Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
Rev Med Suisse ; 20(872): 881-885, 2024 May 01.
Artigo em Francês | MEDLINE | ID: mdl-38693801

RESUMO

Marburg virus disease (MVD) is a dreadful but exceptional disease. Formerly mainly identified in Uganda, Angola and the Democratic Republic of Congo, it has recently appeared in the Republic of Guinea, Ghana, Equatorial Guinea and Tanzania, adding West Africa to the affected regions. Humans become infected through exposure to bats Roussettus aegyptiacus or during unprotected care of infected people. Five cases are linked to travellers, the last one dates to 2008 and involved a visit to caves colonized by bats. At present, there is no specific treatment or vaccine. Despite its rarity, adventurous travelers should be aware of the risks of exposure and avoid entering places inhabited by bats.


La maladie à virus Marburg est une maladie redoutable mais exceptionnelle. Autrefois identifiée en Ouganda, Angola et République démocratique du Congo, elle a récemment fait son apparition en République de Guinée, au Ghana, en Guinée équatoriale et en Tanzanie, ajoutant l'Afrique de l'Ouest aux régions touchées. Les humains s'infectent lors d'une exposition avec les chauves-souris roussettes d'Égypte ou lors de la prise en charge sans protection de personnes infectées. Cinq cas sont liés à des voyageurs, le dernier remonte à 2008 et était associé à la visite de grottes colonisées par des roussettes d'Égypte. Actuellement, il n'existe aucun traitement spécifique ni vaccin. Malgré sa rareté, les voyageurs aventureux doivent être informés des risques d'exposition et éviter de pénétrer dans des lieux habités par des chauves-souris.


Assuntos
Doença do Vírus de Marburg , Viagem , Humanos , Animais , Doença do Vírus de Marburg/epidemiologia , Doença do Vírus de Marburg/diagnóstico , Quirópteros/virologia
2.
AMA J Ethics ; 26(2): E109-115, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306200

RESUMO

Marburg virus, the first filovirus discovered and a close cousin to the Ebola virus, is carried by the Egyptian rousette bat, a common cave-dwelling fruit bat endemic to sub-Saharan Africa whose populations can exceed 50 000 individuals. Community outbreaks of Marburg virus can result in high morbidity rates. In eastern Africa, favorite habitats of these bats include rural subterranean gold mines-sometimes worked illegally-that create environments conducive to zoonotic virus transmission. This commentary on a case describes how outbreaks of Marburg virus disease among people exposed to sub-Saharan African caves and mines containing these bats cause tensions among miners, companies, public health officials, and conservationists.


Assuntos
Quirópteros , Doença do Vírus de Marburg , Marburgvirus , Animais , Humanos , Saúde Pública , Doença do Vírus de Marburg/epidemiologia , Surtos de Doenças
3.
Ann Glob Health ; 90(1): 5, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38273871

RESUMO

The co-existence of deadly viral pandemics can be considered a nightmare for public health authorities. The surge of a Marburg virus disease (MVD) outbreak in Africa at a time when the coronavirus-19 (COVID-19) pandemic is partially controlled with its limited resources is an urgent call for concern. Over the past decades, several bouts of MVD outbreaks have occurred in Africa with an alarming case fatality rate. Despite this, little has been done to end its recurrence, and affected countries essentially depend on preventative rather than curative measures of management. The recent outbreak of MVD declared by the health officials of Equatorial Guinea, causing several deaths in the context of the COVID-19 pandemic, signals the need for speed in the establishment and the implementation of appropriate health policies and health system strategies to contain, destroy, and prevent the spread of this deadly virus to other neighboring countries.


