Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Pain ; 164(11): 2501-2515, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37326658

RESUMO

ABSTRACT: Targeting the acidified inflammatory microenvironment with pH-sensitive opioids is a novel approach for managing visceral pain while mitigating side effects. The analgesic efficacy of pH-dependent opioids has not been studied during the evolution of inflammation, where fluctuating tissue pH and repeated therapeutic dosing could influence analgesia and side effects. Whether pH-dependent opioids can inhibit human nociceptors during extracellular acidification is unexplored. We studied the analgesic efficacy and side-effect profile of a pH-sensitive fentanyl analog, (±)- N -(3-fluoro-1-phenethylpiperidine-4-yl)- N -phenyl propionamide (NFEPP), during the evolution of colitis induced in mice with dextran sulphate sodium. Colitis was characterized by granulocyte infiltration, histological damage, and acidification of the mucosa and submucosa at sites of immune cell infiltration. Changes in nociception were determined by measuring visceromotor responses to noxious colorectal distension in conscious mice. Repeated doses of NFEPP inhibited nociception throughout the course of disease, with maximal efficacy at the peak of inflammation. Fentanyl was antinociceptive regardless of the stage of inflammation. Fentanyl inhibited gastrointestinal transit, blocked defaecation, and induced hypoxemia, whereas NFEPP had no such side effects. In proof-of-principle experiments, NFEPP inhibited mechanically provoked activation of human colonic nociceptors under acidic conditions mimicking the inflamed state. Thus, NFEPP provides analgesia throughout the evolution of colitis with maximal activity at peak inflammation. The actions of NFEPP are restricted to acidified layers of the colon, without common side effects in normal tissues. N -(3-fluoro-1-phenethylpiperidine-4-yl)- N -phenyl propionamide could provide safe and effective analgesia during acute colitis, such as flares of ulcerative colitis.


Assuntos
Colite , Dor Visceral , Camundongos , Humanos , Animais , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo , Analgésicos/farmacologia , Inflamação/patologia , Dor Visceral/patologia , Fentanila/farmacologia , Fentanila/uso terapêutico , Concentração de Íons de Hidrogênio
2.
Acta Neuropathol Commun ; 11(1): 65, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37062831

RESUMO

Unlike physiological stress, which carries survival value, pathological stress is widespread in modern society and acts as a main risk factor for visceral pain. As the main stress-responsive nucleus in the brain, the locus coeruleus (LC) has been previously shown to drive pain alleviation through direct descending projections to the spinal cord, but whether and how the LC mediates pathological stress-induced visceral pain remains unclear. Here, we identified a direct circuit projection from LC noradrenergic neurons to the rostral ventromedial medulla (RVM), an integral relay of the central descending pain modulation system. Furthermore, the chemogenetic activation of the LC-RVM circuit was found to significantly induce colorectal visceral hyperalgesia and anxiety-related psychiatric disorders in naïve mice. In a dextran sulfate sodium (DSS)-induced visceral pain model, the mice also presented colorectal visceral hypersensitivity and anxiety-related psychiatric disorders, which were associated with increased activity of the LC-RVM circuit; LC-RVM circuit inhibition markedly alleviated these symptoms. Furthermore, the chronic restraint stress (CRS) model precipitates anxiety-related psychiatric disorders and induces colorectal visceral hyperalgesia, which is referred to as pathological stress-induced hyperalgesia, and inhibiting the LC-RVM circuit attenuates the severity of colorectal visceral pain. Overall, the present study clearly demonstrated that the LC-RVM circuit could be critical for the comorbidity of colorectal visceral pain and stress-related psychiatric disorders. Both visceral inflammation and psychological stress can activate LC noradrenergic neurons, which promote the severity of colorectal visceral hyperalgesia through this LC-RVM circuit.


Assuntos
Neoplasias Colorretais , Dor Visceral , Ratos , Camundongos , Animais , Hiperalgesia/induzido quimicamente , Locus Cerúleo/patologia , Dor Visceral/patologia , Ratos Sprague-Dawley , Neoplasias Colorretais/patologia , Bulbo/patologia
3.
Pain ; 164(1): 197-215, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35559931

RESUMO

ABSTRACT: Previous studies have reported sex differences in patients with irritable bowel syndrome and inflammatory bowel disease, including differences in visceral pain perception. Despite this, sex differences in behavioral manifestations of visceral pain and underlying pathology of the gastrointestinal tract have been largely understudied in preclinical research. In this study, we evaluated potential sex differences in spontaneous nociceptive responses, referred abdominal hypersensitivity, disease progression, and bowel pathology in mouse models of acute and persistent colon inflammation. Our experiments show that females exhibit more nociceptive responses and referred abdominal hypersensitivity than males in the context of acute but not persistent colon inflammation. We further demonstrate that, after acute and persistent colon inflammation, pain-related behavioral responses in females and males are distinct, with increases in licking of the abdomen only observed in females and increases in abdominal contractions only seen in males. During persistent colon inflammation, males exhibit worse disease progression than females, which is manifested as worse physical appearance and higher weight loss. However, no measurable sex differences were observed in persistent inflammation-induced bowel pathology, stool consistency, or fecal blood. Overall, our findings demonstrate sex differences in pain-related behaviors and disease progression in the context of acute and persistent colon inflammation, highlighting the importance of considering sex as a biological variable in future mechanistic studies of visceral pain as well as in the development of diagnostics and therapeutic options for chronic gastrointestinal diseases.


