Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.719
Filtrar
1.
Front Biosci (Landmark Ed) ; 29(6): 232, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38940051

RESUMO

BACKGROUND: Alzheimer's disease is characterized by extracellular beta-amyloid plaques, intraneuronal tau neurofibrillary tangles and excessive neurodegeneration. The mechanisms of neuron degeneration and the potential of these neurons to form new nerve fibers for compensation remain elusive. The present study aimed to evaluate the impact of beta-amyloid and tau on new formations of nerve fibers from mouse organotypic brain slices connected to collagen-based microcontact prints. METHODS: Organotypic brain slices of postnatal day 8-10 wild-type mice were connected to established collagen-based microcontact prints loaded with polyornithine to enhance nerve fiber outgrowth. Human beta-amyloid(42) or P301S mutated aggregated tau was co-loaded to the prints. Nerve fibers were immunohistochemically stained with neurofilament antibodies. The physiological activity of outgrown neurites was tested with neurotracer MiniRuby, voltage-sensitive dye FluoVolt, and calcium-sensitive dye Rhod-4. RESULTS: Immunohistochemical staining revealed newly formed nerve fibers extending along the prints derived from the brain slices. While collagen-only microcontact prints stimulated nerve fiber growth, those loaded with polyornithine significantly enhanced nerve fiber outgrowth. Beta-amyloid(42) significantly increased the neurofilament-positive nerve fibers, while tau had only a weak effect. MiniRuby crystals, retrogradely transported along these newly formed nerve fibers, reached the hippocampus, while FluoVolt and Rhod-4 monitored electrical activity in newly formed nerve fibers. CONCLUSIONS: Our data provide evidence that intact nerve fibers can form along collagen-based microcontact prints from mouse brain slices. The Alzheimer's peptide beta-amyloid(42) stimulates this growth, hinting at a neuroprotective function when physiologically active. This "brain-on-chip" model may offer a platform for screening bioactive factors or testing drug effects on nerve fiber growth.


Assuntos
Peptídeos beta-Amiloides , Encéfalo , Fibras Nervosas , Animais , Peptídeos beta-Amiloides/metabolismo , Camundongos , Fibras Nervosas/metabolismo , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteínas tau/metabolismo , Humanos , Imuno-Histoquímica , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/patologia , Camundongos Endogâmicos C57BL
2.
J Neuroinflammation ; 21(1): 165, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937750

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a significant risk factor for Alzheimer's disease (AD), and accumulating evidence supports a role for adaptive immune B and T cells in both TBI and AD pathogenesis. We previously identified B cell and major histocompatibility complex class II (MHCII)-associated invariant chain peptide (CLIP)-positive B cell expansion after TBI. We also showed that antagonizing CLIP binding to the antigen presenting groove of MHCII after TBI acutely reduced CLIP + splenic B cells and was neuroprotective. The current study investigated the chronic effects of antagonizing CLIP in the 5xFAD Alzheimer's mouse model, with and without TBI. METHODS: 12-week-old male wild type (WT) and 5xFAD mice were administered either CLIP antagonist peptide (CAP) or vehicle, once at 30 min after either sham or a lateral fluid percussion injury (FPI). Analyses included flow cytometric analysis of immune cells in dural meninges and spleen, histopathological analysis of the brain, magnetic resonance diffusion tensor imaging, cerebrovascular analysis, and assessment of motor and neurobehavioral function over the ensuing 6 months. RESULTS: 9-month-old 5xFAD mice had significantly more CLIP + B cells in the meninges compared to age-matched WT mice. A one-time treatment with CAP significantly reduced this population in 5xFAD mice. Importantly, CAP also improved some of the immune, histopathological, and neurobehavioral impairments in 5xFAD mice over the ensuing six months. Although FPI did not further elevate meningeal CLIP + B cells, it did negate the ability of CAP to reduce meningeal CLIP + B cells in the 5xFAD mice. FPI at 3 months of age exacerbated some aspects of AD pathology in 5xFAD mice, including further reducing hippocampal neurogenesis, increasing plaque deposition in CA3, altering microgliosis, and disrupting the cerebrovascular structure. CAP treatment after injury ameliorated some but not all of these FPI effects.


