Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
PLoS Negl Trop Dis ; 14(7): e0008361, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32667912

RESUMO

Human T-cell leukemia virus type 1 (HTLV-1) causes incurable adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Patients with HAM/TSP have increased levels of HTLV-1-infected cells compared with asymptomatic HTLV-1 carriers. However, the roles of cellular genes in HTLV-1-infected CD4+ T cells await discovery. We performed microarray analysis of CD4+ T cells from HAM/TSP patients and found that the ABL1 is an important gene in HAM/TSP. ABL1 is a known survival factor for T- and B-lymphocytes and is part of the fused gene (BCR-ABL) known to be responsible for chronic myelogenous leukemia (CML). ABL1 tyrosine kinase inhibitors (TKIs), including imatinib, nilotinib, and dasatinib, are used clinically for treating CML. To evaluate whether ABL1 is indeed important for HAM/TSP, we investigated the effect of TKIs on HTLV-1-infected cells. We developed a propidium monoazide-HTLV-1 viability quantitative PCR assay, which distinguishes DNA from live cells and dead cells. Using this method, we were able to measure the HTLV-1 proviral load (PVL) in live cells alone when peripheral blood mononuclear cells (PBMCs) from HAM/TSP cases were treated with TKIs. Treating the PBMCs with nilotinib or dasatinib induced significant reductions in PVL (21.0% and 17.5%, respectively) in live cells. Furthermore, ABL1 siRNA transfection reduced cell viability in HTLV-1-infected cell lines, but not in uninfected cell lines. A retrospective survey based on our clinical records found a rare case of HAM/TSP who also suffered from CML. The patient showed an 84.2% PVL reduction after CML treatment with imatinib. We conclude that inhibiting the ABL1 tyrosine kinase specifically reduced the PVL in PBMCs from patients with HAM/TSP, suggesting that ABL1 is an important gene for the survival of HTLV-1-infected cells and that TKIs may be potential therapeutic agents for HAM/TSP.


Assuntos
Infecções por HTLV-I/complicações , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Leucócitos Mononucleares/virologia , Paraparesia Espástica Tropical/enzimologia , Doenças da Medula Espinal/enzimologia , Adulto , Idoso , DNA Viral/genética , Feminino , Infecções por HTLV-I/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Paraparesia Espástica Tropical/tratamento farmacológico , Paraparesia Espástica Tropical/etiologia , Paraparesia Espástica Tropical/genética , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo , Provírus/genética , Provírus/fisiologia , Estudos Retrospectivos , Doenças da Medula Espinal/tratamento farmacológico , Doenças da Medula Espinal/etiologia , Doenças da Medula Espinal/genética , Carga Viral
2.
Oxid Med Cell Longev ; 2020: 4909103, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31998438

RESUMO

Direct peritoneal resuscitation with pyruvate (Pyr-PDS) has emerged as an interesting candidate to alleviate injury in diverse organs, while the potential mechanism has yet to be fully elucidated. To explore the effect of autophagy in the spinal cord ischemia-reperfusion (SCIR) injury and the underlying mechanism, we established a model of SCIR in vivo and in vitro. In vivo, male SD rats underwent aortic occlusion for 60 min and then followed by intraperitoneally infused with 20 mL of pyruvate or normal saline for 30 min, and the spinal cords were removed for analysis after 48 h of reperfusion. The functional and morphological results showed that Pyr-PDS alleviated SCIR injury; meanwhile, the expression of autophagy-related genes and transmission electron microscopy displayed autophagy was activated by SCIR injury, and Pyr-PDS treatment could further upregulate the degree of autophagy which plays a protective part in the SCIR injury, while there is no significant difference after treatment with saline. In addition, SCIR injury inhibited expression of PHD2, which results to activate its downstream HIF-1α/BNIP3 pathway to promote autophagy. In the Pyr-PDS, the results revealed PHD2 was further inhibited compared to the SCIR group, which could further activate the HIF-1α/BNIP3 signaling pathway. Additionally, oxygen-glucose deprivation and reoxygenation were applied to SH-SY5Y cells to mimic anoxic conditions in vitro, and the expression of autophagy-related genes, PHD2, and its downstream HIF-1α/BNIP3 pathway showed the same trend as the results in vivo. Besides, IOX2, a specific inhibitor of PHD2 was also treated to SH-SY5Y cells during reoxygenation, in which the result is as same as the pyruvate group. Then, we observed the expression of autophagy-related genes and the HIF-1α signal pathway in the process of reoxygenation; the results showed that as the reoxygenation goes, the expression of the HIF-1α signal pathway and degree of autophagy came to decrease gradually, while treated with pyruvate could maintain autophagy high and stable through keeping PHD2 at a lower level during reoxygenation, and the latter was observed downregulated during reoxygenation process from 0 to 24 hours in a time-effect way. The above results indicated that direct peritoneal resuscitation with pyruvate showed effective protection to ischemia-reperfusion of the spinal cord through activating autophagy via acting on PHD2 and its downstream HIF-1α/BNIP3 pathway.


