Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Nat Commun ; 15(1): 6906, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134551

RESUMO

The yield of pearl millet, a resilient cereal crop crucial for African food security, is severely impacted by the root parasitic weed Striga hermonthica, which requires host-released hormones, called strigolactones (SLs), for seed germination. Herein, we identify four SLs present in the Striga-susceptible line SOSAT-C88-P10 (P10) but absent in the resistant 29Aw (Aw). We generate chromosome-scale genome assemblies, including four gapless chromosomes for each line. The Striga-resistant Aw lacks a 0.7 Mb genome segment containing two putative CARLACTONOIC ACID METHYLTRANSFERASE1 (CLAMT1) genes, which may contribute to SL biosynthesis. Functional assays show that P10CLAMT1b produces the SL-biosynthesis intermediate methyl carlactonoate (MeCLA) and that MeCLA is the precursor of P10-specific SLs. Screening a diverse pearl millet panel confirms the pivotal role of the CLAMT1 section for SL diversity and Striga susceptibility. Our results reveal a reason for Striga susceptibility in pearl millet and pave the way for generating resistant lines through marker-assisted breeding or direct genetic modification.


Assuntos
Genoma de Planta , Lactonas , Pennisetum , Striga , Striga/genética , Lactonas/metabolismo , Pennisetum/genética , Pennisetum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cromossomos de Plantas/genética , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Plantas Daninhas/genética , Plantas Daninhas/metabolismo , Resistência à Doença/genética , Reguladores de Crescimento de Plantas/metabolismo
2.
Plant Dis ; 108(8): 2530-2541, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39086182

RESUMO

Research interest in the mechanisms enabling plant-parasitic nematodes to adjust their physiological performance and cope with changing temperatures has intensified in light of global warming. Here, we show that geographically distinct populations of the root-knot nematode Meloidogyne incognita, which is prevalent in the three main pepper-growing regions in Israel-Carmel Valley (Carmel), Jordan Valley (JV), and Arava Rift (Arava)-possess persistent differences in their thermal acclimation capacity, which affect pre- and postembryonic development. The optimal temperature for embryonic growth completion was 25°C for the Carmel population; 25 and 30°C for the JV population; and 30°C for the Arava population. Cumulative hatching percentages showed variations among populations; relative to hatching at 25°C, the Carmel population experienced hatching reduction at the higher studied temperatures 30 and 33°C, while the JV and Arava populations exhibited an increase in hatching at 30 and 33°C, respectively. Juvenile survival indicates that at the lowest temperature (20°C), the Carmel population gained the highest survival rates throughout the experimental duration, while at the same duration at 33°C, the Arava population gained the highest survival rate. Infective juveniles of the Carmel population demonstrated increased penetration of tomato roots at 25°C compared to the JV and Arava populations. Inversely, at 33°C, increased penetration was observed for the Arava compared to the Carmel and JV populations. Altogether, the Arava population's performance at 33°C might incur distinct fitness costs, resulting in consistent attenuation compared to the Carmel population at 25°C. Precisely defining a population's thermal acclimation response might provide essential information for models that predict the impact of future climate change on these populations.


Assuntos
Aclimatação , Temperatura , Tylenchoidea , Animais , Tylenchoidea/fisiologia , Doenças das Plantas/parasitologia , Capsicum/parasitologia , Israel , Desenvolvimento Embrionário
3.
Sci Rep ; 14(1): 17774, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090171

RESUMO

This study investigates the efficacy of Trichoderma spp. and Bacillus spp., as well as their gamma radiation-induced mutants, as potential biological control agents against Meloidogyne javanica (Mj) in tomato plants. The research encompasses in vitro assays, greenhouse trials, and molecular identification methodologies to comprehensively evaluate the biocontrol potential of these agents. In vitro assessments reveal significant nematicidal activity, with Bacillus spp. demonstrating notable effectiveness in inhibiting nematode egg hatching (16-45%) and inducing second-stage juvenile (J2) mortality (30-46%). Greenhouse trials further confirm the efficacy of mutant isolates, particularly when combined with chitosan, in reducing nematode-induced damage to tomato plants. The combination of mutant isolates with chitosan reduces the reproduction factor (RF) of root-knot nematodes by 94%. By optimizing soil infection conditions with nematodes and modifying the application of the effective compound, the RF of nematodes decreases by 65-76%. Molecular identification identifies B. velezensis and T. harzianum as promising candidates, exhibiting significant nematicidal activity. Overall, the study underscores the potential of combined biocontrol approaches for nematode management in agricultural settings. However, further research is essential to evaluate practical applications and long-term efficacy. These findings contribute to the development of sustainable alternatives to chemical nematicides, with potential implications for agricultural practices and crop protection strategies.