Assuntos
Antígenos de Diferenciação de Linfócitos B , Linfócitos B , Lesões Encefálicas Traumáticas , Antígenos de Histocompatibilidade Classe II , Camundongos Transgênicos , Animais , Camundongos , Masculino , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Antígenos de Histocompatibilidade Classe II/metabolismo , Linfócitos B/efeitos dos fármacos , Meninges/patologia , Meninges/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/tratamento farmacológico , Humanos , Modelos Animais de Doenças , Presenilina-1/genética , Camundongos Endogâmicos C57BL
3.
Acta Neuropathol ; 147(1): 107, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918213

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia, and disease mechanisms are still not fully understood. Here, we explored pathological changes in human induced pluripotent stem cell (iPSC)-derived neurons carrying the familial AD APPV717I mutation after cell injection into the mouse forebrain. APPV717I mutant iPSCs and isogenic controls were differentiated into neurons revealing enhanced Aß42 production, elevated phospho-tau, and impaired neurite outgrowth in APPV717I neurons. Two months after transplantation, APPV717I and control neural cells showed robust engraftment but at 12 months post-injection, APPV717I grafts were smaller and demonstrated impaired neurite outgrowth compared to controls, while plaque and tangle pathology were not seen. Single-nucleus RNA-sequencing of micro-dissected grafts, performed 2 months after cell injection, identified significantly altered transcriptome signatures in APPV717I iPSC-derived neurons pointing towards dysregulated synaptic function and axon guidance. Interestingly, APPV717I neurons showed an increased expression of genes, many of which are also upregulated in postmortem neurons of AD patients including the transmembrane protein LINGO2. Downregulation of LINGO2 in cultured APPV717I neurons rescued neurite outgrowth deficits and reversed key AD-associated transcriptional changes related but not limited to synaptic function, apoptosis and cellular senescence. These results provide important insights into transcriptional dysregulation in xenografted APPV717I neurons linked to synaptic function, and they indicate that LINGO2 may represent a potential therapeutic target in AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Células-Tronco Pluripotentes Induzidas , Neurônios , Transcriptoma , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Animais , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Mutação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Sinapses/patologia , Sinapses/metabolismo , Peptídeos beta-Amiloides/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
4.
Cells ; 13(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38920631

RESUMO

Microglia activity can drive excessive synaptic loss during the prodromal phase of Alzheimer's disease (AD) and is associated with lowered cyclic adenosine monophosphate (cAMP) due to cAMP phosphodiesterase 4B (PDE4B). This study aimed to investigate whether long-term inhibition of PDE4B by A33 (3 mg/kg/day) can prevent synapse loss and its associated cognitive decline in APPswe/PS1dE9 mice. This model is characterized by a chimeric mouse/human APP with the Swedish mutation and human PSEN1 lacking exon 9 (dE9), both under the control of the mouse prion protein promoter. The effects on cognitive function of prolonged A33 treatment from 20 days to 4 months of age, was assessed at 7-8 months. PDE4B inhibition significantly improved both the working and spatial memory of APPswe/PSdE9 mice after treatment ended. At the cellular level, in vitro inhibition of PDE4B induced microglial filopodia formation, suggesting that regulation of PDE4B activity can counteract microglia activation. Further research is needed to investigate if this could prevent microglia from adopting their 'disease-associated microglia (DAM)' phenotype in vivo. These findings support the possibility that PDE4B is a potential target in combating AD pathology and that early intervention using A33 may be a promising treatment strategy for AD.


Assuntos
Doença de Alzheimer , Cognição , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Modelos Animais de Doenças , Camundongos Transgênicos , Microglia , Inibidores da Fosfodiesterase 4 , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Cognição/efeitos dos fármacos , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Inibidores da Fosfodiesterase 4/administração & dosagem , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Presenilina-1/genética , Presenilina-1/metabolismo , Humanos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Masculino
5.
Cells ; 13(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38920643

RESUMO

Neurodegenerative disorders are affecting millions of people worldwide, impacting the healthcare system of our society. Among them, Alzheimer's disease (AD) is the most common form of dementia, characterized by severe cognitive impairments. Neuropathological hallmarks of AD are ß-amyloid (Aß) plaques and neurofibrillary tangles, as well as endoplasmic reticulum and mitochondria dysfunctions, which finally lead to apoptosis and neuronal loss. Since, to date, there is no definitive cure, new therapeutic and prevention strategies are of crucial importance. In this scenario, cannabinoids are deeply investigated as promising neuroprotective compounds for AD. In this study, we evaluated the potential neuroprotective role of cannabinerol (CBNR) in an in vitro cellular model of AD via next-generation sequencing. We observed that CBNR pretreatment counteracts the Aß-induced loss of cell viability of differentiated SH-SY5Y cells. Moreover, a network-based transcriptomic analysis revealed that CBNR restores normal mitochondrial and endoplasmic reticulum functions in the AD model. Specifically, the most important genes regulated by CBNR are related mainly to oxidative phosphorylation (COX6B1, OXA1L, MT-CO2, MT-CO3), protein folding (HSPA5) and degradation (CUL3, FBXW7, UBE2D1), and glucose (G6PC3) and lipid (HSD17B7, ERG28, SCD) metabolism. Therefore, these results suggest that CBNR could be a new neuroprotective agent helpful in the prevention of AD dysfunctions.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Canabinoides , Retículo Endoplasmático , Mitocôndrias , Humanos , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/tratamento farmacológico , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Canabinoides/farmacologia , Peptídeos beta-Amiloides/metabolismo , Chaperona BiP do Retículo Endoplasmático , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Sobrevivência Celular/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Modelos Biológicos , Redes Reguladoras de Genes/efeitos dos fármacos
6.
Sci Rep ; 14(1): 14718, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926456