Assuntos
Morte Celular Autofágica/efeitos dos fármacos , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Ácido Pirúvico/farmacologia , Traumatismo por Reperfusão , Transdução de Sinais/efeitos dos fármacos , Doenças da Medula Espinal , Animais , Modelos Animais de Doenças , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Injeções Intraperitoneais , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Ratos , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle , Ressuscitação , Doenças da Medula Espinal/enzimologia , Doenças da Medula Espinal/patologia , Doenças da Medula Espinal/prevenção & controle
3.
J Vet Med Sci ; 79(2): 375-379, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-27941298

RESUMO

Canine degenerative myelopathy (DM) is an adult-onset, progressive neurodegenerative disease that occurs in multiple dog breeds. A DM-associated mutation of the canine superoxide dismutase 1 (SOD1) gene, designated as c.118G>A (p.E40K), has been implicated as one of pathogenetic determinants of the disease in many breeds, but it remains to be determined whether the c.118G>A mutation is responsible for development or progression of DM in Collies. Previously, a Rough Collie was diagnosed clinically and histopathologically as having DM in Japan, suggesting the possibility that the Collie breed may be predisposed to DM due to the high frequency of c.118G>A in Japan. In this study, accumulation and aggregate formation of SOD1 protein were retrospectively demonstrated in the spinal cord of the DM-affected dog by immunohistochemical analysis. Furthermore, a molecular epidemiological survey revealed a high carrier rate (27.6%) and mutant allele frequency (0.138) of c.118G>A in a population of Collies in Japan, suggesting that the Collie breed may be predisposed to DM associated with c.118G>A, and the prevention of DM in Collies in Japan should be addressed through epidemiological and genetic testing strategies.


Assuntos
Doenças do Cão/genética , Doenças Neurodegenerativas/veterinária , Doenças da Medula Espinal/veterinária , Superóxido Dismutase-1/genética , Animais , Doenças do Cão/enzimologia , Doenças do Cão/patologia , Cães , Predisposição Genética para Doença , Imuno-Histoquímica/veterinária , Japão , Masculino , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Mutação Puntual , Estudos Retrospectivos , Especificidade da Espécie , Doenças da Medula Espinal/enzimologia , Doenças da Medula Espinal/genética , Doenças da Medula Espinal/patologia
4.
J Neurol Sci ; 318(1-2): 55-64, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22542607