Assuntos
Infecções por Coronavirus , Doença do Vírus de Marburg , Marburgvirus , Animais , Humanos , Guiné Equatorial , Pandemias/prevenção & controle , Surtos de Doenças/prevenção & controle , Doença do Vírus de Marburg/epidemiologia , Doença do Vírus de Marburg/prevenção & controle , Infecções por Coronavirus/epidemiologia
4.
BMC Med ; 21(1): 439, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964296

RESUMO

BACKGROUND: Marburg virus disease is an acute haemorrhagic fever caused by Marburg virus. Marburg virus is zoonotic, maintained in nature in Egyptian fruit bats, with occasional spillover infections into humans and nonhuman primates. Although rare, sporadic cases and outbreaks occur in Africa, usually associated with exposure to bats in mines or caves, and sometimes with secondary human-to-human transmission. Outbreaks outside of Africa have also occurred due to importation of infected monkeys. Although all previous Marburg virus disease outbreaks have been brought under control without vaccination, there is nevertheless the potential for large outbreaks when implementation of public health measures is not possible or breaks down. Vaccines could thus be an important additional tool, and development of several candidate vaccines is under way. METHODS: We developed a branching process model of Marburg virus transmission and investigated the potential effects of several prophylactic and reactive vaccination strategies in settings driven primarily by multiple spillover events as well as human-to-human transmission. Linelist data from the 15 outbreaks up until 2022, as well as an Approximate Bayesian Computational framework, were used to inform the model parameters. RESULTS: Our results show a low basic reproduction number which varied across outbreaks, from 0.5 [95% CI 0.05-1.8] to 1.2 [95% CI 1.0-1.9] but a high case fatality ratio. Of six vaccination strategies explored, the two prophylactic strategies (mass and targeted vaccination of high-risk groups), as well as a combination of ring and targeted vaccination, were generally most effective, with a probability of potential outbreaks being terminated within 1 year of 0.90 (95% CI 0.90-0.91), 0.89 (95% CI 0.88-0.90), and 0.88 (95% CI 0.87-0.89) compared with 0.68 (0.67-0.69) for no vaccination, especially if the outbreak is driven by zoonotic spillovers and the vaccination campaign initiated as soon as possible after onset of the first case. CONCLUSIONS: Our study shows that various vaccination strategies can be effective in helping to control outbreaks of MVD, with the best approach varying with the particular epidemiologic circumstances of each outbreak.


Assuntos
Quirópteros , Doença do Vírus de Marburg , Marburgvirus , Vacinas , Animais , Humanos , Doença do Vírus de Marburg/epidemiologia , Doença do Vírus de Marburg/prevenção & controle , Teorema de Bayes , Surtos de Doenças/prevenção & controle , Vacinação , Modelos Teóricos
5.
Dtsch Med Wochenschr ; 148(22): 1437-1442, 2023 11.
Artigo em Alemão | MEDLINE | ID: mdl-37918428

RESUMO

Viral hemorrhagic fevers (VHF) are serious, often fatal diseases that affect humans and non-human primates. The nomenclature of these diseases has changed in that they are now referred to as viral diseases because the previously named symptoms of fever or hemorrhages are not obligatory. In this article, the focus will be on the VHFs Ebola and Marburg viral disease with the potential for human-to-human transmission; these diseases are so-called high-consequence infectious diseases (HCID), some with considerable potential for epidemic spread and the risk of nosocomial transmission.


Assuntos
Doença pelo Vírus Ebola , Febres Hemorrágicas Virais , Doença do Vírus de Marburg , Animais , Humanos , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/diagnóstico , Doença do Vírus de Marburg/diagnóstico , Doença do Vírus de Marburg/epidemiologia , Surtos de Doenças , Febres Hemorrágicas Virais/diagnóstico , Febres Hemorrágicas Virais/epidemiologia , Febre
6.
Emerg Infect Dis ; 29(11): 2238-2245, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37877537

RESUMO

Marburg virus disease, caused by Marburg and Ravn orthomarburgviruses, emerges sporadically in sub-Saharan Africa and is often fatal in humans. The natural reservoir is the Egyptian rousette bat (ERB), which sheds virus in saliva, urine, and feces. Frugivorous ERBs discard test-bitten and partially eaten fruit, potentially leaving infectious virus behind that could be consumed by other susceptible animals or humans. Historically, 8 of 17 known Marburg virus disease outbreaks have been linked to human encroachment on ERB habitats, but no linkage exists for the other 9 outbreaks, raising the question of how bats and humans might intersect, leading to virus spillover. We used micro‒global positioning systems to identify nightly ERB foraging locations. ERBs from a known Marburg virus‒infected population traveled long distances to feed in cultivated fruit trees near homes. Our results show that ERB foraging behavior represents a Marburg virus spillover risk to humans and plausibly explains the origins of some past outbreaks.