RESUMO

We examined the role of protein tyrosine phosphatase receptor sigma (PTPRS) in the context of Alzheimer's disease and synaptic integrity. Publicly available datasets (BRAINEAC, ROSMAP, ADC1) and a cohort of asymptomatic but "at risk" individuals (PREVENT-AD) were used to explore the relationship between PTPRS and various Alzheimer's disease biomarkers. We identified that PTPRS rs10415488 variant C shows features of neuroprotection against early Tau pathology and synaptic degeneration in Alzheimer's disease. This single nucleotide polymorphism correlated with higher PTPRS transcript abundance and lower p(181)Tau and GAP-43 levels in the CSF. In the brain, PTPRS protein abundance was significantly correlated with the quantity of two markers of synaptic integrity: SNAP25 and SYT-1. We also found the presence of sexual dimorphism for PTPRS, with higher CSF concentrations in males than females. Male carriers for variant C were found to have a 10-month delay in the onset of AD. We thus conclude that PTPRS acts as a neuroprotective receptor in Alzheimer's disease. Its protective effect is most important in males, in whom it postpones the age of onset of the disease.


Assuntos
Doença de Alzheimer , Biomarcadores , Polimorfismo de Nucleotídeo Único , Sinapses , Proteínas tau , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Humanos , Masculino , Feminino , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/metabolismo , Biomarcadores/líquido cefalorraquidiano , Idoso , Sinapses/metabolismo , Sinapses/patologia , Proteína 25 Associada a Sinaptossoma/metabolismo , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/líquido cefalorraquidiano , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Idoso de 80 Anos ou mais , Sinaptotagmina I/metabolismo , Sinaptotagmina I/genética , Encéfalo/metabolismo , Encéfalo/patologia , Pessoa de Meia-Idade
7.
eNeuro ; 11(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38858068

RESUMO

Sleep disruption and impaired synaptic processes are common features in neurodegenerative diseases, including Alzheimer's disease (AD). Hyperphosphorylated Tau is known to accumulate at neuronal synapses in AD, contributing to synapse dysfunction. However, it remains unclear how sleep disruption and synapse pathology interact to contribute to cognitive decline. Here, we examined sex-specific onset and consequences of sleep loss in AD/tauopathy model PS19 mice. Using a piezoelectric home-cage monitoring system, we showed PS19 mice exhibited early-onset and progressive hyperarousal, a selective dark-phase sleep disruption, apparent at 3 months in females and 6 months in males. Using the Morris water maze test, we report that chronic sleep disruption (CSD) accelerated the onset of decline of hippocampal spatial memory in PS19 males only. Hyperarousal occurs well in advance of robust forebrain synaptic Tau burden that becomes apparent at 6-9 months. To determine whether a causal link exists between sleep disruption and synaptic Tau hyperphosphorylation, we examined the correlation between sleep behavior and synaptic Tau, or exposed mice to acute or chronic sleep disruption at 6 months. While we confirm that sleep disruption is a driver of Tau hyperphosphorylation in neurons of the locus ceruleus, we were unable to show any causal link between sleep loss and Tau burden in forebrain synapses. Despite the finding that hyperarousal appears earlier in females, female cognition was resilient to the effects of sleep disruption. We conclude sleep disruption interacts with the synaptic Tau burden to accelerate the onset of cognitive decline with greater vulnerability in males.


Assuntos
Disfunção Cognitiva , Modelos Animais de Doenças , Camundongos Transgênicos , Prosencéfalo , Sinapses , Proteínas tau , Animais , Proteínas tau/metabolismo , Masculino , Feminino , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/etiologia , Sinapses/metabolismo , Sinapses/patologia , Camundongos , Prosencéfalo/metabolismo , Caracteres Sexuais , Tauopatias/metabolismo , Tauopatias/patologia , Transtornos do Sono-Vigília/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Camundongos Endogâmicos C57BL
8.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892390