RESUMO

Canine degenerative myelopathy (DM) is an adult-onset, fatal neurodegenerative disease with many similarities to an upper-motor-neuron-onset form of human amyotrophic lateral sclerosis (ALS), that results from mutations in the superoxide dismutase (SOD1) gene. DM occurs in many dog breeds, including the Pembroke Welsh Corgi and Boxer. The initial upper motor neuron degeneration produces spastic paraparesis and affected dogs develop general proprioceptive ataxia in the pelvic limbs. Dog owners usually elect euthanasia when their dog becomes paraplegic. When euthanasia is delayed, lower motor neuron signs including ascending tetraparesis, flaccid paralysis and widespread muscle atrophy emerge. For this study, muscle and peripheral nerve specimens were evaluated at varying disease stages from DM-affected Pembroke Welsh Corgis and Boxers that were homozygous for the SOD1 mutation and had spinal cord histopathology consistent with DM. Comparisons were made with age- and breed-matched control dogs. Here we provide evidence that Pembroke Welsh Corgis and Boxers with chronic DM develop muscle atrophy consistent with denervation, peripheral nerve pathology consistent with an axonopathy, and to a lesser degree demyelination. Canine DM has been proposed as a potential spontaneous animal disease model of human ALS. The results of this study provide further support that canine DM recapitulates one form of the corresponding human disorder and should serve as a valuable animal model to develop therapeutic strategies.


Assuntos
Progressão da Doença , Doenças do Cão/genética , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Mutação de Sentido Incorreto/genética , Doenças do Sistema Nervoso Periférico/genética , Doenças da Medula Espinal/genética , Superóxido Dismutase/genética , Animais , Modelos Animais de Doenças , Doenças do Cão/enzimologia , Cães , Predisposição Genética para Doença/genética , Transtornos Heredodegenerativos do Sistema Nervoso/enzimologia , Transtornos Heredodegenerativos do Sistema Nervoso/patologia , Homozigoto , Doenças do Sistema Nervoso Periférico/enzimologia , Doenças do Sistema Nervoso Periférico/patologia , Doenças da Medula Espinal/enzimologia , Doenças da Medula Espinal/patologia , Superóxido Dismutase/deficiência , Superóxido Dismutase-1
5.
Cell Mol Neurobiol ; 30(1): 123-35, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19693665

RESUMO

In the Wobbler mouse, a mutation in the Vps54 gene is accompanied by motoneuron degeneration and astrogliosis in the cervical spinal cord. Previous work has shown that these abnormalities are greatly attenuated by progesterone treatment of clinically afflicted Wobblers. However, whether progesterone is effective at all disease stages has not yet been tested. The present work used genotyped (wr/wr) Wobbler mice at three periods of the disease: early progressive (1-2 months), established (5-8 months) or late stages (12 months) and age-matched wildtype controls (NFR/NFR), half of which were implanted with a progesterone pellet (20 mg) for 18 days. In untreated Wobblers, degenerating vacuolated motoneurons were initially abundant, experienced a slight reduction at the established stage and dramatically diminished during the late period. In motoneurons, the cholinergic marker choline acetyltransferase (ChAT) was reduced at all stages of the Wobbler disease, whereas hyperexpression of the growth-associated protein (GAP43) mRNA preferentially occurred at the early progressive and established stages. Progesterone therapy significantly reduced motoneuron vacuolation, enhanced ChAT immunoreactive perikarya and reduced the hyperexpression of GAP43 during the early progressive and established stages. At all stage periods, untreated Wobblers showed high density of glial fibrillary acidic protein (GFAP)+ astrocytes and decreased number of glutamine synthase (GS) immunostained cells. Progesterone treatment down-regulated GFAP+ astrocytes and up-regulated GS+ cell number. These data reinforced the usefulness of progesterone to improve motoneuron and glial cell abnormalities of Wobbler mice and further showed that therapeutic benefit seems more effective at the early progressive and established periods, rather than on advance stages of spinal cord neurodegeneration.