Assuntos
Quirópteros , Doença do Vírus de Marburg , Marburgvirus , Animais , Humanos , Doença do Vírus de Marburg/epidemiologia , Sistemas de Informação Geográfica , Surtos de Doenças
7.
Viruses ; 15(8)2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37632063

RESUMO

The COVID-19 pandemic has not only strained healthcare systems in Africa but has also intensified the impact of emerging and re-emerging diseases. Specifically in Equatorial Guinea, mirroring the situation in other African countries, unique zoonotic outbreaks have occurred during this challenging period. One notable resurgence is Marburg virus disease (MVD), which has further burdened the already fragile healthcare system. The re-emergence of the Marburg virus amid the COVID-19 pandemic is believed to stem from a probable zoonotic spill-over, although the precise transmission routes remain uncertain. Given the gravity of the situation, addressing the existing challenges is paramount. Though the genome sequences from the current outbreak were not available for this study, we analyzed all the available whole genome sequences of this re-emerging pathogen to advocate for a shift towards active surveillance. This is essential to ensure the successful containment of any potential Marburg virus outbreak in Equatorial Guinea and the wider African context. This study, which presents an update on the phylodynamics and the genetic variability of MARV, further confirmed the existence of at least two distinct patterns of viral spread. One pattern demonstrates a slower but continuous and recurring virus circulation, while the other exhibits a faster yet limited and episodic spread. These results highlight the critical need to strengthen genomic surveillance in the region to effectively curb the pathogen's dissemination. Moreover, the study emphasizes the importance of prompt alert management, comprehensive case investigation and analysis, contact tracing, and active case searching. These steps are vital to support the healthcare system's response to this emerging health crisis. By implementing these strategies, we can better arm ourselves against the challenges posed by the resurgence of the Marburg virus and other infectious diseases.


Assuntos
Doença do Vírus de Marburg , Marburgvirus , Animais , Humanos , África/epidemiologia , População Negra , COVID-19/epidemiologia , Marburgvirus/genética , Pandemias , Doença do Vírus de Marburg/epidemiologia , Doença do Vírus de Marburg/genética , Doença do Vírus de Marburg/virologia , Surtos de Doenças , Guiné Equatorial/epidemiologia , Zoonoses Virais/epidemiologia , Zoonoses Virais/genética , Zoonoses Virais/virologia , Filogenia
8.
Immun Inflamm Dis ; 11(8): e980, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37647447

RESUMO

The Marburg virus, which is a member of the same virus family as the Ebola virus called Filoviridae, causes the severe infectious disease known as Marburg virus disease (MVD). Previously, different outbreaks of MVD have appeared in different African countries, including Ghana, Guinea, Uganda, Angola, the Democratic Republic of the Congo, Kenya, and South Africa. For the first time, Equatorial Guinea and Tanzania are experiencing MVD outbreaks. A total of 17 laboratory-confirmed cases of MVD and 23 probable cases have been reported in Equatorial Guinea since the confirmation of the outbreak on February 13, 2023. The first MVD outbreak in the United Republic of Tanzania was formally confirmed by the Ministry of Health on March 21, 2023. As of 22 March, there were eight cases and five fatalities (case fatality ratio [CFR]: 62.5%). Due to the facts that Ebebiyin and Nsock Nsomo districts, the affected regions of Equatorial Guinea, borders Cameroon and Gabon, and Kagera region, the affected region of Tanzania, borders Uganda, Rwanda, and Burundi, there is fear of cross-border spread of MVD due to cross-border migrations, and this can be a great crisis in West and East Africa. Although there are currently outbreaks of MVD in Equatorial Guinea and Tanzania, there is currently no proof of an epidemiological connection between the two outbreaks. The aim of this article is to describe MVD, describe its first outbreak in Equatorial Guinea and Tanzania, explain the efforts being used and the challenges being faced in MVD mitigation, and recommend different measures to be taken to cope with the outbreak of MVD in Equatorial Guinea and Tanzania.


Assuntos
Doença do Vírus de Marburg , Animais , Tanzânia/epidemiologia , Doença do Vírus de Marburg/epidemiologia , Guiné Equatorial , Surtos de Doenças , Quênia
11.
Pan Afr Med J ; 44: 110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250680

RESUMO

A full grasp of the epidemiological factors promoting transmission is necessary for responding to highly infectious diseases, which involves their control and prevention. With the recent outbreak of Marburg Virus Disease (MVD) in Equatorial Guinea, we saw the need to re-shed some technical light based on our field experiences and published literature. We reviewed 15 previous MVD outbreaks globally. Coupled with core One-Health approaches, we highlighted the SPIN (socio-environmental context, possible transmission routes, informing and guiding public health action, needs in terms of control measures) framework as a guiding tool for response teams to appropriately approach this highly contagious infectious disease outbreak for collective and stronger global health security. The Central African Regional Collaborating Centre (RCC) of the Africa Centres for Disease Control and Prevention (Africa CDC) has a big lead role to play, most especially in coordinating the community engagement and risk communication packages of the response, which is highly needed at this point. We reiterate that this framework remains relevant, if not timely, in rethinking pandemic preparedness and response in resource-limited settings.


Assuntos
Doença do Vírus de Marburg , Animais , Humanos , Doença do Vírus de Marburg/epidemiologia , Doença do Vírus de Marburg/prevenção & controle , Guiné Equatorial , Surtos de Doenças/prevenção & controle , Saúde Pública , África/epidemiologia
12.
Rev Med Virol ; 33(5): e2461, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37208958

RESUMO

In 1967, the very first case of the Marburgvirus disease (MVD) was detected in Germany and Serbia sequentially. Since then, MVD has been considered one of the most serious and deadly infectious diseases in the world with a case-fatality rate between 23% and 90% and a substantial number of recorded deaths. Marburgvirus belongs to the family of Filoviridae (filoviruses), which causes severe viral hemorrhagic fever (VHF). Some major risk factors for human infections are close contact with African fruit bats, MVD-infected non-human primates, and MVD-infected individuals. Currently, there is no vaccine or specific treatment for MVD, which emphasizes the seriousness of this disease. In July 2022, the World Health Organization reported outbreaks of MVD in Ghana after two suspected VHF cases were detected. This was followed in February and March 2023 with the emergence of the virus in two countries new to the virus: Equatorial Guinea and Tanzania, respectively. In this review, we aim to highlight the characteristics, etiology, epidemiology, and clinical symptoms of MVD, along with the current prevention measures and the possible treatments to control this virus.


Assuntos
Quirópteros , Ebolavirus , Doença pelo Vírus Ebola , Doença do Vírus de Marburg , Marburgvirus , Animais , Humanos , Doença do Vírus de Marburg/epidemiologia , Doença do Vírus de Marburg/prevenção & controle , Doença do Vírus de Marburg/diagnóstico , Surtos de Doenças , Fatores de Risco
15.
PLoS Negl Trop Dis ; 17(4): e0011279, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37099617

RESUMO

In 2021, a patient died from Marburg virus (MARV) disease in Guinea and it was the first confirmed case in West Africa. The origin of the outbreak has not been identified. It was revealed that the patient didn't travel anywhere before the illness. Prior to outbreak, MARV had been found in bats in the neighboring Sierra Leone, but never in Guinea. Therefore, the origin of infection is unclear: was it an autochthonous case with spillover from a local population of bats or an imported case with spillover from fruit bats foraging/migrating from Sierra Leone? In this paper, we studied Rousettus aegyptiacus in Guinea as the possible source of MARV infection caused the patient death in 2021 in Guinea. We caught bats in 32 sites of Guéckédou prefecture, including seven caves and 25 locations of the flight path. A total of 501 fruit bats (Pteropodidae) were captured, including 66 R. aegyptiacus. The PCR screening showed three positive MARV R. aegyptiacus, roosting in two caves discovered in Guéckédou prefecture. After Sanger sequencing and phylogenetic analyses it was shown that found MARV belongs to the Angola-like lineage but it is not identical to the isolate obtained during the outbreak of 2021.


Assuntos
Quirópteros , Doença do Vírus de Marburg , Marburgvirus , Animais , Humanos , Guiné/epidemiologia , Marburgvirus/genética , Filogenia , Egito , Doença do Vírus de Marburg/epidemiologia , Surtos de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...