Assuntos
Bacillus , Raios gama , Controle Biológico de Vetores , Doenças das Plantas , Solanum lycopersicum , Tylenchoidea , Animais , Tylenchoidea/fisiologia , Bacillus/genética , Bacillus/fisiologia , Solanum lycopersicum/parasitologia , Solanum lycopersicum/microbiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Controle Biológico de Vetores/métodos , Mutação , Hypocreales/genética , Antinematódeos/farmacologia , Agentes de Controle Biológico/farmacologia , Quitosana/farmacologia
4.
Sci Rep ; 14(1): 17907, 2024 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095443

RESUMO

Linseed, also known as flax is an important oilseed crop with many potential uses in paint, textile, food and pharmaceutical industries. Susceptibility to bud fly (Dasyneura lini Barnes) infestation is a serious biotic concern leading to severe yield penalty in linseed. Protease inhibitors (PIs) are potential candidates that activate during the insect-pest attack and modulate the resistance. In the present study, we explored the PI candidates in the linseed genome and a total of 100 LuPI genes were identified and grouped into five distinct subgroups. The analysis of cis-acting elements revealed that almost all LuPI promoters contain several regulatory elementary related to growth and development, hormonal regulation and stress responses. Across the subfamilies of PIs, the specific domains are consistently found conserved in all protein sequences. The tissue-specific in-silico expression pattern via RNA-seq revealed that all the genes were regulated during different stress. The expression through qRT-PCR of 15 genes revealed the significant up-regulation of LuPI-24, LuPI-40, LuPI-49, LuPI-53, and LuPI-63 upon bud fly infestation in resistant genotype EC0099001 and resistant check variety Neela. This study establishes a foundation resource for comprehending the structural, functional, and evolutionary dimensions of protease inhibitors in linseed.


Assuntos
Dípteros , Linho , Regulação da Expressão Gênica de Plantas , Inibidores de Proteases , Linho/genética , Linho/metabolismo , Animais , Dípteros/genética , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Mapas de Interação de Proteínas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Família Multigênica , Filogenia
5.
World J Microbiol Biotechnol ; 40(10): 302, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150639

RESUMO

The genus Phytophthora contains more than 100 plant pathogenic species that parasitize a wide range of plants, including economically important fruits, vegetables, cereals, and forest trees, causing significant losses. Global agriculture is seriously threatened by fungicide resistance in Phytophthora species, which makes it imperative to fully comprehend the mechanisms, frequency, and non-chemical management techniques related to resistance mutations. The mechanisms behind fungicide resistance, such as target-site mutations, efflux pump overexpression, overexpression of target genes and metabolic detoxification routes for fungicides routinely used against Phytophthora species, are thoroughly examined in this review. Additionally, it assesses the frequency of resistance mutations in various Phytophthora species and geographical areas, emphasizing the rise of strains that are resistant to multiple drugs. The effectiveness of non-chemical management techniques, including biological control, host resistance, integrated pest management plans, and cultural practices, in reducing fungicide resistance is also thoroughly evaluated. The study provides important insights for future research and the development of sustainable disease management strategies to counter fungicide resistance in Phytophthora species by synthesizing current information and identifying knowledge gaps.


Assuntos
Farmacorresistência Fúngica , Fungicidas Industriais , Phytophthora , Doenças das Plantas , Phytophthora/efeitos dos fármacos , Phytophthora/genética , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/parasitologia , Farmacorresistência Fúngica/genética , Mutação , Agricultura
6.
Mol Biol Rep ; 51(1): 918, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158609

RESUMO

BACKGROUND: Root-lesion nematodes (RLN) are the most economically important pathogenic nematodes attacking maize. Significant economic losses due to lesion nematodes have been reported in maize producing countries in the world. METHODS AND RESULTS: This study was conducted to determine the distribution and identity of root-lesion nematodes (Pratylenchus spp.) (Tylenchida: Hoplolaimidae) in maize (Zea mays L.) (Poales: Poaceae) fields of the Black Sea region of Türkiye. For this purpose, 39 locations were surveyed and soil samples were taken from 17 regional provinces. Nematodes were extracted using the modified Baerman funnel technique. The species were identified based on sequences of the Internal Transcribed Spacer (ITS) region of ribosomal DNA, as well as morphological characters and morphometrics. In addition, species identifications were confirmed using species-specific primers in the D3 expansion region of 26 S rDNA. At the end of the study, 51.3% of the maize production areas sampled in the region were infected with root-lesion nematode species. Pratylenchus agilis, P. mediterraneus, P. neglectus, P. penetrans, P. thornei, and P. vulnus were identified, and were present in 25%, 5%, 25%, 10%, 15%, and 20% of samples, respectively. To our knowledge, this is the first report of P. agilis in Türkiye. CONCLUSION: The present study concluded that the molecular analysis of Pratylenchus sequences based on the ITS and D3 region of ribosomal RNA genes allowed the identification of six root lesion nematode species. This study is of great importance in terms of adding additional species to the root-lesion nematode fauna in Turkey and will provide data for future research on the management of these nematodes.