Assuntos
Colite , Síndrome do Intestino Irritável , Dor Visceral , Camundongos , Animais , Feminino , Masculino , Dor Visceral/patologia , Caracteres Sexuais , Colo , Síndrome do Intestino Irritável/complicações , Colite/patologia , Inflamação/patologia , Progressão da Doença , Modelos Animais de Doenças
4.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362056

RESUMO

Understanding of the gut microbiome's role in human physiology developed rapidly in recent years. Moreover, any alteration of this microenvironment could lead to a pathophysiological reaction of numerous organs. It results from the bidirectional communication of the gastrointestinal tract with the central nervous system, called the gut-brain axis. The signals in the gut-brain axis are mediated by immunological, hormonal, and neural pathways. However, it is also influenced by microorganisms in the gut. The disturbances in the gut-brain axis are associated with gastrointestinal syndromes, but recently their role in the development of different types of pain was reported. The gut microbiome could be the factor in the central sensitization of chronic pain by regulating microglia, astrocytes, and immune cells. Dysbiosis could lead to incorrect immune responses, resulting in the development of inflammatory pain such as endometriosis. Furthermore, chronic visceral pain, associated with functional gastrointestinal disorders, could result from a disruption in the gut microenvironment. Any alteration in the gut-brain axis could also trigger migraine attacks by affecting cytokine expression. Understanding the gut microbiome's role in pain pathophysiology leads to the development of analgetic therapies targeting microorganisms. Probiotics, FODMAP diet, and fecal microbiota transplantation are reported to be beneficial in treating visceral pain.


Assuntos
Dor Crônica , Microbioma Gastrointestinal , Microbiota , Probióticos , Dor Visceral , Feminino , Humanos , Dor Visceral/patologia , Encéfalo/patologia , Disbiose/patologia , Microbioma Gastrointestinal/fisiologia
5.
CNS Neurosci Ther ; 28(6): 851-861, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35349212

RESUMO

AIMS: Visceral hypersensitivity is a major clinic symptom in patients with irritable bowel syndrome (IBS). Anterior cingulate cortex (ACC) is involved in processing the information of pain. Both G protein-coupled receptor kinase 6 (GRK6) and P2Y purinoceptor 6 (P2Y6) are associated with neuroinflammation and pathological pain. The aim of this study was to investigate the interaction between GRK6 and P2Y6 in ACC in the development of visceral hypersensitivity of adult offspring rats with prenatal maternal stress (PMS). METHODS: Visceral hypersensitivity was quantified by abdominal withdrawal reflex threshold to colorectal distension (CRD). The expression and cellular distribution of GRK6 and P2Y6 were determined by Western blotting, qPCR, and fluorescence immunohistochemistry. Co-immunoprecipitation was used to evaluate the interaction between GRK6 and P2Y6. RESULTS: The mRNA and protein levels of GRK6 were significantly decreased in ACC of PMS rats. The injection of GRK6 overexpression virus significantly attenuated visceral hypersensitivity of PMS rats. P2Y6's mRNA level, protein level, and ratio of membrane protein over total protein expression was markedly increased in PMS rats. P2Y6 antagonist MRS2578 microinjection reversed visceral hypersensitivity of PMS rats. GRK6 overexpression significantly reduced P2Y6's expression in membrane proteins and P2Y6's ratio of membrane protein over total protein expression. CONCLUSIONS: These results indicate that decreased GRK6 leads to the accumulation of P2Y6 at neuron membrane in ACC, thereby contributing to visceral hypersensitivity of PMS rats.


