, acetazolamide (AZ) and methazolamide (MZ), affect exercise performance in normoxia and hypoxia. First, we briefly describe the role of CA inhibition in facilitating the increase in ventilation and arterial oxygenation in preventing and treating AMS. Next, we detail how AZ affects exercise performance in normoxia and hypoxia and this is followed by a discussion on MZ. We emphasize that the overarching focus of the review is how the two drugs potentially affect exercise performance, rather than their ability to prevent/treat AMS per se, their interrelationship will be discussed. Overall, we suggest that AZ hinders exercise performance in normoxia, but may be beneficial in hypoxia. Based upon head-to-head studies of AZ and MZ in humans on diaphragmatic and locomotor strength in normoxia, MZ may be a better CA inhibitor when exercise performance is crucial at high altitude.


Assuntos
Acetazolamida , Doença da Altitude , Humanos , Acetazolamida/farmacologia , Acetazolamida/uso terapêutico , Metazolamida/farmacologia , Metazolamida/uso terapêutico , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/uso terapêutico , Hipóxia/tratamento farmacológico , Doença da Altitude/tratamento farmacológico , Doença da Altitude/prevenção & controle , Doença Aguda
14.
J Travel Med ; 30(4)2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-36694981

RESUMO

BACKGROUND: Altitude sojourns increasingly attract individuals of all ages and different health statuses due to the appeal of high-altitude destinations worldwide and easy access to air travel. The risk of acute mountain sickness (AMS) when flying to high-altitude destinations remains underemphasized. Thus, this review aims to evaluate the altitude-dependent AMS incidence depending on the mode of ascending, e.g. by air vs terrestrial travel. METHODS: A literature search was performed to identify the observational studies assessing AMS incidence after acute ascent of primarily healthy adults to real high altitude. In addition, placebo arms of interventional trials evaluating the prophylactic efficacy of various drugs have been separately analysed to confirm or refute the findings from the observational studies. Linear regression analyses were used to evaluate the altitude-dependent AMS incidence. RESULTS: Findings of 12 observational studies, in which the AMS incidence in 11 021 individuals ascending to 19 different altitudes (2200-4559 m) was evaluated, revealed an impressive 4.5-fold steeper increase in the AMS incidence for air travel as compared with slower ascent modes, i.e. hiking or combined car and/or air travel and hiking. The higher AMS incidence following transportation by flight vs slower means was also confirmed in placebo-treated participants in 10 studies of drug prophylaxis against AMS. CONCLUSIONS: Due to the short time span in going from low to high altitude, reduced acclimatization likely is the main reason for a higher AMS risk when travelling to high-altitude destinations by flight. To avoid frustrating travel experiences and health risks, appropriate and timely medical advice on how to prepare for air travel to high altitude is of vital importance. Effective preparation options include the use of modern pre-acclimatization strategies and pharmacological prophylaxis by acetazolamide or dexamethasone, or even considering alternate itineraries with more gradual ascent.


Assuntos
Viagem Aérea , Doença da Altitude , Adulto , Humanos , Doença da Altitude/epidemiologia , Doença da Altitude/prevenção & controle , Altitude , Doença Aguda , Acetazolamida/uso terapêutico
15.
Chinese Journal of Biotechnology ; (12): 3594-3604, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1007979

RESUMO

Acute mountain sickness (AMS) is a clinical syndrome of multi-system physiological disorder after acute exposure to low pressure and low oxygen at high altitude. Quantitative proteomics can systematically quantify and describe protein composition and dynamic changes. In recent years, quantitative proteomics has been widely used in the prevention, diagnosis, treatment and pathogenesis of many diseases. This review summarizes the progress of quantitative proteomics techniques and its application in the prevention, diagnosis, treatment of AMS and mechanisms of rapidly acclimatizing to plateau, in order to provide a reference for the pathogenesis, early intervention, clinical treatment and proteomic research of AMS.