Assuntos
Filogenia , Doenças das Plantas , Raízes de Plantas , Tylenchida , Zea mays , Animais , Zea mays/parasitologia , Zea mays/genética , Raízes de Plantas/parasitologia , Raízes de Plantas/genética , Tylenchida/genética , Tylenchida/patogenicidade , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , DNA Espaçador Ribossômico/genética , Turquia , DNA Ribossômico/genética , DNA de Helmintos/genética
7.
Plant Cell Rep ; 43(9): 220, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158724

RESUMO

KEY MESSAGE: This study provided a non-destructive detection method with Vis-NIR hyperspectral imaging combining with physio-biochemical parameters in Helianthus annuus in response to Orobanche cumana infection that took insights into the monitoring of sunflower weed. Sunflower broomrape (Orobanche cumana Wallr.) is an obligate weed that attaches to the host roots of sunflower (Helianthus annuus L.) leading to a significant reduction in yield worldwide. The emergence of O. cumana shoots after its underground life-cycle causes irreversible damage to the crop. In this study, a fast visual, non-invasive and precise method for monitoring changes in spectral characteristics using visible and near-infrared (Vis-NIR) hyperspectral imaging (HSI) was developed. By combining the bands sensitive to antioxidant enzymes (SOD, GR), non-antioxidant enzymes (GSH, GSH + GSSG), MDA, ROS (O2-, OH-), PAL, and PPO activities obtained from the host leaves, we sought to establish an accurate means of assessing these changes and conducted imaging acquisition using hyperspectral cameras from both infested and non-infested sunflower cultivars, followed by physio-biochemical parameters measurement as well as analyzed the expression of defense related genes. Extreme learning machine (ELM) and convolutional neural network (CNN) models using 3-band images were built to classify infected or non-infected plants in three sunflower cultivars, achieving accuracies of 95.83% and 95.83% for the discrimination of infestation as well as 97.92% and 95.83% of varieties, respectively, indicating the potential of multi-spectral imaging systems for early detection of O. cumana in weed management.


Assuntos
Helianthus , Imageamento Hiperespectral , Orobanche , Helianthus/parasitologia , Orobanche/fisiologia , Imageamento Hiperespectral/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Folhas de Planta/parasitologia , Folhas de Planta/metabolismo , Doenças das Plantas/parasitologia , Antioxidantes/metabolismo , Plantas Daninhas , Interações Hospedeiro-Parasita
8.
Fungal Biol ; 128(6): 2042-2053, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39174239

RESUMO

The Oomycetes fungus Phytophthora spp. which causes Abnormal leaf fall (ALF) disease poses a significant threat as one of the most devastating diseases affecting rubber trees in India. A total of 30 Phytophthora isolates were obtained from ALF-affected samples collected during the Southwest monsoon season of Kerala. The colony morphology of Phytophthora isolates revealed eight different types of growth patterns, with stellate, stellate striated, and petaloid patterns growing rapidly, whereas chrysanthemum pattern grew slowly. Sporangia were papillate to non-papillate in various shapes, and sporangiophores exhibited simple, simple sympodial, or irregularly branching patterns. Highly virulent isolates exhibited petaloid morphology and rapid growth rates. Regardless of their virulence, all isolates showed susceptibility to the fungicide metalaxyl. Under in vitro conditions, the highly virulent isolate (R17) from rubber caused severe infections in chili, brinjal, and tomato with brown water-soaked lesions. Sequence analysis and multi-locus phylogeny of Internal transcribed spacer (ITS), cCytochrome c oxidase 1 (COX 1), Heat shock protein 90 (HSP 90), and Ribosomal protein L10 (RPL 10) confirmed the pathogen as Phytophthora meadii. A comprehensive understanding of both morphological and molecular traits of P. meadii is crucial for precise identification and future genetic variability studies.