Assuntos
Síndrome do Intestino Irritável , Receptores Purinérgicos P2 , Dor Visceral , Animais , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Quinases de Receptores Acoplados a Proteína G , Giro do Cíngulo , Humanos , Gravidez , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Dor Visceral/patologia
6.
Int J Mol Sci ; 22(15)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34361102

RESUMO

Interactions between the intestinal microbiota, immune system and nervous system are essential for homeostasis in the gut. Inflammasomes contribute to innate immunity and brain-gut interactions, but their role in microbiota-neuro-immune interactions is not clear. Therefore, we investigated the effect of the inflammasome on visceral pain and local and systemic neuroimmune responses after antibiotic-induced changes to the microbiota. Wild-type (WT) and caspase-1/11 deficient (Casp1 KO) mice were orally treated for 2 weeks with an antibiotic cocktail (Abx, Bacitracin A and Neomycin), followed by quantification of representative fecal commensals (by qPCR), cecal short chain fatty acids (by HPLC), pathways implicated in the gut-neuro-immune axis (by RT-qPCR, immunofluorescence staining, and flow cytometry) in addition to capsaicin-induced visceral pain responses. Abx-treatment in WT-mice resulted in an increase in colonic macrophages, central neuro-immune interactions, colonic inflammasome and nociceptive receptor gene expression and a reduction in capsaicin-induced visceral pain. In contrast, these responses were attenuated in Abx-treated Casp1 KO mice. Collectively, the data indicate an important role for the inflammasome pathway in functional and inflammatory gastrointestinal conditions where pain and alterations in microbiota composition are prominent.


Assuntos
Caspase 1/fisiologia , Microbioma Gastrointestinal , Inflamassomos/imunologia , Inflamação/complicações , Neuroimunomodulação , Dor Visceral/patologia , Animais , Antibacterianos/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/microbiologia , Encéfalo/patologia , Capsaicina/toxicidade , Colo/efeitos dos fármacos , Colo/imunologia , Colo/microbiologia , Colo/patologia , Feminino , Inflamassomos/efeitos dos fármacos , Inflamação/imunologia , Inflamação/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Dor Visceral/etiologia , Dor Visceral/metabolismo
7.
Eur J Pharmacol ; 900: 174080, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33811839

RESUMO

Treatment of visceral pain originating from the uterine cervix is a substantial clinical problem. The underlying mechanisms of such visceral pain remain unclear mainly due to a lack of reliable model. This study aimed to develop and evaluate the performance of a rat model of pain induced by uterine cervix inflammation. Rats were randomized to six groups according to the solution injected into the uterine cervix: normal saline, vehicle, capsaicin (0.3 mg, 0.6 mg, 0.9 mg), capsaicin 0.9 mg + morphine (n = 15 in each group). Spontaneous behaviors after cervical injection were recorded by a computerized video system and analyzed offline. An equation for calculating a novel pain score was derived from particular behaviors, based on Pearson's correlation analysis and regression analysis. c-Fos expression in the spinal cord was detected. The pain score and c-fos expression in the spinal cord were highest in the 0.9 mg capsaicin group and lowest in the normal saline and vehicle groups (P < 0.05). Intrathecal morphine significantly decreased the pain score (P < 0.05) and c-fos expression in the spinal cord (P < 0.05). Injection of capsaicin into the uterine cervix in rats could be a practical model of inflammatory cervical pain, which can be evaluated using our novel pain score. This model will provide further insight into the mechanism underlying visceral pain originating from the uterine cervix.


Assuntos
Cervicite Uterina/induzido quimicamente , Dor Visceral/induzido quimicamente , Analgésicos Opioides/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Capsaicina , Modelos Animais de Doenças , Feminino , Injeções Espinhais , Morfina/uso terapêutico , Medição da Dor , Proteínas Proto-Oncogênicas c-fos/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/metabolismo , Cervicite Uterina/patologia , Cervicite Uterina/psicologia , Dor Visceral/patologia , Dor Visceral/psicologia
8.
Neurogastroenterol Motil ; 33(6): e14073, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33382180

RESUMO

BACKGROUND: Calcitonin gene-related peptide (CGRP) is possibly involved in recruitment of mucosal mast cells (MCs) in the gut that may be associated with the development of irritable bowel syndrome (IBS), but the role of CGRP on the activation of MCs is still unknown. METHODS: Using RNA sequencing (RNA-seq), we examined differentially expressed genes (DEGs) in mouse MCs following CGRP treatment. The expression of key genes in colonic MCs and their relationship with CGRP-containing fibers were examined by immunofluorescence in chronic water-avoidance stress (WAS)-induced visceral hyperalgesia mice. KEY RESULTS: A total of 29 DEGs were found significantly changed with 28 upregulated and 1 downregulated following treatment of MCs with CGRP. Bioinformatics analysis showed that key higher DEGs included those associated with response to corticotropin-releasing hormone (CRH), regulation of transcription, MC activation, and proliferation. These processes are enriched for genes associated with stress-induced MC activation in IBS. Western blot verified changes in representative DEGs (Nr4a3, Crem, Gpr35, FosB, Sphlk1) and real-time cell analysis (RTCA) verified the MC proliferation. The vast majority of colonic MCs nearly CGRP-containing fibers in WAS mice overexpressed only Nr4a3 with little to no FosB, Gpr35, Sphlk1, or Crem expression. Nr4a3 knockdown may attenuate the promotion effect of CGRP on MC viability. CONCLUSIONS & INFERENCES: Our results suggest that CGRP is a critical regulator of key expressed genes in MC activation. Nr4a3 as a novel regulator of MC function may have an effect on stress-induced visceral hyperalgesia, and this may represent the novel target for drug development.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/biossíntese , Colo/patologia , Regulação da Expressão Gênica , Hiperalgesia/patologia , Mastócitos/patologia , Dor Visceral/patologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Proliferação de Células , Biologia Computacional , Hormônio Liberador da Corticotropina/metabolismo , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Feminino , Mucosa Intestinal/citologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Receptores de Esteroides/biossíntese , Receptores de Esteroides/genética , Receptores dos Hormônios Tireóideos/biossíntese , Receptores dos Hormônios Tireóideos/genética , Estresse Psicológico
9.
J Biosci ; 452020.
Artigo em Inglês | MEDLINE | ID: mdl-32713857