Assuntos
Humanos , Doença da Altitude/prevenção & controle , Proteômica , Doença Aguda , Oxigênio/metabolismo
16.
High Alt Med Biol ; 23(4): 330-337, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36201281

RESUMO

Berendsen, Remco R., Peter Bärtsch, Buddha Basnyat, Marc Moritz Berger, Peter Hackett, Andrew M. Luks, Jean-Paul Richalet, Ken Zafren, Bengt Kayser, and the STAK Plenary Group. Strengthening altitude knowledge: a Delphi study to define minimum knowledge of altitude illness for laypersons traveling to high altitude. High Alt Med Biol. 23:330-337, 2022. Introduction: A lack of knowledge among laypersons about the hazards of high-altitude exposure contributes to morbidity and mortality from acute mountain sickness (AMS), high-altitude cerebral edema (HACE), and high-altitude pulmonary edema (HAPE) among high-altitude travelers. There are guidelines regarding the recognition, prevention, and treatment of acute-altitude illness for experts, but essential knowledge for laypersons traveling to high altitudes has not been defined. We sought expert consensus on the essential knowledge required for people planning to travel to high altitudes. Methods: The Delphi method was used. The panel consisted of two moderators, a core expert group and a plenary expert group. The moderators made a preliminary list of statements defining the desired minimum knowledge for laypersons traveling to high altitudes, based on the relevant literature. These preliminary statements were then reviewed, supplemented, and modified by a core expert group. A list of 33 statements was then presented to a plenary group of experts in successive rounds. Results: It took three rounds to reach a consensus. Of the 10 core experts invited, 7 completed all the rounds. Of the 76 plenary experts, 41 (54%) participated in Round 1, and of these 41 a total of 32 (78%) experts completed all three rounds. The final list contained 28 statements in 5 categories (altitude physiology, sleeping at altitude, AMS, HACE, and HAPE). This list represents an expert consensus on the desired minimum knowledge for laypersons planning high-altitude travel. Conclusion: Using the Delphi method, the STrengthening Altitude Knowledge initiative yielded a set of 28 statements representing essential learning objectives for laypersons who plan to travel to high altitudes. This list could be used to develop educational interventions.


Assuntos
Doença da Altitude , Edema Encefálico , Humanos , Doença da Altitude/prevenção & controle , Altitude , Técnica Delphi , Doença Aguda
17.
Eur J Pharmacol ; 928: 175121, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35777443

RESUMO

High altitude cerebral edema (HACE) is a potentially life-threatening disease encountered at high altitudes. However, effective methods for HACE prophylaxis are limited. Convincing evidence confirms that oxidative stress induced by hypobaric hypoxia (HH) is one of the main factors that account for the development of HACE. 5,6,7,8-Tetrahydroxyflavone (THF), a flavone with four consecutive OH groups in ring A, exhibited excellent antioxidant activity in vitro and could attenuate HH induced injury in vivo. The aim of this study was to investigate the protective effect of THF against HACE and its underlying mechanisms. THF administration significantly suppressed HH induced oxidative stress by reducing the formation of hydrogen peroxide and malondialdehyde, by increasing the levels of glutathione and superoxide dismutase in brain tissue. Simultaneously, THF administration inhibited inflammatory responses by decreasing the levels of tumor necrosis factor-α, interleukin-1ß, and interleukin-6 in serum and brain tissue. In addition, THF administration mitigated the energy metabolism disorder induced by HACE as evidenced by decreased levels of lactic acid, lactate dehydrogenase and pyruvate kinase as well as increased ATP levels and ATPase activities. Furthermore, THF administration decreased the expression of matrix metalloproteinase-9, aquaporin 4, hypoxia-inducible factor-1α and vascular endothelial growth factor, which attenuated blood-brain barrier (BBB) disruption and brain edema. Additionally, THF administration improved HACE induced cognitive dysfunction. These results show that THF is a promising agent in the prevention and treatment of HACE.


Assuntos
Doença da Altitude , Edema Encefálico , Flavonas , Altitude , Doença da Altitude/tratamento farmacológico , Doença da Altitude/metabolismo , Doença da Altitude/prevenção & controle , Animais , Edema Encefálico/tratamento farmacológico , Edema Encefálico/metabolismo , Edema Encefálico/prevenção & controle , Flavonas/farmacologia , Hipóxia/complicações , Hipóxia/tratamento farmacológico , Ratos , Fator A de Crescimento do Endotélio Vascular
18.
Int J Sports Med ; 43(11): 971-977, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35760082