Assuntos
Hevea , Filogenia , Phytophthora , Doenças das Plantas , Índia , Phytophthora/genética , Phytophthora/classificação , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Hevea/microbiologia , Hevea/parasitologia , Tipagem de Sequências Multilocus , Folhas de Planta/microbiologia , Folhas de Planta/parasitologia , Análise de Sequência de DNA , Virulência , DNA Espaçador Ribossômico/genética , Prevalência , Análise por Conglomerados , Fungicidas Industriais/farmacologia , Alanina/análogos & derivados
9.
J Vis Exp ; (209)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39141533

RESUMO

Wheat plants infested by Russian wheat aphids (RWA) induce a cascade of defense responses, including the hypersensitive responses (HR) and induction of pathogenesis-related (PR) proteins, such as ß-1,3-glucanase and peroxidase (POD). This study aims to characterize the physicochemical properties of cell wall-associated POD and ß-1,3-glucanase and determine their synergism on the cell wall modification during RWASA2-wheat interaction. The susceptible Tugela, moderately resistant Tugela-Dn1, and resistant Tugela-Dn5 cultivars were pregerminated and planted under greenhouse conditions, fertilized 14 days after planting, and irrigated every 3 days. The plants were infested with 20 parthenogenetic individuals of the same RWASA2 clone at the 3-leaf stage, and leaves were harvested at 1 to 14 days post-infestation. The Intercellular wash fluid (IWF) was extracted using vacuum filtration and stored at -20 °C. Leaf residues were crushed into powder and used for cell wall components. POD activity and characterization were determined using 5 mM guaiacol substrate and H2O2, monitoring change in absorbance at 470 nm. ß-1,3-glucanase activity, pH, and temperature optimum conditions were demonstrated by measuring the total reducing sugars in the hydrolysate with DNS reagent using ß-1,3-glucan and ß-1,3-1,4-glucan substrates, measuring the absorbance at 540 nm, and using glucose standard curve. The pH optimum was determined between pH 4 to 9, temperature optimum between 25 and 50 °C, and thermal stability between 30 °C and 70 °C. ß-1,3-glucanase substrate specificity was determined at 25 °C and 40 °C using curdlan and barley ß-1,3-1,4-glucan substrates. Additionally, the ß-1,3-glucanase mode of action was determined using laminaribiose to laminaripentaose. The oligosaccharide hydrolysis product patterns were qualitatively analyzed with thin-layer chromatography (TLC) and quantitatively analyzed with HPLC. The method presented in this study demonstrates a robust approach for infesting wheat with RWA, extracting peroxidase and ß-1,3-glucanase from the cell wall region and their comprehensive biochemical characterization.


Assuntos
Afídeos , Parede Celular , Triticum , Triticum/química , Parede Celular/química , Parede Celular/metabolismo , Animais , Glucana 1,3-beta-Glucosidase/metabolismo , Glucana 1,3-beta-Glucosidase/química , Peroxidase/química , Peroxidase/metabolismo , Doenças das Plantas/parasitologia
10.
PLoS One ; 19(8): e0306263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39106250

RESUMO

Striga hermonthica (Sh) and S. asiatica (Sa) are major parasitic weeds limiting cereal crop production and productivity in sub-Saharan Africa (SSA). Under severe infestation, Striga causes yield losses of up to 100%. Breeding for Striga-resistant maize varieties is the most effective and economical approach to controlling the parasite. Well-characterized and genetically differentiated maize germplasm is vital to developing inbred lines, hybrids, and synthetic varieties with Striga resistance and desirable product profiles. The objective of this study was to determine the genetic diversity of 130 tropical and sub-tropical maize inbred lines, hybrids, and open-pollinated varieties germplasm using phenotypic traits and single nucleotide polymorphism (SNP) markers to select Striga-resistant and complementary genotypes for breeding. The test genotypes were phenotyped with Sh and Sa infestations using a 13x10 alpha lattice design with two replications. Agro-morphological traits and Striga-resistance damage parameters were recorded under a controlled environment. Further, high-density Diversity Array Technology Sequencing-derived SNP markers were used to profile the test genotypes. Significant phenotypic differences (P<0.001) were detected among the assessed genotypes for the assessed traits. The SNP markers revealed mean gene diversity and polymorphic information content of 0.34 and 0.44, respectively, supporting the phenotypic variation of the test genotypes. Higher significant variation was recorded within populations (85%) than between populations using the analysis of molecular variance. The Structure analysis allocated the test genotypes into eight major clusters (K = 8) in concordance with the principal coordinate analysis (PCoA). The following genetically distant inbred lines were selected, displaying good agronomic performance and Sa and Sh resistance: CML540, TZISTR25, TZISTR1248, CLHP0303, TZISTR1174, TZSTRI113, TZDEEI50, TZSTRI115, CML539, TZISTR1015, CZL99017, CML451, CML566, CLHP0343 and CML440. Genetically diverse and complementary lines were selected among the tropical and sub-tropical maize populations that will facilitate the breeding of maize varieties with Striga resistance and market-preferred traits.