RESUMO

Various animal models, especially rodents, are used to study pain, due to the difficulty of studying it in humans. Many drugs that produce analgesia have been studied and there is evidence among which NSAIDs deserve to be highlighted. Dexketoprofen (DEX) provides a broad antinociceptive profile in different types of pain; therefore, this study was designed to evaluate the profile of antinociceptive potency in mice. Analgesic activity was evaluated using the acetic acid abdominal constriction test (writhing test), a chemical model of visceral pain. Dose-response curves for i.p. DEX administration (1, 3, 10, 30 and 100 mg/kg), using at least six mice in each of at least five doses, was obtained before and 30 min after pre-treatment with different pharmacological agents. Pretreatment of the mice with opioid receptor antagonists was not effective; however, the serotonin receptor antagonist and nitric oxide synthase inhibitor produce a significant increase in DEX-induced antinociception. The data from the present study shows that DEX produces antinociception in the chemical twisting test of mice, which is explained with difficulty by the simple inhibition of COX. This effect appears to be mediated by other mechanisms in which the contribution of the NO and 5-HT pathways has an important effect on DEXinduced antinociception.


Assuntos
Cetoprofeno/análogos & derivados , Receptores Opioides/genética , Receptores de Serotonina/genética , Trometamina/farmacologia , Dor Visceral/tratamento farmacológico , Ácido Acético/farmacologia , Analgesia/métodos , Analgésicos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Relação Dose-Resposta a Droga , Humanos , Cetoprofeno/farmacologia , Camundongos , Antagonistas de Entorpecentes/farmacologia , Óxido Nítrico/genética , Serotonina/genética , Antagonistas da Serotonina/farmacologia , Dor Visceral/genética , Dor Visceral/patologia
11.
FASEB J ; 33(12): 13560-13571, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31570003

RESUMO

So far, a comprehensive animal model that can mimic both the central and peripheral pathophysiological changes of irritable bowel syndrome (IBS) is lacking. Here, we developed a novel IBS rat model combining trinitro-benzene-sulfonic acid (TNBS) and chronic unpredictable mild stress (CUMS) (designated as TC-IBS) and compared it with the TNBS-induced and CUMS-induced models. TC-IBS showed a pronounced depression phenotype with increased corticotropin-releasing hormone receptor (CRHR)1 and CRHR2 expression at the frontal cortex and increased serum ACTH concentration. Visceral hypersensitivity (VH), as evidenced by colorectal distention (CRD) test, was highest in TC-IBS, accompanied by increased serum 5-hydroxytryptamine (5-HT) level and colonic 5-HT receptor 3A (5-HT3AR)/5-HT receptor 2B expression, impaired tight junction protein expression including occludin, zonula occludens-1, and phosphorylated myosin light chain. Palonosetron, a second generation of 5-HT3AR antagonist, alleviated VH significantly in TC-IBS. 16S rRNA sequencing showed that TNBS plus CUMS induced a significant disturbance of the gut microbiota. Cytokine profile analysis of TC-IBS model indicated an innate immune activation both in serum and colonic mucosa. Further, fecal microbiota transplantation improved VH and some pathophysiological changes in TC-IBS. In summary, we established a postinflammatory IBS model covering multifactorial pathophysiological changes, which may help to develop therapies that target specific IBS subtype.-Ma, J., Li, J., Qian, M., He, N., Cao, Y., Liu, Y., Wu, K., He, S. The comprehensive pathophysiological changes in a novel rat model of postinflammatory visceral hypersensitivity.


Assuntos
Depressão/patologia , Modelos Animais de Doenças , Hiperalgesia/patologia , Mucosa Intestinal/patologia , Síndrome do Intestino Irritável/fisiopatologia , Dor Visceral/patologia , Animais , Comportamento Animal , Depressão/etiologia , Depressão/metabolismo , Microbioma Gastrointestinal , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Mucosa Intestinal/metabolismo , Síndrome do Intestino Irritável/induzido quimicamente , Síndrome do Intestino Irritável/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Estresse Fisiológico , Ácido Trinitrobenzenossulfônico/toxicidade , Dor Visceral/etiologia , Dor Visceral/metabolismo
12.
Neurosci Bull ; 35(5): 791-801, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30980241

RESUMO

Chronic visceral hypersensitivity is an important type of chronic pain with unknown etiology and pathophysiology. Recent studies have shown that epigenetic regulation plays an important role in the development of chronic pain conditions. However, the role of miRNA-325-5p in chronic visceral pain remains unknown. The present study was designed to determine the roles and mechanism of miRNA-325-5p in a rat model of chronic visceral pain. This model was induced by neonatal colonic inflammation (NCI). In adulthood, NCI led to a significant reduction in the expression of miRNA-325-5p in colon-related dorsal root ganglia (DRGs), starting to decrease at the age of 4 weeks and being maintained to 8 weeks. Intrathecal administration of miRNA-325-5p agomir significantly enhanced the colorectal distention (CRD) threshold in a time-dependent manner. NCI also markedly increased the expression of CCL2 (C-C motif chemokine ligand 2) in colon-related DRGs at the mRNA and protein levels relative to age-matched control rats. The expression of CXCL12, IL33, SFRS7, and LGI1 was not significantly altered in NCI rats. CCL2 was co-expressed in NeuN-positive DRG neurons but not in glutamine synthetase-positive glial cells. Furthermore, CCL2 was mainly expressed in isolectin B4-binding- and calcitonin gene-related peptide-positive DRG neurons but in few NF-200-positive cells. More importantly, CCL2 was expressed in miR-325-5p-positive DRG neurons. Intrathecal injection of miRNA-325-5p agomir remarkably reduced the upregulation of CCL2 in NCI rats. Administration of Bindarit, an inhibitor of CCL2, markedly raised the CRD threshold in NCI rats in a dose- and time-dependent manner. These data suggest that NCI suppresses miRNA-325-5p expression and enhances CCL2 expression, thus contributing to visceral hypersensitivity in adult rats.


Assuntos
Quimiocina CCL2/biossíntese , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , MicroRNAs/biossíntese , Dor Visceral/metabolismo , Animais , Animais Recém-Nascidos , Quimiocina CCL2/genética , Colo/metabolismo , Colo/patologia , Gânglios Espinais/patologia , Hiperalgesia/genética , Hiperalgesia/patologia , Masculino , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Ratos , Ratos Sprague-Dawley , Transcrição Gênica/fisiologia , Regulação para Cima/fisiologia , Dor Visceral/genética , Dor Visceral/patologia
13.
Biochem Biophys Res Commun ; 511(3): 671-678, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30827505

RESUMO

Some patients with irritable bowel syndrome (IBS) have visceral hypersensitivity, which contributes to their abdominal pain. miRNA-29 was detected to be significantly upregulated in colonic tissues of patients with IBS. However, it is unknown whether miRNA-29a is involved in the visceral hypersensitivity pathogenesis of IBS. This study aimed to investigate whether miRNA-29a participates in visceral hypersensitivity in IBS. We investigated miRNA-29a in intestinal biopsies collected during endoscopy of patients with IBS (n = 10) and healthy volunteers (control) (n = 10). In addition, a water avoidance stress (WAS)-induced visceral hypersensitivity IBS mouse model was established. The abdominal withdrawal reflex (AWR) scores of mice in response to colorectal distention were used to assess visceral sensitivity. Reverse transcription quantitative-polymerase chain reaction (RT-qPCR) was used to measure miRNA-29a levels. Immunofluorescence, RT-qPCR and western blot were used to measure 5-HT7 receptor (HTR7) levels. Bioinformatic analysis and luciferase reporter assays were used to detect the direct relationship between miRNA-29a and HTR7. Finally, alterations in the levels of HTR7 and miRNA-29a were measured in the human intestinal epithelial cell line NCM460 after transfection with miRNA-29a inhibitor or mimic. Intestinal tissues from patients with IBS and WAS-induced IBS mice had increased levels of miRNA-29a, but reduced levels of HTR7. MiRNA-29a knockout resulted in overexpression of HTR7 and attenuated visceral hyperalgesia in WAS-induced IBS mice. HTR7 was a direct target of miRNA-29a. Based on analyses of intestinal tissue samples from patients with IBS and WAS-induced miRNA-29a-/- mice, miRNA-29a plays a role in the visceral hyperalgesia pathogenesis of IBS, probably through regulating HTR7 expression.


Assuntos
Hiperalgesia/genética , Síndrome do Intestino Irritável/genética , MicroRNAs/genética , Receptores de Serotonina/genética , Animais , Linhagem Celular , Regulação para Baixo , Humanos , Hiperalgesia/complicações , Hiperalgesia/patologia , Síndrome do Intestino Irritável/complicações , Síndrome do Intestino Irritável/patologia , Camundongos Endogâmicos C57BL , MicroRNAs/análise , Receptores de Serotonina/análise , Regulação para Cima , Dor Visceral/complicações , Dor Visceral/genética , Dor Visceral/patologia
14.
Annu Rev Physiol ; 81: 261-284, 2019 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-30379615

RESUMO

Most of us live blissfully unaware of the orchestrated function that our internal organs conduct. When this peace is interrupted, it is often by routine sensations of hunger and urge. However, for >20% of the global population, chronic visceral pain is an unpleasant and often excruciating reminder of the existence of our internal organs. In many cases, there is no obvious underlying pathological cause of the pain. Accordingly, chronic visceral pain is debilitating, reduces the quality of life of sufferers, and has large concomitant socioeconomic costs. In this review, we highlight key mechanisms underlying chronic abdominal and pelvic pain associated with functional and inflammatory disorders of the gastrointestinal and urinary tracts. This includes how the colon and bladder are innervated by specialized subclasses of spinal afferents, how these afferents become sensitized in highly dynamic signaling environments, and the subsequent development of neuroplasticity within visceral pain pathways. We also highlight key contributing factors, including alterations in commensal bacteria, altered mucosal permeability, epithelial interactions with afferent nerves, alterations in immune or stress responses, and cross talk between these two adjacent organs.


Assuntos
Dor Visceral/patologia , Vias Aferentes/patologia , Animais , Trato Gastrointestinal/patologia , Humanos , Inflamação/patologia , Transdução de Sinais/fisiologia , Sistema Urinário/patologia
15.
Cell Mol Gastroenterol Hepatol ; 7(1): 185-196, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30534582

RESUMO

Background & Aims: Irritable bowel syndrome (IBS) is a multifactorial disease arising from a complex interplay between genetic predisposition and environmental influences. To date, environmental triggers are not well known. Aluminum is commonly present in food, notably by its use as food additive. We investigated the effects of aluminum ingestion in rodent models of visceral hypersensitivity, and the mechanisms involved. Methods: Visceral hypersensitivity was recorded by colorectal distension in rats administered with oral low doses of aluminum. Inflammation was analyzed in the colon of aluminum-treated rats by quantitative PCR for cytokine expression and by immunohistochemistry for immune cells quantification. Involvement of mast cells in the aluminum-induced hypersensitivity was determined by cromoglycate administration of rats and in mast cell-deficient mice (KitW-sh/W-sh). Proteinase-activated receptor-2 (PAR2) activation in response to aluminum was evaluated and its implication in aluminum-induced hypersensitivity was assessed in PAR2 knockout mice. Results: Orally administered low-dose aluminum induced visceral hypersensitivity in rats and mice. Visceral pain induced by aluminum persisted over time even after cessation of treatment, reappeared and was amplified when treatment resumed. As observed in humans, female animals were more sensitive than males. Major mediators of nociception were up-regulated in the colon by aluminum. Activation of mast cells and PAR2 were required for aluminum-induced hypersensitivity. Conclusions: These findings indicate that oral exposure to aluminum at human dietary level reproduces clinical and molecular features of IBS, highlighting a new pathway of prevention and treatment of visceral pain in some susceptible patients.


Assuntos
Alumínio/toxicidade , Colo/patologia , Hipersensibilidade/patologia , Reto/patologia , Administração Oral , Alumínio/administração & dosagem , Animais , Colo/efeitos dos fármacos , Feminino , Inflamação/patologia , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nociceptividade/efeitos dos fármacos , Ratos Sprague-Dawley , Receptor PAR-2/metabolismo , Reto/efeitos dos fármacos , Dor Visceral/metabolismo , Dor Visceral/patologia
16.
FASEB J ; 33(2): 2435-2450, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30260705

RESUMO

Increased colonic bile acid (BA) exposure, frequent in diarrhea-predominant irritable bowel syndrome (IBS-D), can affect gut function. Nerve growth factor (NGF) is implicated in the development of visceral hypersensitivity (VH). In this study, we tested the hypothesis that BAs cause VH via mucosal mast cell (MMC)-to-nociceptor signaling, which involves the farnesoid X receptor (FXR)/NGF/transient receptor potential vanilloid (TRPV)1 axis. BAs were intracolonically administered to rats for 15 d. Visceral sensitivity to colorectal distention and colonic NGF expression were examined. BAs caused VH, an effect that involved MMC-derived NGF and was accompanied by enhanced TRPV1 expression in the dorsal root ganglia. Anti-NGF treatment and TRPV1 antagonism inhibited BA-induced VH. BAs induced NGF mRNA and protein expression and release in cultured mast cells. Colonic supernatants from patients with IBS-D with elevated colonic BA content transcriptionally induced NGF expression. In FXR-/- mice, visceral sensitivity and colonic NGF expression were unaltered after BA treatment. Pharmacological antagonism and FXR silencing suppressed BA-induced NGF expression and release in mast cells. Mitogen-activated protein kinase kinase (MKK) 3/6/p38 MAPK/NF-κB signaling was mechanistically responsible for FXR-mediated NGF expression and secretion. The findings show an MMC-dependent and FXR-mediated pronociceptive effect of BAs and identify the BA/FXR/NGF/TRPV1 axis as a key player in MMC-to-neuron communication during pain processing in IBS.-Li, W.-T., Luo, Q.-Q., Wang, B., Chen, X., Yan, X.-J., Qiu, H.-Y., Chen, S.-L. Bile acids induce visceral hypersensitivity via mucosal mast cell-to-nociceptor signaling that involves the farnesoid X receptor/nerve growth factor/transient receptor potential vanilloid 1 axis.


Assuntos
Ácidos e Sais Biliares/toxicidade , Hipersensibilidade/patologia , Síndrome do Intestino Irritável/patologia , Mastócitos/imunologia , Fator de Crescimento Neural/metabolismo , Nociceptores/imunologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Canais de Cátion TRPV/metabolismo , Adulto , Animais , Estudos de Casos e Controles , Células Cultivadas , Feminino , Fármacos Gastrointestinais/toxicidade , Humanos , Hipersensibilidade/etiologia , Hipersensibilidade/metabolismo , Síndrome do Intestino Irritável/induzido quimicamente , Síndrome do Intestino Irritável/metabolismo , Masculino , Mastócitos/metabolismo , Mastócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mucosa/efeitos dos fármacos , Mucosa/imunologia , Mucosa/metabolismo , Nociceptores/metabolismo , Nociceptores/patologia , Ratos , Ratos Sprague-Dawley , Dor Visceral/induzido quimicamente , Dor Visceral/metabolismo , Dor Visceral/patologia
18.
Brain Res Bull ; 142: 183-196, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30031817

RESUMO

There is considerable clinical and experimental evidence that intestinal inflammation is associated with altered visceral nociceptive processing in the spinal cord and brain, but the underlying neuronal mechanisms, especially acting at the supraspinal level, remain unclear. Considering that the caudal ventrolateral medulla (CVLM) and the nucleus tractus solitarius (NTS) are the first sites for supraspinal processing of visceral pain signals, in the present study we evaluated the experimental colitis-induced changes in response properties of CVLM and NTS medullary neurons to noxious colorectal distension (CRD) in urethane-anesthetized adult male Wistar rats. To determine if gut inflammation alters the 5-HT3 receptor-dependent modulation of visceral pain-related CVLM and NTS cells, we examined the effects of intravenously administered selective 5-HT3 antagonist granisetron on ongoing and CRD-evoked activity of CVLM and NTS neurons in healthy control and colitic animals. In the absence of colonic pathology, the CVLM neurons were more excited by noxious CRD that the NTS cells, which demonstrated a greater tendency to be inhibited by the stimulation. The difference was eliminated after the development of colitis due to the increase in the proportion of CRD-excited neurons in both medullary regions associated with enhanced magnitude of the neuronal nociceptive responses. Intravenous granisetron (1 or 2 mg/kg) produced the dose-dependent suppression of the ongoing and evoked firing of CRD-excited cells within both the CVLM and NTS in normal conditions as well as was able to substantially reduce excitability of the caudal medullary neurons in the presence of colonic inflammation, arguing for the potential efficacy of the 5-HT3 receptor blockade with granisetron against both acute and inflammatory abdominal pain. Taken together, the data obtained can contribute to a deeper understanding of supraspinal serotonergic mechanisms responsible for the persistence of visceral hypersensitivity and hyperalgesia triggered by colonic inflammation.


Assuntos
Colite/metabolismo , Bulbo/metabolismo , Nociceptores/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Dor Visceral/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Colite/tratamento farmacológico , Colite/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Granisetron/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Masculino , Bulbo/efeitos dos fármacos , Bulbo/patologia , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Nociceptores/efeitos dos fármacos , Nociceptores/patologia , Distribuição Aleatória , Ratos Wistar , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia , Dor Visceral/tratamento farmacológico , Dor Visceral/patologia
19.
JCI Insight ; 3(11)2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29875317

RESUMO

Functional bowel disorder patients can suffer from chronic abdominal pain, likely due to visceral hypersensitivity to mechanical stimuli. As there is only a limited understanding of the basis of chronic visceral hypersensitivity (CVH), drug-based management strategies are ill defined, vary considerably, and include NSAIDs, opioids, and even anticonvulsants. We previously reported that the 1.1 subtype of the voltage-gated sodium (NaV; NaV1.1) channel family regulates the excitability of sensory nerve fibers that transmit a mechanical pain message to the spinal cord. Herein, we investigated whether this channel subtype also underlies the abdominal pain that occurs with CVH. We demonstrate that NaV1.1 is functionally upregulated under CVH conditions and that inhibiting channel function reduces mechanical pain in 3 mechanistically distinct mouse models of chronic pain. In particular, we use a small molecule to show that selective NaV1.1 inhibition (a) decreases sodium currents in colon-innervating dorsal root ganglion neurons, (b) reduces colonic nociceptor mechanical responses, and (c) normalizes the enhanced visceromotor response to distension observed in 2 mouse models of irritable bowel syndrome. These results provide support for a relationship between NaV1.1 and chronic abdominal pain associated with functional bowel disorders.


Assuntos
Dor Crônica/tratamento farmacológico , Colo/efeitos dos fármacos , Síndrome do Intestino Irritável/complicações , Dor Visceral/tratamento farmacológico , Bloqueadores do Canal de Sódio Disparado por Voltagem/administração & dosagem , Animais , Dor Crônica/diagnóstico , Dor Crônica/etiologia , Dor Crônica/patologia , Colo/inervação , Colo/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Estabilidade de Medicamentos , Gânglios Espinais/citologia , Humanos , Síndrome do Intestino Irritável/induzido quimicamente , Síndrome do Intestino Irritável/patologia , Masculino , Dose Máxima Tolerável , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Nociceptores/efeitos dos fármacos , Nociceptores/metabolismo , Medição da Dor , Ácido Trinitrobenzenossulfônico/administração & dosagem , Ácido Trinitrobenzenossulfônico/toxicidade , Dor Visceral/diagnóstico , Dor Visceral/etiologia , Dor Visceral/patologia
20.
World J Gastroenterol ; 24(17): 1888-1900, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29740204

RESUMO

AIM: To investigate the effects of plecanatide and dolcanatide on maintenance of paracellular permeability, integrity of tight junctions and on suppression of visceral hypersensitivity. METHODS: Transport of fluorescein isothiocyanate (FITC)-dextran was measured to assess permeability across cell monolayers and rat colon tissues. Effects of plecanatide and dolcanatide on the integrity of tight junctions in Caco-2 and T84 monolayers and on the expression and localization of occludin and zonula occludens-1 (ZO-1) were examined by immunofluorescence microscopy. Anti-nociceptive activity of these agonists was evaluated in trinitrobenzene sulfonic acid (TNBS)-induced inflammatory as well as in non-inflammatory partial restraint stress (PRS) rat models. Statistical significance between the treatment groups in the permeability studies were evaluated using unpaired t-tests. RESULTS: Treatment of T84 and Caco-2 monolayers with lipopolysaccharide (LPS) rapidly increased permeability, which was effectively suppressed when monolayers were also treated with plecanatide or dolcanatide. Similarly, when T84 and Caco-2 monolayers were treated with LPS, cell surface localization of tight junction proteins occludin and ZO-1 was severely disrupted. When cell monolayers were treated with LPS in the presence of plecanatide or dolcanatide, occludin and ZO-1 were localized at the cell surface of adjoining cells, similar to that observed for vehicle treated cells. Treatment of cell monolayers with plecanatide or dolcanatide without LPS did not alter permeability, integrity of tight junctions and cell surface localization of either of the tight junction proteins. In rat visceral hypersensitivity models, both agonists suppressed the TNBS-induced increase in abdominal contractions in response to colorectal distension without affecting the colonic wall elasticity, and both agonists also reduced colonic hypersensitivity in the PRS model. CONCLUSION: Our results suggest that activation of GC-C signaling might be involved in maintenance of barrier function, possibly through regulating normal localization of tight junction proteins. Consistent with these findings, plecanatide and dolcanatide showed potent anti-nociceptive activity in rat visceral hypersensitivity models. These results imply that activation of GC-C signaling may be an attractive therapeutic approach to treat functional constipation disorders and inflammatory gastrointestinal conditions.


Assuntos
Constipação Intestinal/tratamento farmacológico , Agonistas da Guanilil Ciclase C/farmacologia , Síndrome do Intestino Irritável/tratamento farmacológico , Receptores de Enterotoxina/metabolismo , Dor Visceral/tratamento farmacológico , Administração Oral , Animais , Células CACO-2 , Colo/citologia , Colo/efeitos dos fármacos , Colo/patologia , Constipação Intestinal/patologia , Dextranos/farmacocinética , Feminino , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/farmacocinética , Agonistas da Guanilil Ciclase C/uso terapêutico , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Síndrome do Intestino Irritável/etiologia , Síndrome do Intestino Irritável/patologia , Lipopolissacarídeos/farmacologia , Masculino , Peptídeos Natriuréticos/farmacologia , Peptídeos Natriuréticos/uso terapêutico , Nociceptividade/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Permeabilidade/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Ácido Trinitrobenzenossulfônico/toxicidade , Dor Visceral/induzido quimicamente , Dor Visceral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...