Assuntos
Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Neuroglia/efeitos dos fármacos , Neuroglia/patologia , Progesterona/farmacologia , Doenças da Medula Espinal/patologia , Medula Espinal/patologia , Animais , Células do Corno Anterior/efeitos dos fármacos , Células do Corno Anterior/enzimologia , Células do Corno Anterior/patologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Contagem de Células , Colina O-Acetiltransferase/metabolismo , Modelos Animais de Doenças , Feminino , Proteína GAP-43/genética , Proteína GAP-43/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Genótipo , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato-Amônia Ligase/metabolismo , Processamento de Imagem Assistida por Computador , Masculino , Camundongos , Camundongos Mutantes Neurológicos , Neurônios Motores/enzimologia , Neuroglia/enzimologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Doenças da Medula Espinal/enzimologia
6.
Thyroid ; 19(12): 1401-6, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19916870

RESUMO

BACKGROUND: We have shown substantial expression of type 3 deiodinase (D3, a major enzyme involved in the inactivation of thyroid hormone) in infiltrating leukocytes in several models of inflammation. Recently, thyroid hormone has been shown to improve remyelination in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. As induction of D3 may play an important role in decreasing local bioavailability of thyroid hormone at inflammation sites, we hypothesized that D3 is induced in spinal cord inflammatory lesions in EAE. METHODS: The aim of the study was to evaluate D3 expression in spinal cord inflammatory lesions of EAE Dark Agouti rats and to investigate D3 induction in activated monocytes. RESULTS: Here, we show marked expression of D3 by granulocytes and macrophages in spinal cord inflammatory lesions of EAE rats. We further confirm induction of D3 expression in vitro in monocytes that were activated toward proinflammatory or immunomodulatory phenotypes. CONCLUSIONS: We observed increased D3 expression both in spinal cord inflammatory lesions during EAE and in activated monocytes. Although increased D3 expression theoretically results in decreased triiodothyronine availability, it is unknown at present whether reduced local triiodothyronine concentrations are involved in impaired remyelination as observed during EAE.


Assuntos
Encefalomielite Autoimune Experimental/enzimologia , Iodeto Peroxidase/biossíntese , Doenças da Medula Espinal/enzimologia , Animais , Encefalomielite Autoimune Experimental/patologia , Feminino , Leucócitos/enzimologia , Ratos , Doenças da Medula Espinal/patologia
7.
J Child Neurol ; 23(9): 1043-8, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18645204

RESUMO

Biotinidase deficiency is an autosomal recessively inherited disorder that manifests during childhood with various cutaneous and neurological symptoms particularly seizures, hypotonia, and developmental delay. Spinal cord disease has been reported rarely. We describe a 3-year-old boy with profound biotinidase deficiency who presented with progressive spastic paraparesis and ascending weakness in the absence of the usual characteristic neurological manifestations. Supplementation with biotin resulted in resolution of paraparesis with persistent mild spasticity in the lower limbs. DNA mutation analysis revealed that he was homozygous for a novel missense mutation (C>T1339;H447Y) in the BTD gene. This case indicates that biotinidase deficiency should be included in the differential diagnosis of subacute myelopathy and emphasizes the importance of a prompt diagnosis to prevent irreversible neurological damage.


Assuntos
Biotina/metabolismo , Deficiência de Biotinidase/complicações , Deficiência de Biotinidase/genética , Predisposição Genética para Doença/genética , Doenças da Medula Espinal/enzimologia , Doenças da Medula Espinal/genética , Biotina/administração & dosagem , Deficiência de Biotinidase/fisiopatologia , Pré-Escolar , Análise Mutacional de DNA , Diagnóstico Precoce , Regulação Enzimológica da Expressão Gênica/genética , Marcadores Genéticos/genética , Testes Genéticos , Genótipo , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Paraparesia Espástica Tropical/enzimologia , Paraparesia Espástica Tropical/genética , Paraparesia Espástica Tropical/fisiopatologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia , Doenças da Medula Espinal/fisiopatologia , Resultado do Tratamento
8.
Birth Defects Res A Clin Mol Teratol ; 76(2): 86-95, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16463413