Assuntos
Polimorfismo de Nucleotídeo Único , Striga , Zea mays , Zea mays/genética , Zea mays/parasitologia , Striga/fisiologia , Striga/genética , Variação Genética , Fenótipo , Genótipo , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Resistência à Doença/genética , Melhoramento Vegetal , Plantas Daninhas/genética , Clima Tropical , Marcadores Genéticos
11.
Nat Commun ; 15(1): 6723, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112511

RESUMO

Root-knot nematodes (RKNs) are a global menace to agricultural crop production. The role of root-associated microbes (RAMs) in plant protection against RKN infection remains unclear. Here we observe that cucumber (highly susceptible to Meloidogyne incognita) exhibits a consistently lower susceptibility to M. incognita in the presence of native RAMs in three distinct soils. Nematode infection alters the assembly of bacterial RAMs along the life cycle of M. incognita. Particularly, the loss of bacterial diversity of RAMs exacerbates plant susceptibility to M. incognita. A diverse range of native bacterial strains isolated from M. incognita-infected roots has nematode-antagonistic activity. Increasing the number of native bacterial strains causes decreasing nematode infection, which is lowest when six or more bacterial strains are present. Multiple simplified synthetic communities consisting of six bacterial strains show pronounced inhibitory effects on M. incognita infection in plants. These inhibitory effects are underpinned via multiple mechanisms including direct inhibition of infection, secretion of anti-nematode substances, and regulation of plant defense responses. This study highlights the role of native bacterial RAMs in plant resistance against RKNs and provides a useful insight into the development of a sustainable way to protect susceptible plants.


Assuntos
Cucumis sativus , Doenças das Plantas , Raízes de Plantas , Tylenchoidea , Animais , Raízes de Plantas/parasitologia , Raízes de Plantas/microbiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Tylenchoidea/fisiologia , Cucumis sativus/parasitologia , Cucumis sativus/microbiologia , Microbiologia do Solo , Bactérias , Resistência à Doença , Consórcios Microbianos
12.
PeerJ ; 12: e17476, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974414

RESUMO

The whitefly, Bemisia tabaci (Gennadius), is a polyphagous and major pest of cotton worldwide. Both adults and nymphs of B. tabaci affect the crop by causing direct and indirect damage. A severe whitefly outbreak was experienced during 2015 on cotton in North India and this was followed by a profound infestation during 2022. The present research rigorously examined whether the proliferation in the whitefly population was an outbreak or the result of a multi factor resurgence. During 2015, whitefly counts remained above the economic threshold level (ETL) between 28th and 35th Standard Meteorological Week (SMW). However, during 2022 above ETL population was observed in 27th SMW and it persisted until 36th SMW. The peak incidence of the whitefly was noticed during 31st and 29th SMW in 2015 and 2022, respectively. The early pest build up in 2022 and longer persistence (≥10 weeks) over the cotton season resulted in more damage to cotton crop. Additionally, pest survillence across the zone on the farmers' fields during 2022 revealed 44.4 per cent spots (585 out of 1,317 locations) above ETL while the corresponding locations in 2015 was 57% (620 out of 1,089). Thus, in 2022 infestation was not uniform in the entire zone wherein only few blocks of Punjab, Haryana and Rajasthan states of India experienced severe infestations of the whitefly. This study reports the complex of factors including weather, delayed sowing, use of tank mixtures/ subleathal doses of insecticides, pest resurgence etc. that might have possibly contributed to these upsurges in whitefly on cotton in north India.


Assuntos
Gossypium , Hemípteros , Animais , Índia/epidemiologia , Gossypium/parasitologia , Estações do Ano , Doenças das Plantas/parasitologia , Doenças das Plantas/estatística & dados numéricos
13.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000488

RESUMO

The capsule-associated protein 10 gene (CAP10) is indispensable due to its involvement in pod formation and virulence maintenance in Cryptococcus neoformans. The function of the CAP10 gene in nematode-predatory fungi remains unreported. As a typical nematode-trapping fungus, Dactylellina haptotyla efficiently captures nematodes using adhesive knobs, which has potential applications in the biological control of plant-parasitic nematodes. In this study, we investigated the function of DHXT1 (a CAP10 homologous protein) in D. haptotyla-nematode interactions based on the disruption and overexpression of DHXT1, phenotypic analysis and metabolomic analysis. As a result, it was shown that the disruption of the DHXT1 gene causes a marked decrease in the number of adhesive knobs, and on the contrary, the overexpression of the DHXT1 gene causes a substantial increase in the number of adhesive knobs. Interestingly, the variety of metabolites increased with the disruption of the DHXT1 and decreased with the overexpression of the DHXT1 gene. The results suggest that DHXT1 effects pathogenicity through its involvement in adhesive knobs' formation and metabolite synthesis and serves as a key virulence factor in D. haptotyla.