RESUMO

Aurora kinase A (AURKA) is a serine/threonine-protein kinase that regulates microtubule organization during neuron migration and neurite formation. Decreased activity of AURKA was found in Alzheimer's disease (AD) brain samples, but little is known about the role of AURKA in AD pathogenesis. Here, we demonstrate that AURKA is expressed in primary cultured rat neurons, neurons from adult mouse brains, and neurons in postmortem human AD brains. AURKA phosphorylation, which positively correlates with its activity, is reduced in human AD brains. In SH-SY5Y cells, pharmacological activation of AURKA increased AURKA phosphorylation, acidified endolysosomes, decreased the activity of amyloid beta protein (Aß) generating enzyme ß-site amyloid precursor protein cleaving enzyme (BACE-1), increased the activity of the Aß degrading enzyme cathepsin D, and decreased the intracellular and secreted levels of Aß. Conversely, pharmacological inhibition of AURKA decreased AURKA phosphorylation, de-acidified endolysosomes, decreased the activity of cathepsin D, and increased intracellular and secreted levels of Aß. Thus, reduced AURKA activity in AD may contribute to the development of intraneuronal accumulations of Aß and extracellular amyloid plaque formation.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Aurora Quinase A , Lisossomos , Neurônios , Aurora Quinase A/metabolismo , Animais , Neurônios/metabolismo , Humanos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Camundongos , Ratos , Lisossomos/metabolismo , Fosforilação , Linhagem Celular Tumoral , Encéfalo/metabolismo , Células Cultivadas , Masculino , Secretases da Proteína Precursora do Amiloide/metabolismo
9.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38892408

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease with no effective treatments, not least due to the lack of authentic animal models. Typically, rodent models recapitulate the effects but not causes of AD, such as cholinergic neuron loss: lesioning of cholinergic neurons mimics the cognitive decline reminiscent of AD but not its neuropathology. Alternative models rely on the overexpression of genes associated with familial AD, such as amyloid precursor protein, or have genetically amplified expression of mutant tau. Yet transgenic rodent models poorly replicate the neuropathogenesis and protein overexpression patterns of sporadic AD. Seeding rodents with amyloid or tau facilitates the formation of these pathologies but cannot account for their initial accumulation. Intracerebral infusion of proinflammatory agents offer an alternative model, but these fail to replicate the cause of AD. A novel model is therefore needed, perhaps similar to those used for Parkinson's disease, namely adult wildtype rodents with neuron-specific (dopaminergic) lesions within the same vulnerable brainstem nuclei, 'the isodendritic core', which are the first to degenerate in AD. Site-selective targeting of these nuclei in adult rodents may recapitulate the initial neurodegenerative processes in AD to faithfully mimic its pathogenesis and progression, ultimately leading to presymptomatic biomarkers and preventative therapies.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Animais , Humanos , Proteínas tau/metabolismo , Proteínas tau/genética , Roedores , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética
10.
Elife ; 122024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896568

RESUMO

We present open-source tools for three-dimensional (3D) analysis of photographs of dissected slices of human brains, which are routinely acquired in brain banks but seldom used for quantitative analysis. Our tools can: (1) 3D reconstruct a volume from the photographs and, optionally, a surface scan; and (2) produce a high-resolution 3D segmentation into 11 brain regions per hemisphere (22 in total), independently of the slice thickness. Our tools can be used as a substitute for ex vivo magnetic resonance imaging (MRI), which requires access to an MRI scanner, ex vivo scanning expertise, and considerable financial resources. We tested our tools on synthetic and real data from two NIH Alzheimer's Disease Research Centers. The results show that our methodology yields accurate 3D reconstructions, segmentations, and volumetric measurements that are highly correlated to those from MRI. Our method also detects expected differences between post mortem confirmed Alzheimer's disease cases and controls. The tools are available in our widespread neuroimaging suite 'FreeSurfer' (https://surfer.nmr.mgh.harvard.edu/fswiki/PhotoTools).


Every year, thousands of human brains are donated to science. These brains are used to study normal aging, as well as neurological diseases like Alzheimer's or Parkinson's. Donated brains usually go to 'brain banks', institutions where the brains are dissected to extract tissues relevant to different diseases. During this process, it is routine to take photographs of brain slices for archiving purposes. Often, studies of dead brains rely on qualitative observations, such as 'the hippocampus displays some atrophy', rather than concrete 'numerical' measurements. This is because the gold standard to take three-dimensional measurements of the brain is magnetic resonance imaging (MRI), which is an expensive technique that requires high expertise ­ especially with dead brains. The lack of quantitative data means it is not always straightforward to study certain conditions. To bridge this gap, Gazula et al. have developed an openly available software that can build three-dimensional reconstructions of dead brains based on photographs of brain slices. The software can also use machine learning methods to automatically extract different brain regions from the three-dimensional reconstructions and measure their size. These data can be used to take precise quantitative measurements that can be used to better describe how different conditions lead to changes in the brain, such as atrophy (reduced volume of one or more brain regions). The researchers assessed the accuracy of the method in two ways. First, they digitally sliced MRI-scanned brains and used the software to compute the sizes of different structures based on these synthetic data, comparing the results to the known sizes. Second, they used brains for which both MRI data and dissection photographs existed and compared the measurements taken by the software to the measurements obtained with MRI images. Gazula et al. show that, as long as the photographs satisfy some basic conditions, they can provide good estimates of the sizes of many brain structures. The tools developed by Gazula et al. are publicly available as part of FreeSurfer, a widespread neuroimaging software that can be used by any researcher working at a brain bank. This will allow brain banks to obtain accurate measurements of dead brains, allowing them to cheaply perform quantitative studies of brain structures, which could lead to new findings relating to neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Encéfalo , Imageamento Tridimensional , Aprendizado de Máquina , Humanos , Imageamento Tridimensional/métodos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Fotografação/métodos , Dissecação , Imageamento por Ressonância Magnética/métodos , Neuropatologia/métodos , Neuroimagem/métodos
11.
Gut Microbes ; 16(1): 2363014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38904096

RESUMO

Gut bacteria regulate brain pathology of Alzheimer's disease (AD) patients and animal models; however, the underlying mechanism remains unclear. In this study, 3-month-old APP-transgenic female mice with and without knock-out of Il-17a gene were treated with antibiotics-supplemented or normal drinking water for 2 months. The antibiotic treatment eradicated almost all intestinal bacteria, which led to a reduction in Il-17a-expressing CD4-positive T lymphocytes in the spleen and gut, and to a decrease in bacterial DNA in brain tissue. Depletion of gut bacteria inhibited inflammatory activation in both brain tissue and microglia, lowered cerebral Aß levels, and promoted transcription of Arc gene in the brain of APP-transgenic mice, all of which effects were abolished by deficiency of Il-17a. As possible mechanisms regulating Aß pathology, depletion of gut bacteria inhibited ß-secretase activity and increased the expression of Abcb1 and Lrp1 in the brain or at the blood-brain barrier, which were also reversed by the absence of Il-17a. Interestingly, a crossbreeding experiment between APP-transgenic mice and Il-17a knockout mice further showed that deficiency of Il-17a had already increased Abcb1 and Lrp1 expression at the blood-brain barrier. Thus, depletion of gut bacteria attenuates inflammatory activation and amyloid pathology in APP-transgenic mice via Il-17a-involved signaling pathways. Our study contributes to a better understanding of the gut-brain axis in AD pathophysiology and highlights the therapeutic potential of Il-17a inhibition or specific depletion of gut bacteria that stimulate the development of Il-17a-expressing T cells.


Assuntos
Doença de Alzheimer , Encéfalo , Modelos Animais de Doenças , Microbioma Gastrointestinal , Interleucina-17 , Camundongos Transgênicos , Animais , Doença de Alzheimer/microbiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Interleucina-17/metabolismo , Interleucina-17/genética , Camundongos , Encéfalo/patologia , Encéfalo/metabolismo , Feminino , Camundongos Knockout , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/metabolismo , Antibacterianos/farmacologia , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Microglia/microbiologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/microbiologia , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade
12.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928172

RESUMO

Alzheimer's disease (AD), the leading cause of dementia worldwide, remains a challenge due to its complex origin and degenerative character. The need for accurate biomarkers and treatment targets hinders early identification and intervention. To fill this gap, we used a novel longitudinal proteome methodology to examine the temporal development of molecular alterations in the cortex of an intracerebroventricular streptozotocin (ICV-STZ)-induced AD mouse model for disease initiation and progression at one, three-, and six-weeks post-treatment. Week 1 revealed metabolic protein downregulation, such as Aldoa and Pgk1. Week 3 showed increased Synapsin-1, and week 6 showed cytoskeletal protein alterations like Vimentin. The biological pathways, upstream regulators, and functional effects of proteome alterations were dissected using advanced bioinformatics methods, including Ingenuity Pathway Analysis (IPA) and machine learning algorithms. We identified Mitochondrial Dysfunction, Synaptic Vesicle Pathway, and Neuroinflammation Signaling as disease-causing pathways. Huntington's Disease Signaling and Synaptogenesis Signaling were stimulated while Glutamate Receptor and Calcium Signaling were repressed. IPA also found molecular connections between PPARGC1B and AGT, which are involved in myelination and possible neoplastic processes, and MTOR and AR, which imply mechanistic involvements beyond neurodegeneration. These results help us comprehend AD's molecular foundation and demonstrate the promise of focused proteomic techniques to uncover new biomarkers and therapeutic targets for AD, enabling personalized medicine.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Proteômica , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Proteômica/métodos , Camundongos , Proteoma/metabolismo , Masculino , Transdução de Sinais , Biomarcadores/metabolismo , Progressão da Doença
13.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928221