RESUMO

BACKGROUND: The retinoic acid (RA)-catabolizing enzyme Cyp26a1 plays an important role in protecting tailbud tissues from inappropriate exposure to RA. Cyp26a1-null animals exhibit caudal agenesis and spina bifida, imperforate anus, agenesis of the caudal portions of the digestive and urogenital tracts, and malformed lumbosacral skeletal elements. This phenotype closely resembles the most severe form of caudal agenesis in humans. In view of these findings, we investigated a potential involvement of the human CYP26A1 gene in the pathogenesis of caudal regression syndrome (CRS). METHODS: Mutational screening of 49 CRS patients and 132 controls was performed using denaturing high-performance liquid chromatography and sequencing. Differences in the genotype and allele frequency of each SNP were evaluated by chi(2) analysis. The biological significance of the intronic variants was investigated by transfection assays of mutant constructs and by analysis of the splicing patterns with RT-PCR. RESULTS: Mutational screening allowed us to identify 6 SNPs, 4 of which (447 C>G, 1134 G>A, IVS 1+10 G>C, and IVS 4+8 AG>GA) are new. In addition, we describe a novel 2-site haplotype consisting of the 2 intronic SNPs. Both single-locus and haplotype analyses revealed no association with increased risk for CRS. The consequences of the 2 intronic polymorphisms on the mRNA splicing process were also investigated. Moreover, using functional and computational methods we demonstrated that both of these intronic polymorphisms affect the intron splicing efficiency. CONCLUSIONS: Our research did not provide evidence that CYP26A1 has implications for the pathogenesis of human CRS. However, the relationship between CRS risk and the CYP26A1 genotype requires further study with a larger number of genotyped subjects.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Análise Mutacional de DNA , Testes Genéticos , Doenças da Medula Espinal/genética , Medula Espinal/anormalidades , Frequência do Gene , Genótipo , Humanos , Imageamento por Ressonância Magnética , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , Ácido Retinoico 4 Hidroxilase , Fatores de Risco , Doenças da Medula Espinal/enzimologia , Doenças da Medula Espinal/fisiopatologia
9.
Neurobiol Dis ; 18(2): 385-9, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15686967

RESUMO

Canavan disease (CD) is a neurodegenerative disorder characterized by the spongy degeneration of the white matter of the brain. Aspartoacylase (ASPA) gene mutation resulting enzyme deficiency is the basic cause of CD. Whether the ASPA defect in CD affects the spinal cord has been investigated using the ASPA gene knockout mouse. Luxol fast blue-hematoxylin and eosin staining in the spinal cord of the knockout mouse showed vacuolation in both white matter and gray matter areas of cervical, thoracic, lumbar, and sacral segments of the spinal cord. However, more vacuoles were seen in the gray matter than the white matter of the spinal cord. ASPA activity in the cervical, thoracic, lumbar, and sacrococcygeal regions of the spinal cord was significantly lower in the knockout mouse compared to the wild type. The enzyme defect in the knockout mouse was also confirmed using the Western blot method. These observations suggest that the ASPA gene defect in the mouse leads to spinal cord pathology, and that these changes may be partly involved in the cause of the physiological/behavioral abnormalities seen in the knockout mouse, if documented also in patients with CD.


Assuntos
Amidoidrolases/deficiência , Doença de Canavan/patologia , Doenças da Medula Espinal/patologia , Medula Espinal/patologia , Amidoidrolases/genética , Animais , Comportamento Animal/fisiologia , Doença de Canavan/enzimologia , Doença de Canavan/genética , Modelos Animais de Doenças , Coxeadura Animal/enzimologia , Coxeadura Animal/genética , Coxeadura Animal/patologia , Camundongos , Camundongos Knockout , Mutação/genética , Fibras Nervosas Mielinizadas/enzimologia , Fibras Nervosas Mielinizadas/patologia , Vias Neurais/enzimologia , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Neurônios/enzimologia , Neurônios/patologia , Medula Espinal/enzimologia , Medula Espinal/fisiopatologia , Doenças da Medula Espinal/enzimologia , Doenças da Medula Espinal/genética , Vacúolos/patologia
10.
Brain Res Mol Brain Res ; 115(2): 173-86, 2003 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-12877988