Assuntos
Proteínas Fúngicas , Fatores de Virulência , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Animais , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Virulência , Doenças das Plantas/parasitologia , Doenças das Plantas/microbiologia
14.
J Agric Food Chem ; 72(28): 15512-15522, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38959331

RESUMO

Root-knot nematodes pose a serious threat to crops by affecting production and quality. Over a period of time, substantial work has been done toward the development of effective and environmentally benign nematicidal compounds. However, due to the inefficiencies of previously reported synthetics in achieving the target of safe, selective, and effective treatment, it is necessary to develop new efficacious and safer nematicidal agents considering human health and environment on top priority. This work aims to highlight the efficient and convenient l-proline catalyzed synthesis of pyrano[3,2-c]pyridone and their use as potential nematicidal agents. In vitro results of larval mortality and egg hatching inhibition revealed maximum nematicidal activity against Meloidogyne incognita from compounds 15b, 15m, and 15w with LC50 values of 28.8, 46.8, and 49.18 µg/mL at 48 h, respectively. Under similar conditions, pyrano[3,2-c]pyridones derivatives 15b (LC50 = 28.8 µg/mL) was found at par with LC50 (26.92 µg/mL) of commercial nematicide carbofuran. The in vitro results were further validated with in silico studies with the most active compound 15b nematicidal within the binding to the pocket of acetylcholine esterase (AChE). In docking, binding free energy values for compound 15b were found to be -6.90 kcal/mol. Results indicated that pyrano[3,2-c]pyridone derivatives have the potential to control M. incognita.


Assuntos
Antinematódeos , Desenho de Fármacos , Simulação de Acoplamento Molecular , Piridonas , Tylenchoidea , Tylenchoidea/efeitos dos fármacos , Animais , Antinematódeos/farmacologia , Antinematódeos/química , Antinematódeos/síntese química , Piridonas/química , Piridonas/farmacologia , Piridonas/síntese química , Relação Estrutura-Atividade , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Doenças das Plantas/parasitologia , Estrutura Molecular
15.
Microbiome ; 12(1): 125, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004755

RESUMO

BACKGROUND: Soybean cyst nematodes (SCN) as animal parasites of plants are not usually interested in killing the host but are rather focused on completing their life cycle to increase population, resulting in substantial yield losses. Remarkably, some agricultural soils after long-term crop monoculture show a significant decline in SCN densities and suppress disease in a sustainable and viable manner. However, relatively little is known about the microbes and mechanisms operating against SCN in such disease-suppressive soils. RESULTS: Greenhouse experiments showed that suppressive soils (S) collected from two provinces of China and transplantation soils (CS, created by mixing 10% S with 90% conducive soils) suppressed SCN. However, SCN suppressiveness was partially lost or completely abolished when S soils were treated with heat (80 °C) and formalin. Bacterial community analysis revealed that the specific suppression in S and CS was mainly associated with the bacterial phylum Bacteroidetes, specifically due to the enrichment of Chitinophaga spp. and Dyadobacter sp., in the cysts. SCN cysts colonized by Chitinophaga spp. showed dramatically reduced egg hatching, with unrecognizable internal body organization of juveniles inside the eggshell due to chitinase activity. Whereas, Dyadobacter sp. cells attached to the surface coat of J2s increased soybean resistance against SCN by triggering the expression of defence-associated genes. The disease-suppressive potential of these bacteria was validated by inoculating them into conducive soil. The Dyadobacter strain alone or in combination with Chitinophaga strains significantly decreased egg densities after one growing cycle of soybeans. In contrast, Chitinophaga strains alone required more than one growing cycle to significantly reduce SCN egg hatching and population density. CONCLUSION: This study revealed how soybean monoculture for decades induced microbiota homeostasis, leading to the formation of SCN-suppressive soil. The high relative abundance of antagonistic bacteria in the cyst suppressed the SCN population both directly and indirectly. Because uncontrolled proliferation will likely lead to quick demise due to host population collapse, obligate parasites like SCN may have evolved to modulate virulence/proliferation to balance these conflicting needs. Video Abstract.


Assuntos
Glycine max , Microbiota , Doenças das Plantas , Microbiologia do Solo , Tylenchoidea , Animais , Glycine max/parasitologia , Glycine max/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Tylenchoidea/fisiologia , Solo/parasitologia , China , Bacteroidetes/genética , Bactérias/classificação , Bactérias/genética
16.
Fungal Biol ; 128(5): 1917-1932, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39059847

RESUMO

Here, we report on a Cordyceps species entering into a multi-trophic, multi-kingdom association. Cordyceps cateniannulata, isolated from the stem of wild Coffea arabica in Ethiopia, is shown to function as an endophyte, a mycoparasite and an entomopathogen. A detailed polyphasic taxonomic study, including a multilocus phylogenetic analysis, confirmed its identity. An emended description of C. cateniannulata is provided herein. Previously, this species was known as a pathogen of various insect hosts in both the Old and New World. The endophytic status of C. cateniannulata was confirmed by re-isolating it from inoculated coffee plants. Inoculation studies have further shown that C. cateniannulata is a mycoparasite of Hemileia vastatrix, as well as an entomopathogen of major coffee pests; infecting and killing Hypothenemus hampei and Leucoptera coffeella. This is the first record of C. cateniannulata from Africa, as well as an endophyte and a mycoparasite. The implications for its use as a biocontrol agent are discussed.