RESUMO

Methionine oxidation to the sulfoxide form (MSox) is a poorly understood post-translational modification of proteins associated with non-specific chemical oxidation from reactive oxygen species (ROS), whose chemistries are linked to various disease pathologies, including neurodegeneration. Emerging evidence shows MSox site occupancy is, in some cases, under enzymatic regulatory control, mediating cellular signaling, including phosphorylation and/or calcium signaling, and raising questions as to the speciation and functional nature of MSox across the proteome. The 5XFAD lineage of the C57BL/6 mouse has well-defined Alzheimer's and aging states. Using this model, we analyzed age-, sex-, and disease-dependent MSox speciation in the mouse hippocampus. In addition, we explored the chemical stability and statistical variance of oxidized peptide signals to understand the needed power for MSox-based proteome studies. Our results identify mitochondrial and glycolytic pathway targets with increases in MSox with age as well as neuroinflammatory targets accumulating MSox with AD in proteome studies of the mouse hippocampus. Further, this paper establishes a foundation for reproducible and rigorous experimental MSox-omics appropriate for novel target identification in biological discovery and for biomarker analysis in ROS and other oxidation-linked diseases.


Assuntos
Envelhecimento , Doença de Alzheimer , Glicólise , Hipocampo , Metionina , Camundongos Endogâmicos C57BL , Mitocôndrias , Proteômica , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Hipocampo/metabolismo , Camundongos , Mitocôndrias/metabolismo , Proteômica/métodos , Metionina/metabolismo , Metionina/análogos & derivados , Envelhecimento/metabolismo , Masculino , Feminino , Oxirredução , Proteoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Modelos Animais de Doenças
14.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928472

RESUMO

The 5xFAD transgenic mouse model widely used in Alzheimer's disease (AD) research recapitulates many AD-related phenotypes with a relatively early onset and aggressive age-dependent progression. Besides developing amyloid peptide deposits alongside neuroinflammation by the age of 2 months, as well as exhibiting neuronal decline by the age of 4 months that intensifies by the age of 9 months, these mice manifest a broad spectrum of behavioural impairments. In this review, we present the extensive repertoire of behavioural dysfunctions in 5xFAD mice, organised into four categories: motor skills, sensory function, learning and memory abilities, and neuropsychiatric-like symptoms. The motor problems, associated with agility and reflex movements, as well as balance and coordination, and skeletal muscle function, typically arise by the time mice reach 9 months of age. The sensory function (such as taste, smell, hearing, and vision) starts to deteriorate when amyloid peptide buildups and neuroinflammation spread into related anatomical structures. The cognitive functions, encompassing learning and memory abilities, such as visual recognition, associative, spatial working, reference learning, and memory show signs of decline from 4 to 6 months of age. Concerning neuropsychiatric-like symptoms, comprising apathy, anxiety and depression, and the willingness for exploratory behaviour, it is believed that motivational changes emerge by approximately 6 months of age. Unfortunately, numerous studies from different laboratories are often contradictory on the conclusions drawn and the identification of onset age, making preclinical studies in rodent models not easily translatable to humans. This variability is likely due to a range of factors associated with animals themselves, housing and husbandry conditions, and experimental settings. In the forthcoming studies, greater clarity in experimental details when conducting behavioural testing in 5xFAD transgenic mice could minimise the inconsistencies and could ensure the reliability and the reproducibility of the results.


Assuntos
Doença de Alzheimer , Comportamento Animal , Modelos Animais de Doenças , Camundongos Transgênicos , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Camundongos , Humanos , Memória/fisiologia , Peptídeos beta-Amiloides/metabolismo
15.
Discov Med ; 36(185): 1221-1230, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38926108

RESUMO

BACKGROUND: Alzheimer's disease (AD) affects the brain and causes difficulties with cognition and emotions. At present, there are no viable therapies to halt or slow down the advancement of AD. Metallothionein III (MT-III) exhibits antioxidant and anti-inflammatory characteristics, indicating possible therapeutic benefits. This study aimed to explore the influence of MT-III on AD pathological alterations and cognitive abilities. METHODS: In this research, we employed the universally accepted AD mouse models (3xTg-AD) as test subjects and administrated vehicle or MT-III. The mice were subjected to the Morris water maze test to assess their spatial learning and memory capabilities. Moreover, to evaluate the consequent effects on neuronal groups in the hippocampus, the Nissl staining and neuronal nuclear antigen (NeuN) immunohistochemistry were used to identify the cellular morphology changes and density. Immunohistochemistry was also used to detect ß-amyloid (Aß) and glial fibrillary acidic protein (GFAP) to measure Aß accumulation and astrocyte growth. Western blot was also used to measure Tau pathology-related PHD finger protein 1 (PHF-1), phosphorylated Tau (AT-8), and total Tau protein. RESULTS: The administration of MT-III notably enhanced spatial learning and memory function in 3xTg-AD mice, as evidenced by the Morris water maze test (p < 0.01). According to immunohistochemistry and the obtained findings, it was observed that brain tissues of mice treated with MT-III showed a notable increase of Nissl bodies and NeuN intensity (p < 0.01) while a remarkable decrease in Aß accumulation and GFAP (p < 0.01). Additionally, MT-III largely decreased levels of Tau phosphorylation-related PHF-1 and AT-8 (p < 0.01) and slightly reduced the level of Tau 5 (p < 0.05). CONCLUSION: In summary, our research indicates that MT-III has the capacity to ameliorate pathological alterations in AD mouse models and safeguard their cognitive and emotional abilities. By decreasing ß-amyloid accumulation and reducing the intensity of Tau pathology, MT-III protected hippocampal subfield neurons against pathological harm. Furthermore, MT-III reduced inflammation by inhibiting abnormal proliferation of astrocytes. Of utmost importance, MT-III greatly enhanced the cognitive abilities related to spatial learning and memory in mice, suggesting its promising therapeutic properties for AD.


Assuntos
Doença de Alzheimer , Astrócitos , Proliferação de Células , Modelos Animais de Doenças , Metalotioneína 3 , Camundongos Transgênicos , Proteínas tau , Animais , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Camundongos , Proliferação de Células/efeitos dos fármacos , Proteínas tau/metabolismo , Hipocampo/patologia , Hipocampo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Masculino , Humanos , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo
16.
Biomolecules ; 14(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38927020

RESUMO

Deposition of extracellular Amyloid Beta (Aß) and intracellular tau fibrils in post-mortem brains remains the only way to conclusively confirm cases of Alzheimer's Disease (AD). Substantial evidence, though, implicates small globular oligomers instead of fibrils as relevant biomarkers of, and critical contributors to, the clinical symptoms of AD. Efforts to verify and utilize amyloid oligomers as AD biomarkers in vivo have been limited by the near-exclusive dependence on conformation-selective antibodies for oligomer detection. While antibodies have yielded critical evidence for the role of both Aß and tau oligomers in AD, they are not suitable for imaging amyloid oligomers in vivo. Therefore, it would be desirable to identify a set of oligomer-selective small molecules for subsequent development into Positron Emission Tomography (PET) probes. Using a kinetics-based screening assay, we confirm that the triarylmethane dye Crystal Violet (CV) is oligomer-selective for Aß42 oligomers (AßOs) grown under near-physiological solution conditions in vitro. In postmortem brains of an AD mouse model and human AD patients, we demonstrate that A11 antibody-positive oligomers but not Thioflavin S (ThioS)-positive fibrils colocalize with CV staining, confirming in vitro results. Therefore, our kinetic screen represents a robust approach for identifying new classes of small molecules as candidates for oligomer-selective dyes (OSDs). Such OSDs, in turn, provide promising starting points for the development of PET probes for pre-mortem imaging of oligomer deposits in humans.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Encéfalo , Violeta Genciana , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/química , Humanos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Camundongos , Violeta Genciana/química , Amiloide/metabolismo , Amiloide/química , Tomografia por Emissão de Pósitrons , Feminino
17.
Genes (Basel) ; 15(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38927745

RESUMO

Brain lipid homeostasis is an absolute requirement for proper functionality of nerve cells and neurological performance. Current evidence demonstrates that lipid alterations are linked to neurodegenerative diseases, especially Alzheimer's disease (AD). The complexity of the brain lipidome and its metabolic regulation has hampered the identification of critical processes associated with the onset and progression of AD. While most experimental studies have focused on the effects of known factors on the development of pathological hallmarks in AD, e.g., amyloid deposition, tau protein and neurofibrillary tangles, neuroinflammation, etc., studies addressing the causative effects of lipid alterations remain largely unexplored. In the present study, we have used a multifactor approach combining diets containing different amounts of polyunsaturated fatty acids (PUFAs), estrogen availabilities, and genetic backgrounds, i.e., wild type (WT) and APP/PS1 (FAD), to analyze the lipid phenotype of the frontal cortex in middle-aged female mice. First, we observed that severe n-3 PUFA deficiency impacts the brain n-3 long-chain PUFA (LCPUFA) composition, yet it was notably mitigated by hepatic de novo synthesis. n-6 LCPUFAs, ether-linked fatty acids, and saturates were also changed by the dietary condition, but the extent of changes was dependent on the genetic background and hormonal condition. Likewise, brain cortex phospholipids were mostly modified by the genotype (FAD>WT) with nuanced effects from dietary treatment. Cholesterol (but not sterol esters) was modified by the genotype (WT>FAD) and dietary condition (higher in DHA-free conditions, especially in WT mice). However, the effects of estrogen treatment were mostly observed in relation to phospholipid remodeling in a genotype-dependent manner. Analyses of lipid-derived variables indicate that nerve cell membrane biophysics were significantly affected by the three factors, with lower membrane microviscosity (higher fluidity) values obtained for FAD animals. In conclusion, our multifactor analyses revealed that the genotype, diet, and estrogen status modulate the lipid phenotype of the frontal cortex, both as independent factors and through their interactions. Altogether, the outcomes point to potential strategies based on dietary and hormonal interventions aimed at stabilizing the brain cortex lipid composition in Alzheimer's disease neuropathology.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Modelos Animais de Doenças , Estrogênios , Ácidos Graxos Ômega-3 , Lobo Frontal , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Doença de Alzheimer/dietoterapia , Animais , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Camundongos , Lobo Frontal/metabolismo , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/patologia , Feminino , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Estrogênios/metabolismo , Estrogênios/farmacologia , Camundongos Transgênicos , Presenilina-1/genética , Presenilina-1/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Humanos
18.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928008

RESUMO

Mitochondrial one-carbon metabolism provides carbon units to several pathways, including nucleic acid synthesis, mitochondrial metabolism, amino acid metabolism, and methylation reactions. Late-onset Alzheimer's disease is the most common age-related neurodegenerative disease, characterised by impaired energy metabolism, and is potentially linked to mitochondrial bioenergetics. Here, we discuss the intersection between the molecular pathways linked to both mitochondrial one-carbon metabolism and Alzheimer's disease. We propose that enhancing one-carbon metabolism could promote the metabolic processes that help brain cells cope with Alzheimer's disease-related injuries. We also highlight potential therapeutic avenues to leverage one-carbon metabolism to delay Alzheimer's disease pathology.


Assuntos
Doença de Alzheimer , Carbono , Metabolismo Energético , Mitocôndrias , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Humanos , Mitocôndrias/metabolismo , Carbono/metabolismo , Animais
19.
Nat Commun ; 15(1): 5031, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866759

RESUMO

Alzheimer's disease (AD) is a brain network disorder where pathological proteins accumulate through networks and drive cognitive decline. Yet, the role of network connectivity in facilitating this accumulation remains unclear. Using in-vivo multimodal imaging, we show that the distribution of tau and reactive microglia in humans follows spatial patterns of connectivity variation, the so-called gradients of brain organization. Notably, less distinct connectivity patterns ("gradient contraction") are associated with cognitive decline in regions with greater tau, suggesting an interaction between reduced network differentiation and tau on cognition. Furthermore, by modeling tau in subject-specific gradient space, we demonstrate that tau accumulation in the frontoparietal and temporo-occipital cortices is associated with greater baseline tau within their functionally and structurally connected hubs, respectively. Our work unveils a role for both functional and structural brain organization in pathology accumulation in AD, and supports subject-specific gradient space as a promising tool to map disease progression.


Assuntos
Doença de Alzheimer , Encéfalo , Imageamento por Ressonância Magnética , Proteínas tau , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/diagnóstico por imagem , Proteínas tau/metabolismo , Masculino , Feminino , Idoso , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Microglia/metabolismo , Microglia/patologia , Idoso de 80 Anos ou mais , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Disfunção Cognitiva/diagnóstico por imagem , Pessoa de Meia-Idade , Rede Nervosa/metabolismo , Rede Nervosa/patologia , Rede Nervosa/diagnóstico por imagem , Mapeamento Encefálico/métodos
20.
Nat Commun ; 15(1): 5000, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866763

RESUMO

To date, earlier diagnosis of Alzheimer's disease (AD) is still challenging. Recent studies revealed the elevated expression of connective tissue growth factor (CTGF) in AD brain is an upstream regulator of amyloid-beta (Aß) plaque, thus CTGF could be an earlier diagnostic biomarker of AD than Aß plaque. Herein, we develop a peptide-coated gold nanocluster that specifically targets CTGF with high affinity (KD ~ 21.9 nM). The probe can well penetrate the blood-brain-barrier (BBB) of APP/PS1 transgenic mice at early-stage (earlier than 3-month-old) in vivo, allowing non-invasive NIR-II imaging of CTGF when there is no appearance of Aß plaque deposition. Notably, this probe can also be applied to measuring CTGF on postmortem brain sections by multimodal analysis, including fluorescence imaging, peroxidase-like chromogenic imaging, and ICP-MS quantitation, which enables distinguishment between the brains of AD patients and healthy people. This probe possesses great potential for precise diagnosis of earlier AD before Aß plaque formation.


Assuntos
Doença de Alzheimer , Encéfalo , Fator de Crescimento do Tecido Conjuntivo , Camundongos Transgênicos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Animais , Humanos , Camundongos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Ouro/química , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/diagnóstico por imagem , Placa Amiloide/diagnóstico por imagem , Placa Amiloide/metabolismo , Nanopartículas Metálicas/química , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo , Feminino , Masculino , Imagem Multimodal/métodos , Biomarcadores/metabolismo , Imagem Óptica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...