RESUMO

The extracellular signal-regulated kinases (ERK) participate in numerous signaling pathways and are abundantly expressed in the CNS. It has been proposed that ERK activation promotes survival in models of neuronal injury. Inhibition of MEK, the upstream kinase that activates ERK, however, leads to neuroprotection in models of cerebral ischemia and trauma, suggesting that in this context ERK activation contributes to cellular damage. The effect of ischemia and reperfusion on activity and expression of ERK was investigated using a reversible model of rabbit spinal cord ischemia. Active ERK was observed in nai;ve animals, which decreased during 15 to 60 min of ischemia. Upon reperfusion, a robust activation of ERK was observed in animals occluded for 60 min that remained permanently paraplegic. Immunohistochemical analyses revealed increased staining of phosphorylated ERK (pERK) in glial cells and faint nuclear staining in motor neurons of animals occluded for 60 min and reperfused for 18 h. In contrast ERK activity did not increase in animals occluded for 15 min that regained motor function. No evidence of increased pERK immunoreactivity in motor neurons or nuclear translocation was noted in these animals. ERK1 was demonstrated to be identical to a p46 c-Jun/ATF-2 kinase previously shown to be activated by reperfusion after a 60-min occlusion. The results suggest that activation of ERK during reperfusion of ischemic spinal cord participates in the cellular pathways leading to neuronal damage.


Assuntos
Isquemia/enzimologia , Proteínas Quinases JNK Ativadas por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Reperfusão/métodos , Doenças da Medula Espinal/enzimologia , Fator 2 Ativador da Transcrição , Animais , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ativação Enzimática , Hipocampo , Immunoblotting , Imuno-Histoquímica , Isquemia/metabolismo , MAP Quinase Quinase 4 , Masculino , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteína Básica da Mielina/metabolismo , Fosforilação , Testes de Precipitina , Proteínas Quinases/metabolismo , Coelhos , Frações Subcelulares/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo
12.
J Neurol Sci ; 129 Suppl: 104-6, 1995 May.
Artigo em Inglês | MEDLINE | ID: mdl-7595597

RESUMO

To investigate the mechanisms by which glutamate-induced acetylcholinesterase (AChE) release might play a part in the pathogenesis of excitotoxically triggered motor neurone disease, we measured AChE molecular forms released after glutamate-receptor agonist stimulation of superfused and incubated slices of mouse spinal cord. Kainate and GLU caused a dose-related, calcium-dependent, magnesium-blocked liberation of AChE soluble forms (mainly G4) from both the ventral and dorsal horns, without membrane damage. In the immature slice, glycine potentiated GLU elicited AChE release in the presence of strychnine, suggesting N-methyl-D-aspartate (NMDA) receptor involvement. After the 30th postnatal day, nearly all the release was caused by non-NMDA receptor stimulation. The response might interfere with the negative feedback loop which modulates the overactivation of motor neurones, and might render them more vulnerable to excitotoxic stress.


Assuntos
Acetilcolinesterase/metabolismo , Agonistas de Aminoácidos Excitatórios/toxicidade , Ácido Glutâmico/toxicidade , Receptores de Glutamato/fisiologia , Doenças da Medula Espinal/induzido quimicamente , Doenças da Medula Espinal/enzimologia , Animais , Glicina/farmacologia , Glicinérgicos/farmacologia , Técnicas In Vitro , Ácido Caínico/toxicidade , Camundongos , Receptores de Glutamato/efeitos dos fármacos , Estricnina/farmacologia
13.
Acta Physiol Hung ; 65(3): 255-62, 1985.
Artigo em Inglês | MEDLINE | ID: mdl-4013764

RESUMO

Alterations in the dorsal root potential (DRP) which was evoked by stimulation of the common peroneal nerve of the rat, have been studied in the course of transganglionic degenerative atrophy (TDA) of primary sensory terminals in the upper dorsal horn. TDA was induced by perineural application of Vinca alkaloids around the sciatic nerve. In 9 to 30 days after this treatment, latency of DRP increased, whereas its amplitude and duration decreased. In this period, no C fibre response could be elicited. As a possible mechanism underlying the alterations of DRP, the functional consequences of atrophic changes of primary central afferent terminals are being discussed in terms of the close correlation between structure and function and the possible inferences of the electrophysiological reaction to the therapeutic application of Vinca alkaloids in the iontophoretic treatment of chronic intractable pain.


Assuntos
Doenças da Medula Espinal/fisiopatologia , Raízes Nervosas Espinhais/fisiopatologia , Fosfatase Ácida/metabolismo , Animais , Atrofia , Eletrofisiologia , Histocitoquímica , Masculino , Degeneração Neural , Ratos , Ratos Endogâmicos , Medula Espinal/enzimologia , Doenças da Medula Espinal/enzimologia , Doenças da Medula Espinal/patologia
15.
J Neurol Neurosurg Psychiatry ; 46(11): 1031-6, 1983 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-6317805

RESUMO

Alpha and gamma enolase isoenzymes have been studied in 212 patients with a variety of neurological diseases. The results show that these proteins are sensitive markers of tissue damage which enable a distinction to be made between the involvement of glial and neuronal components.


Assuntos
Isoenzimas/líquido cefalorraquidiano , Doenças do Sistema Nervoso/enzimologia , Fosfopiruvato Hidratase/líquido cefalorraquidiano , Encefalopatias/enzimologia , Neoplasias Encefálicas/enzimologia , Infarto Cerebral/enzimologia , Epilepsia/enzimologia , Humanos , Esclerose Múltipla/enzimologia , Neurite Óptica/enzimologia , Doenças do Sistema Nervoso Periférico/enzimologia , Doenças da Medula Espinal/enzimologia
16.
Eur Neurol ; 22(1): 65-9, 1983.
Artigo em Inglês | MEDLINE | ID: mdl-6301843

RESUMO

Adenylate kinase activity was measured in 41 samples of cerebrospinal fluid in 34 patients with various neurological disorders or psychiatric symptomatologies. Activities of the enzyme showed to be linked to clinically estimated acuteness or progression of the changes in the central nervous system at the time of specimen collection. The findings suggest the conclusion that determination of adenylate kinase activity in cerebrospinal fluid is a meaningful tool for the evaluation of progression and/or acuteness of central nervous system disorders.


Assuntos
Adenilato Quinase/líquido cefalorraquidiano , Doenças do Sistema Nervoso/enzimologia , Fosfotransferases/líquido cefalorraquidiano , Adolescente , Adulto , Encefalopatias/enzimologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Doenças do Sistema Nervoso/diagnóstico , Doenças Neuromusculares/enzimologia , Transtornos Psicóticos/enzimologia , Doenças da Medula Espinal/enzimologia
17.
J Neural Transm Suppl ; 19: 65-74, 1983.
Artigo em Inglês | MEDLINE | ID: mdl-6142089

RESUMO

Altered metabolism of neuroexcitatory amino acids has been described in patients with a form of olivopontocerebellar atrophy (OPCA) associated with glutamate dehydrogenase (GDH) deficiency. To further investigate the specificity of these results, oral glutamate loading tests were performed in healthy controls, patients with GDH deficient OPCA as well as patients with non-GDH deficient degenerative disorders affecting primarily the function of the cerebellum and/or the basal ganglia. Following oral intake of monosodium glutamate, plasma levels of glutamate, aspartate and taurine increased significantly in controls and similar increases also occurred in patients with non-GDH deficient disorders. However, patients with GDH-deficient OPCA showed much greater elevations in plasma glutamate and aspartate and a rather flat taurine curve.


Assuntos
Ácido Aspártico/sangue , Doenças dos Gânglios da Base/enzimologia , Doenças Cerebelares/enzimologia , Glutamatos/sangue , Glutamato de Sódio , Doenças da Medula Espinal/enzimologia , Taurina/sangue , Atrofia , Cerebelo/patologia , Ataxia de Friedreich/enzimologia , Glutamato Desidrogenase/deficiência , Ácido Glutâmico , Humanos , Degeneração Neural , Núcleo Olivar/patologia , Doença de Parkinson/enzimologia , Ponte/patologia , Síndrome de Shy-Drager/enzimologia
18.
Neurology ; 32(5): 555-8, 1982 May.
Artigo em Inglês | MEDLINE | ID: mdl-7200213

RESUMO

Incubation with dichloroacetate increased activity of the pyruvate dehydrogenase complex (PDHC) in disrupted fibroblasts from controls but not from two patients with autopsy-proved Leigh disease. These results are consistent with a genetically determined aberration of the regulation of PDHC in this disorder, although further studies are necessary to define the aberration.


Assuntos
Encefalopatias/enzimologia , Complexo Piruvato Desidrogenase/metabolismo , Doenças da Medula Espinal/enzimologia , Fibroblastos/enzimologia , Humanos , Pele
19.
Neurochem Res ; 7(5): 627-36, 1982 May.
Artigo em Inglês | MEDLINE | ID: mdl-6811963

RESUMO

Glutamate dehydrogenase (GDH) activity in leukocytes and platelets in spinocerebellar degenerations (SCD) was determined. In the same subject, GDH activity was higher and more reproducible in platelets than in leukocytes. GDH was decreased significantly in olivopontocerebellar atrophy (OPCA) (Ca. 30% decrease). Pyruvate dehydrogenase (PDH) in platelets showed non specific decreased activity in SCD and amyotropic lateral sclerosis. Energy metabolism in cerebellum may be diminished in some types of ataxia, and glutaminergic neurons may be more affected in OPCA than in other SCD.


Assuntos
Doenças Cerebelares/enzimologia , Glutamato Desidrogenase/deficiência , Doenças da Medula Espinal/enzimologia , Adulto , Atrofia/enzimologia , Plaquetas/enzimologia , Ataxia Cerebelar/genética , Cerebelo/patologia , Glutamato Desidrogenase/sangue , Humanos , Leucócitos/enzimologia , Pessoa de Meia-Idade , Núcleo Olivar/patologia , Ponte/patologia , Doença da Deficiência do Complexo de Piruvato Desidrogenase
20.
J Am Vet Med Assoc ; 180(7): 743-6, 1982 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-6177674

RESUMO

The effects of dexamethasone on the pancreas and on pancreatic amylase and lipase activities were determined in clinically normal dogs and in dogs with neurologic disease. Dexamethasone increased serum lipase activity without any histologic damage to the pancreas in either group of dogs. It decreased serum amylase activity in the normal dogs and had a variable effect in dogs with neurologic disease, with or without confirmed pancreatitis. It was suggested that high serum lipase activity in dexamethasone-treated dogs may not be attributable to pancreatitis and that the reasons are still unknown. It was concluded that high serum lipase activity is an unreliable basis for diagnosis of pancreatitis in dogs treated with dexamethasone. The data allowed no conclusion about an additive effect of dexamethasone and neurologic disease causing pancreatitis.


Assuntos
Amilases/sangue , Dexametasona/farmacologia , Doenças do Cão/enzimologia , Lipase/sangue , Pâncreas/efeitos dos fármacos , Doenças da Medula Espinal/veterinária , Animais , Dexametasona/efeitos adversos , Dexametasona/uso terapêutico , Doenças do Cão/induzido quimicamente , Doenças do Cão/tratamento farmacológico , Cães , Feminino , Masculino , Pancreatite/induzido quimicamente , Pancreatite/veterinária , Doenças da Medula Espinal/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...