Assuntos
Coffea , Cordyceps , Endófitos , Filogenia , Endófitos/classificação , Endófitos/isolamento & purificação , Endófitos/genética , Endófitos/fisiologia , Cordyceps/genética , Cordyceps/classificação , Coffea/microbiologia , Coffea/parasitologia , Animais , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Etiópia , DNA Fúngico/genética , DNA Fúngico/química , DNA Espaçador Ribossômico/genética , DNA Espaçador Ribossômico/química , Caules de Planta/microbiologia , Caules de Planta/parasitologia , Análise de Sequência de DNA , Análise por Conglomerados
17.
Sci Rep ; 14(1): 15547, 2024 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969662

RESUMO

Root-knot nematodes (RKNs) are a vital pest that causes significant yield losses and economic damage to potato plants. The use of chemical pesticides to control these nematodes has led to environmental concerns and the development of resistance in the nematode populations. Endophytic fungi offer an eco-friendly alternative to control these pests and produce secondary metabolites that have nematicidal activity against RKNs. The objective of this study is to assess the efficacy of Aspergillus flavus (ON146363), an entophyte fungus isolated from Trigonella foenum-graecum seeds, against Meloidogyne incognita in filtered culture broth using GC-MS analysis. Among them, various nematicidal secondary metabolites were produced: Gadoleic acid, Oleic acid di-ethanolamide, Oleic acid, and Palmitic acid. In addition, biochemical compounds such as Gallic acid, Catechin, Protocatechuic acid, Esculatin, Vanillic acid, Pyrocatechol, Coumarine, Cinnamic acid, 4, 3-indol butyl acetic acid and Naphthyl acetic acid by HPLC. The fungus was identified through morphological and molecular analysis, including ITS 1-4 regions of ribosomal DNA. In vitro experiments showed that culture filtrate of A. flavus had a variable effect on reducing the number of egg hatchings and larval mortality, with higher concentrations showing greater efficacy than Abamectin. The fungus inhibited the development and multiplication of M. incognita in potato plants, reducing the number of galls and eggs by 90% and 89%, respectively. A. flavus increased the activity of defense-related enzymes Chitinas, Catalyse, and Peroxidase after 15, 45, and 60 days. Leaching of the concentrated culture significantly reduced the second juveniles' stage to 97% /250 g soil and decreased the penetration of nematodes into the roots. A. flavus cultural filtrates via soil spraying improved seedling growth and reduced nematode propagation, resulting in systemic resistance to nematode infection. Therefore, A. flavus can be an effective biological control agent for root-knot nematodes in potato plants. This approach provides a sustainable solution for farmers and minimizes the environmental impact.


Assuntos
Aspergillus flavus , Endófitos , Controle Biológico de Vetores , Doenças das Plantas , Solanum tuberosum , Tylenchoidea , Solanum tuberosum/parasitologia , Solanum tuberosum/microbiologia , Animais , Endófitos/fisiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Tylenchoidea/efeitos dos fármacos , Tylenchoidea/fisiologia , Controle Biológico de Vetores/métodos , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo , Aspergillus flavus/efeitos dos fármacos , Raízes de Plantas/parasitologia , Raízes de Plantas/microbiologia , Antinematódeos/farmacologia , Antinematódeos/metabolismo , Trigonella/microbiologia
18.
Int J Mol Sci ; 25(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39063162

RESUMO

Little resistance to the pea weevil insect pest (Bruchus pisorum) is available in pea (Pisum sativum) cultivars, highlighting the need to search for sources of resistance in Pisum germplasm and to decipher the genetic basis of resistance. To address this need, we screened the response to pea weevil in a Pisum germplasm collection (324 accession, previously genotyped) under field conditions over four environments. Significant variation for weevil seed infestation (SI) was identified, with resistance being frequent in P. fulvum, followed by P. sativum ssp. elatius, P. abyssinicum, and P. sativum ssp. humile. SI tended to be higher in accessions with lighter seed color. SI was also affected by environmental factors, being favored by high humidity during flowering and hampered by warm winter temperatures and high evapotranspiration during and after flowering. Merging the phenotypic and genotypic data allowed genome-wide association studies (GWAS) yielding 73 markers significantly associated with SI. Through the GWAS models, 23 candidate genes were found associated with weevil resistance, highlighting the interest of five genes located on chromosome 6. These included gene 127136761 encoding squalene epoxidase; gene 127091639 encoding a transcription factor MYB SRM1; gene 127097033 encoding a 60S ribosomal protein L14; gene 127092211, encoding a BolA-like family protein, which, interestingly, was located within QTL BpLD.I, earlier described as conferring resistance to weevil in pea; and gene 127096593 encoding a methyltransferase. These associated genes offer valuable potential for developing pea varieties resistant to Bruchus spp. and efficient utilization of genomic resources through marker-assisted selection (MAS).