RESUMO

This study evaluated the feasibility and efficacy of voluntary sustained hyperventilation during rapid ascent to high altitude for the prevention of acute mountain sickness (AMS). Study subjects (n=32) were volunteer participants in a 2-day expedition to Mount Leoneras (4954 m), starting at 2800m (base camp at 4120 m). Subjects were randomized to either: 1) an intervention group using the voluntary hyperventilation (VH) technique targeting an end-tidal CO2 (ETCO2)<20 mmHg; or 2) a group using acetazolamide (AZ). During the expedition, respiratory rate (28±20 vs. 18±5 breaths/min, mean±SD, P<0.01) and SpO2 (95%±4% vs. 89%±5%, mean±SD, P<0.01) were higher, and ETCO2 (17±4 vs. 26±4 mmHg, mean±SD, P<0.01) was lower in the VH group compared to the AZ group - as repeatedly measured at equal fixed intervals during the ascent - showing the feasibility of the VH technique. Regarding efficacy, the incidence of 6 (40%) subjects registering an LLS score≥3 in the VH group was non-inferior to the 3 (18%) subjects in the acetazolamide group (P=0.16, power 28%). Voluntary increase in minute ventilation is a feasible technique, but - despite the underpowered non-inferiority in this small-scale proof-of-concept trial - it is not likely to be as effective as acetazolamide to prevent AMS.


Assuntos
Doença da Altitude , Acetazolamida/uso terapêutico , Doença Aguda , Doença da Altitude/epidemiologia , Doença da Altitude/prevenção & controle , Dióxido de Carbono , Humanos , Hiperventilação
20.
J Appl Physiol (1985) ; 132(6): 1361-1369, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35511718

RESUMO

Acetazolamide prevents acute mountain sickness (AMS) by inhibition of carbonic anhydrase. Since it also reduces acute hypoxic pulmonary vasoconstriction (HPV), it may also prevent high-altitude pulmonary edema (HAPE) by lowering pulmonary artery pressure. We tested this hypothesis in a randomized, placebo-controlled, double-blind study. Thirteen healthy, nonacclimatized lowlanders with a history of HAPE ascended (<22 h) from 1,130 to 4,559 m with one overnight stay at 3,611 m. Medications were started 48 h before ascent (acetazolamide: n = 7, 250 mg 3 times/day; placebo: n = 6, 3 times/day). HAPE was diagnosed by chest radiography and pulmonary artery pressure by measurement of right ventricular to atrial pressure gradient (RVPG) by transthoracic echocardiography. AMS was evaluated with the Lake Louise Score (LLS) and AMS-C score. The incidence of HAPE was 43% versus 67% (acetazolamide vs. placebo, P = 0.39). Ascent to altitude increased RVPG from 20 ± 5 to 43 ± 10 mmHg (P < 0.001) without a group difference (P = 0.68). Arterial Po2 fell to 36 ± 9 mmHg (P < 0.001) and was 8.5 mmHg higher with acetazolamide at high altitude (P = 0.025). At high altitude, the LLS and AMS-C score remained lower in those taking acetazolamide (both P < 0.05). Although acetazolamide reduced HAPE incidence by 35%, this effect was not statistically significant, and was considerably less than reductions of about 70%-100% with prophylactic dexamethasone, tadalafil, and nifedipine performed with the same ascent profile at the same location. We could not demonstrate a reduction in RVPG compared with placebo treatment despite reductions in AMS severity and better arterial oxygenation. Limited by small sample size, our data do not support recommending acetazolamide for the prevention of HAPE in mountaineers ascending rapidly to over 4,500 m.NEW & NOTEWORTHY This randomized, placebo-controlled, double-blind study is the first to investigate whether acetazolamide, which reduces acute mountain sickness (AMS), inhibits short-term hypoxic pulmonary vasoconstriction, and also prevents high-altitude pulmonary edema (HAPE) in a fast-climbing ascent to 4,559 m. We found no statistically significant reduction in HAPE incidence or differences in hypoxic pulmonary artery pressures compared with placebo despite reductions in AMS and greater ventilation-induced arterial oxygenation. Our data do not support recommending acetazolamide for HAPE prevention.


Assuntos
Doença da Altitude , Edema Pulmonar , Acetazolamida/uso terapêutico , Doença Aguda , Altitude , Doença da Altitude/diagnóstico , Doença da Altitude/tratamento farmacológico , Doença da Altitude/prevenção & controle , Humanos , Hipertensão Pulmonar , Hipóxia/tratamento farmacológico , Artéria Pulmonar , Edema Pulmonar/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...