Assuntos
Estudo de Associação Genômica Ampla , Pisum sativum , Gorgulhos , Animais , Gorgulhos/genética , Gorgulhos/fisiologia , Pisum sativum/genética , Pisum sativum/parasitologia , Marcadores Genéticos , Resistência à Doença/genética , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Genótipo , Fenótipo , Locos de Características Quantitativas , Polimorfismo de Nucleotídeo Único
19.
Int J Mol Sci ; 25(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39000365

RESUMO

Sorghum (Sorghum bicolor), the fifth most important cereal crop globally, serves as a staple food, animal feed, and a bioenergy source. Paclobutrazol-Resistance (PRE) genes play a pivotal role in the response to environmental stress, yet the understanding of their involvement in pest resistance remains limited. In the present study, a total of seven SbPRE genes were found within the sorghum BTx623 genome. Subsequently, their genomic location was studied, and they were distributed on four chromosomes. An analysis of cis-acting elements in SbPRE promoters revealed that various elements were associated with hormones and stress responses. Expression pattern analysis showed differentially tissue-specific expression profiles among SbPRE genes. The expression of some SbPRE genes can be induced by abiotic stress and aphid treatments. Furthermore, through phytohormones and transgenic analyses, we demonstrated that SbPRE4 improves sorghum resistance to aphids by accumulating jasmonic acids (JAs) in transgenic Arabidopsis, giving insights into the molecular and biological function of atypical basic helix-loop-helix (bHLH) transcription factors in sorghum pest resistance.


Assuntos
Afídeos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Sorghum , Estresse Fisiológico , Triazóis , Sorghum/genética , Sorghum/metabolismo , Afídeos/genética , Afídeos/fisiologia , Animais , Triazóis/farmacologia , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Arabidopsis/genética , Regiões Promotoras Genéticas , Família Multigênica , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Filogenia , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Genoma de Planta
20.
Int J Mol Sci ; 25(13)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39000560

RESUMO

Pinus is an important economic tree species, but pine wilt disease (PWD) seriously threatens the survival of pine trees. PWD caused by Bursaphelenchus xylophilus is a major quarantine disease worldwide that causes significant economic losses. However, more information about its molecular pathogenesis is needed, resulting in a lack of effective prevention and treatment measures. In recent years, effectors have become a hot topic in exploring the molecular pathogenic mechanism of pathogens. Here, we identified a specific effector, BxNMP1, from B. xylophilus. In situ hybridization experiments revealed that BxNMP1 was specifically expressed in dorsal gland cells and intestinal cells, and RT-qPCR experiments revealed that BxNMP1 was upregulated in the early stage of infection. The sequence of BxNMP1 was different in the avirulent strain, and when BxNMP1-silenced B. xylophilus was inoculated into P. thunbergii seedlings, the disease severity significantly decreased. We demonstrated that BxNMP1 interacted with the thaumatin-like protein PtTLP-L2 in P. thunbergii. Additionally, we found that the ß-1,3-glucanase PtGLU interacted with PtTLP-L2. Therefore, we hypothesized that BxNMP1 might indirectly interact with PtGLU through PtTLP-L2 as an intermediate mediator. Both targets can respond to infection, and PtTLP-L2 can enhance the resistance of pine trees. Moreover, we detected increased salicylic acid contents in P. thunbergii seedlings inoculated with B. xylophilus when BxNMP1 was silenced or when the PtTLP-L2 recombinant protein was added. In summary, we identified a key virulence effector of PWNs, BxNMP1. It positively regulates the pathogenicity of B. xylophilus and interacts directly with PtTLP-L2 and indirectly with PtGLU. It also inhibits the expression of two targets and the host salicylic acid pathway. This study provides theoretical guidance and a practical basis for controlling PWD and breeding for disease resistance.


Assuntos
Pinus , Doenças das Plantas , Tylenchida , Pinus/parasitologia , Animais , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Tylenchida/patogenicidade , Tylenchida/genética , Virulência , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética , Interações Hospedeiro-Parasita/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA