Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167129, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513990

RESUMO

Bone cancer pain (BCP) is refractory to currently used analgesics. Recently, sirtuin 2 (SIRT2) was reported to play a vital role in neuropathic pain but its role in BCP remains unknown. It was hypothesized that spinal SIRT2 attenuates BCP by deacetylating FoxO3a and suppressing oxidative stress. The mouse model of BCP established by injecting tumor cells into the intramedullary space of the femur demonstrated that spinal SIRT2 and FoxO3a were downregulated in BCP development. Intrathecal administration of LV-SIRT2 reduced pain hypersensitivity (mechanical and thermal nociception) in BCP mice. Spinal SIRT2 overexpression upregulated FoxO3a and antioxidant genes (SOD2 and catalase) and inhibited FoxO3a acetylation, phosphorylation, and ubiquitination. Moreover, intrathecal administration of SIRT2 shRNA induced pain hypersensitivity in normal mice. Spinal SIRT2 knockdown downregulated FoxO3a and antioxidant genes and increased FoxO3a acetylation, phosphorylation, and ubiquitination. In summary, spinal SIRT2 increases FoxO3a expression in BCP mice and inhibits oxidative stress by deacetylating FoxO3a and further reducing FoxO3a phosphorylation, ubiquitination, and degradation, leading to BCP relief.


Assuntos
Neoplasias Ósseas , Dor do Câncer , Neuralgia , Animais , Camundongos , Antioxidantes , Neoplasias Ósseas/complicações , Neoplasias Ósseas/genética , Dor do Câncer/genética , Dor do Câncer/metabolismo , Sirtuína 2/genética
2.
Sci Rep ; 14(1): 3411, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341456

RESUMO

Cancer pain is the most feared symptom at end of life. Methadone has advantages over other opioids but is associated with significant variability in clinical response, making dosing challenging in practice. OPRM1 is the most studied pharmacogene associated with the pharmacodynamics of opioids, however reports on the association of the A118G polymorphism on opioid dose requirements are conflicting, with no reports including methadone as the primary intervention. This association study on OPRM1 A118G and response to methadone for pain management, includes a review of this genetic factor's role in inter-patient variability. Fifty-four adult patients with advanced cancer were recruited in a prospective, multi-centre, open label dose individualization study. Patient characteristics were not shown to influence methadone response, and no significant associations were observed for methadone dose or pain score. The findings of our review of association studies for OPRM1 A118G in advanced cancer pain demonstrate the importance of taking ancestry into account. While our sample size was small, our results were consistent with European populations, but in contrast to studies in Chinese patients, where carriers of the A118G polymorphism were associated with higher opioid dose requirements. Pharmacogenetic studies in palliative care are challenging, continued contribution will support future genotype-based drug dosing guidelines.


Assuntos
Dor do Câncer , Neoplasias , Adulto , Humanos , Analgésicos Opioides/uso terapêutico , Dor do Câncer/tratamento farmacológico , Dor do Câncer/genética , Genótipo , Metadona/uso terapêutico , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neoplasias/genética , Manejo da Dor , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Receptores Opioides mu/genética
3.
Fundam Clin Pharmacol ; 38(3): 596-605, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38192190

RESUMO

BACKGROUND/OBJECTIVES: Clinical responses to naldemedine vary between individuals with advanced cancer. This is a prospective, single-center, observational study aimed to evaluate the influence of genetic polymorphisms and cachexia status on plasma naldemedine and clinical responses. METHODS: Forty-eight patients being treated with naldemedine for opioid-induced constipation under treatment of cancer pain were enrolled. Plasma naldemedine concentrations were determined on the fourth day or later after administration of naldemedine, and the associations with genotypes, cachexia status, and clinical responses were assessed. RESULTS: Cancer patients exhibited a large variation in the plasma naldemedine concentrations, and it was correlated with serum total protein level. Patients who were homozygous CYP3A5*3 had a higher plasma concentration of naldemedine than those with the *1 allele. ABCB1 genotypes tested in this study were not associated with plasma naldemedine. A negative correlation was observed between the plasma naldemedine concentration and 4ß-hydroxycholesterol level. The plasma naldemedine concentration was lower in patients with refractory cachexia than in those with precachexia and cachexia. While serum levels of interleukin-6 (IL-6) and acute-phase proteins were higher in patients with refractory cachexia, they were not associated with plasma naldemedine. A higher plasma concentration of naldemedine, CYP3A5*3/*3, and an earlier naldemedine administration after starting opioid analgesics were related to improvement of bowel movements. CONCLUSION: Plasma naldemedine increased under deficient activity of CYP3A5 in cancer patients. Cachectic patients with a higher serum IL-6 had a lower plasma naldemedine. Plasma naldemedine, related to CYP3A5 genotype, and the initiation timing of naldemedine were associated with improved bowel movements.


Assuntos
Analgésicos Opioides , Caquexia , Dor do Câncer , Citocromo P-450 CYP3A , Naltrexona , Polimorfismo Genético , Humanos , Masculino , Feminino , Caquexia/genética , Caquexia/tratamento farmacológico , Caquexia/etiologia , Pessoa de Meia-Idade , Analgésicos Opioides/farmacocinética , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/administração & dosagem , Naltrexona/análogos & derivados , Naltrexona/farmacocinética , Naltrexona/uso terapêutico , Naltrexona/efeitos adversos , Estudos Prospectivos , Idoso , Citocromo P-450 CYP3A/genética , Dor do Câncer/tratamento farmacológico , Dor do Câncer/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/complicações , Genótipo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Adulto , Constipação Induzida por Opioides/genética , Constipação Induzida por Opioides/tratamento farmacológico , Defecação/efeitos dos fármacos
4.
Biochem Biophys Res Commun ; 683: 149114, 2023 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-37857164

RESUMO

Long noncoding RNA (lncRNA) is implicated in both cancer development and pain process. However, the role of lncRNA in the development of cancer-induced bone pain (CIBP) is unclear. LncRNA NONRATT014888.2 is highly expressed in tibia related dorsal root ganglions (DRGs) in CIBP rats which function is unknown. CIBP was induced by injection of Walker 256 mammary gland tumor cells into the tibia canal of female SD rats. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) of rats were measured. Down-regulation of NONRATT014888.2 by siRNA in CIBP rats markedly attenuated hind-paw mechanical pain hypersensitivity. LncRNA-predicted target mRNAs analysis and mRNA sequencing results cued Socs3, Npr3 were related with NONRATT014888.2. Intrathecal injection of NONRATT014888.2-siR206 upregulated Npr3 both in mRNA and protein level. Npr3 was co-expressed in NONRATT014888.2-positive DRGs neurons and mainly located in cytoplasm, but not in Glial fibrillary acidic protein (GFAP)-positive cells. Intrathecal injection of ADV-Npr3 upregulated Npr3 expression and enhanced the PWT of CIBP rats. Our results suggest that upregulated lncRNA NONRATT014888.2 contributed to hyperalgesia in CIBP rats, and the mechanism may through downregulation of Npr3.


Assuntos
Neoplasias Ósseas , Dor do Câncer , Neoplasias , RNA Longo não Codificante , Ratos , Feminino , Animais , RNA Longo não Codificante/genética , Regulação para Baixo , Ratos Sprague-Dawley , Dor/genética , Dor/metabolismo , Dor do Câncer/genética , Dor do Câncer/patologia , Hiperalgesia/genética , RNA Mensageiro/metabolismo , Peptídeos Natriuréticos/metabolismo , Neoplasias Ósseas/complicações , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo
5.
Biochem Biophys Res Commun ; 682: 97-103, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37804593

RESUMO

Due to its complex pathological mechanisms, bone cancer pain (BCP) has become an increasingly challenging clinical issue, there is an urgent need to identify the underlying mechanisms of BCP. In our present study, we found that decreased expression of miR-199a-3p in spinal dorsal horn (SDH) neurons contributed to BCP hypersensitivity. Intrathecal administration of miR-199a-3p agomir alleviated the initiation of tumor inoculation induced pain hypersensitivity and suppressed the expression of DNMT3A. Subsequently, luciferase assays confirmed direct binding between miR-199a-3p and Dnmt3a mRNA. AAV-DNMT3A-shRNA microinjection relieved mechanical hyperalgesia and upregulated the expression of Nrf2 levels in BCP. In naïve rats, Overexpression of DNMT3A yielded the opposite effects. Finally, increase of DNMT3A by lentiviral vector abolished miR-199a-3p-mediated alleviation hypersensitivity effects on BCP progression. Taken these together, our findings highlighted a novel contribution of miR-199a-3p to BCP and provided a fresh outlook on potential mechanism research for BCP.


Assuntos
Neoplasias Ósseas , Dor do Câncer , MicroRNAs , Osteossarcoma , Ratos , Animais , Dor do Câncer/genética , Dor do Câncer/metabolismo , Regulação para Cima , Dor/metabolismo , Neoplasias Ósseas/complicações , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Células do Corno Posterior/metabolismo , Osteossarcoma/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
6.
Life Sci ; 333: 122139, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37783266

RESUMO

AIMS: Pain is a profoundly debilitating symptom in cancer patients, leading to disability, immobility, and a marked decline in their quality of life. This study aimed to investigate the potential roles of miR-199a-3p in a murine model of bone cancer pain induced by tumor cell implantation in the medullary cavity of the femur. MATERIALS AND METHODS: We assessed pain-related behaviors, including the paw withdrawal mechanical threshold (PWMT) and the number of spontaneous flinches (NSF). To investigate miRNA expression and its targets in astrocytes, we employed a combination of RNA-seq analysis, qRT-PCR, Western blotting, EdU, TUNEL, ChIP, ELISA, and luciferase reporter assays in mice (C3H/HeJ) with bone cancer pain and control groups. KEY FINDINGS: On days 10, 14, 21, and 28 post-surgery, we observed significant differences in PWTL, PWMT, and NSF when compared to the sham group (P < 0.001). qRT-PCR assays and miRNA sequencing results confirmed reduced miR-199a-3p expression in astrocytes of mice with bone cancer pain. Gain- and loss-of-function experiments demonstrated that miR-199a-3p suppressed astrocyte activation and the expression of inflammatory cytokines. In vitro investigations revealed that miR-199a-3p mimics reduced the levels of inflammatory factors in astrocytes and MyD88/NF-κB proteins. Furthermore, treatment with a miR-199a-3p agonist resulted in reduced expression of MyD88, TAK1, p-p65, and inflammatory mediators, along with decreased astrocyte activation in the spinal cord. SIGNIFICANCE: Collectively, these findings demonstrate that upregulation of miR-199a-3p may offer a therapeutic avenue for mitigating bone cancer pain in mice by suppressing neuroinflammation and inhibiting the MyD88/NF-κB signaling pathway.


Assuntos
Neoplasias Ósseas , Dor do Câncer , MicroRNAs , Osteossarcoma , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Ósseas/complicações , Neoplasias Ósseas/genética , Dor do Câncer/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos C3H , MicroRNAs/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Osteossarcoma/genética , Qualidade de Vida
7.
Pharmacotherapy ; 43(12): 1286-1296, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37698371

RESUMO

INTRODUCTION: The CYP2D6 enzyme metabolizes opioids commonly prescribed for cancer-related pain, and CYP2D6 polymorphisms may contribute to variability in opioid response. We evaluated the feasibility of implementing CYP2D6-guided opioid prescribing for patients with cancer and reported pilot outcome data. METHODS: Adult patients from two cancer centers were prospectively enrolled into a hybrid implementation-effectiveness clinical trial and randomized to CYP2D6-genotype-guided opioid selection, with clinical recommendations, or usual care. Implementation metrics, including provider response, medication changes consistent with recommendations, and patient-reported pain and symptom scores at baseline and up to 8 weeks, were assessed. RESULTS: Most (87/114, 76%) patients approached for the study agreed to participate. Of 85 patients randomized, 71% were prescribed oxycodone at baseline. The median (range) time to receive CYP2D6 test results was 10 (3-37) days; 24% of patients had physicians acknowledge genotype results in a clinic note. Among patients with CYP2D6-genotype-guided recommendations to change therapy (n = 11), 18% had a change congruent with recommendations. Among patients who completed baseline and follow-up questionnaires (n = 48), there was no difference in change in mean composite pain score (-1.01 ± 2.1 vs. -0.41 ± 2.5; p = 0.19) or symptom severity at last follow-up (3.96 ± 2.18 vs. 3.47 ± 1.78; p = 0.63) between the usual care arm (n = 26) and genotype-guided arm (n = 22), respectively. CONCLUSION: Our study revealed high acceptance of pharmacogenetic testing as part of a clinical trial among patients with cancer pain. However, provider response to genotype-guided recommendations was low, impacting assessment of pain-related outcomes. Addressing barriers to utility of pharmacogenetics results and clinical recommendations will be critical for implementation success.


Assuntos
Dor do Câncer , Neoplasias , Adulto , Humanos , Analgésicos Opioides/uso terapêutico , Dor do Câncer/tratamento farmacológico , Dor do Câncer/genética , Citocromo P-450 CYP2D6/genética , Padrões de Prática Médica , Dor/tratamento farmacológico , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neoplasias/genética
8.
Mol Pain ; 19: 17448069231178487, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37211783

RESUMO

Recently, epigenetics involved in the regulation of gene expression has become a research hotspot. This study evaluated N4-acetylcytidine (ac4c) RNA acetylation in the spinal dorsal horn (SDH) of rats with cancer-induced bone pain (CIBP). The ac4C-specific RIP sequencing and NAT10-specific RIP sequencing were performed to identify the differences in ac4C acetylation and gene expression in the SDH between CIBP and sham groups, the relationship with the acetylation-modifying enzyme NAT10, and association analysis was performed. By interfering with the NAT10 expression, the relationship between some up-regulated genes and ac4C acetylation in CIBP was verified. In this study, we demonstrated that bone cancer increases the levels of NAT10 and the overall acetylation, inducing differential ac4C patterns in the SDH of rats. Through verification experiments, it was found that ac4C acetylation of some genes is regulated by NAT10, and differential ac4C patterns in RNA determine the expression of this RNA. We exposed that some CIBP-related gene expression was altered in the SDH of rats, which was regulated by differentially expressed ac4C acetylation.


Assuntos
Neoplasias Ósseas , Dor do Câncer , Ratos , Animais , Acetilação , RNA/metabolismo , Dor do Câncer/genética , Dor do Câncer/complicações , Neoplasias Ósseas/complicações , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Corno Dorsal da Medula Espinal/metabolismo
9.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37108150

RESUMO

Autotaxin, encoded by the ENPP2 gene, is a known key element of neuropathic pain; however, its involvement in nociceptive pain processing remains unclear. We explored the associations between postoperative pain intensity, 24-h postoperative opioid dose requirements, and 93 ENNP2-gene single-nucleotide polymorphisms (SNPs) in 362 healthy patients who underwent cosmetic surgery using the dominant, recessive, and genotypic models. Next, we validated the associations between relevant SNPs on the one hand and pain intensity and daily opioid dosages on the other in 89 patients with cancer-related pain. In this validation study, a Bonferroni correction for multiplicity was applied on all relevant SNPs of the ENPP2 gene and their respective models. In the exploratory study, three models of two SNPs (rs7832704 and rs2249015) were significantly associated with postoperative opioid doses, although the postoperative pain intensity was comparable. In the validation study, the three models of the two SNPs were also significantly associated with cancer pain intensity (p < 0.017). Patients with a minor allele homozygosity complained of more severe pain compared with patients with other genotypes when using comparable daily opioid doses. Our findings might suggest that autotaxin is associated with nociceptive pain processing and the regulation of opioid requirements.


Assuntos
Dor do Câncer , Dor Nociceptiva , Humanos , Analgésicos Opioides/efeitos adversos , Medição da Dor , Polimorfismo de Nucleotídeo Único , Dor do Câncer/tratamento farmacológico , Dor do Câncer/genética , Dor Pós-Operatória/etiologia , Dor Pós-Operatória/genética
10.
Oncologist ; 28(3): 189-192, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36718020

RESUMO

Patients experience interindividual variation in response to analgesics, which may be partially explained by genetics. This commentary discusses a recently published trial on COMT genotype and opioid dose requirements and describes the potential role for COMT and other genes (eg, CYP2D6) on opioid therapy and the current evidence for germline pharmacogenetics and resources for opioid pharmacogenetics.


Assuntos
Dor do Câncer , Neoplasias , Humanos , Manejo da Dor , Farmacogenética , Dor do Câncer/tratamento farmacológico , Dor do Câncer/genética , Oxicodona/uso terapêutico , Morfina/uso terapêutico , Analgésicos Opioides/uso terapêutico , Catecol O-Metiltransferase/genética , Catecol O-Metiltransferase/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Genótipo , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/uso terapêutico
11.
Oncologist ; 28(3): 278-e166, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36426809

RESUMO

BACKGROUND: We hypothesized that the high-dose opioid requirement in patients carrying the rs4680-GG variant in the COMT gene encoding catechol-O-methyltransferase would be greater for patients taking morphine than for those taking oxycodone, thus providing a much-needed biomarker to inform opioid selection for cancer pain. METHODS: A randomized, multicenter, open-label trial was conducted at a Japanese hospital's palliative care service. Patients with cancer pain treated with regular doses of nonsteroidal anti-inflammatory drugs or acetaminophen were enrolled and randomized (1:1) into morphine (group M) and oxycodone (group O) groups. The minimum standard dose of immediate-release (IR) oral opioids was repeatedly administered by palliative care physicians to achieve pain-reduction goals (Pain reduction ≥ 33% from baseline and up to ≤ 3 on a numerical rating scale). The primary endpoint was the proportion of subjects requiring high-dose opioids on day 0 with the GG genotype. RESULTS: Of 140 participants who developed cancer-related pain among 378 subjects registered and pre-screened for the genotype, 139 were evaluated in the current study. Among patients carrying a COMT rs4680-GG genotype, 48.3% required high-dose opioids in group M, compared with the 20.0% in group O (95% CI, 3.7%-50.8%; P = .029). Of those with the non-GG genotype, 41.5% treated with morphine and 23.1% with oxycodone required high-dose opioids (95% CI, 3.3%-38.3%; P = 0.098). CONCLUSION: Using the COMT rs4680 genotype alone is not recommended for selecting between morphine and oxycodone for pain relief.


Assuntos
Dor do Câncer , Neoplasias , Humanos , Morfina/uso terapêutico , Oxicodona/uso terapêutico , Oxicodona/efeitos adversos , Analgésicos Opioides/uso terapêutico , Analgésicos Opioides/efeitos adversos , Dor do Câncer/tratamento farmacológico , Dor do Câncer/genética , Catecol O-Metiltransferase/genética , Catecol O-Metiltransferase/uso terapêutico , Dor/etiologia , Dor/genética , Genótipo , Biomarcadores , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neoplasias/genética
12.
Pain ; 164(1): 180-196, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35543644

RESUMO

ABSTRACT: Bone cancer pain (BCP) is a pervasive clinical symptom which impairs the quality life. Long noncoding RNAs (lncRNAs) are enriched in the central nervous system and play indispensable roles in numerous biological processes, while its regulatory function in nociceptive information processing remains elusive. Here, we reported that functional modulatory role of ENSRNOT00000071132 (lncRNA71132) in the BCP process and sponging with miR-143 and its downstream GPR85-dependent signaling cascade. Spinal lncRNA71132 was remarkably increased in the rat model of bone cancer pain. The knockdown of spinal lncRNA71132 reverted BCP behaviors and spinal c-Fos neuronal sensitization. Overexpression of spinal lncRNA71132 in naive rat generated pain behaviors, which were accompanied by increased spinal c-Fos neuronal sensitization. Furthermore, it was found that lncRNA71132 participates in the modulation of BCP by inversely regulating the processing of miR-143-5p. In addition, an increase in expression of spinal lncRNA71132 resulted in the decrease in expression of miR-143 under the BCP state. Finally, it was found that miR-143-5p regulates pain behaviors by targeting GPR85. Overexpression of miR-143-5p in the spinal cord reverted the nociceptive behaviors triggered by BCP, accompanied by a decrease in expression of spinal GPR85 protein, but no influence on expression of gpr85 mRNA. The findings of this study indicate that lncRNA71132 works as a miRNA sponge in miR-143-5p-mediated posttranscriptional modulation of GPR85 expression in BCP. Therefore, epigenetic interventions against lncRNA71132 may potentially work as novel treatment avenues in treating nociceptive hypersensitivity triggered by bone cancer.


Assuntos
Neoplasias Ósseas , Dor do Câncer , MicroRNAs , Animais , Ratos , Neoplasias Ósseas/complicações , Neoplasias Ósseas/genética , Dor do Câncer/genética , Dor do Câncer/complicações , MicroRNAs/genética , MicroRNAs/metabolismo , Dor/metabolismo , Medula Espinal/metabolismo , Regulação para Cima , RNA Longo não Codificante/genética
13.
Cells ; 11(21)2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36359772

RESUMO

Cancer-induced bone pain (CIBP) occurs frequently among advanced cancer patients. Voltage-gated sodium channels (VGSCs) have been associated with chronic pain, but how VGSCs function in CIBP is poorly understood. Here, we aimed to investigate the specific role of VGSCs in the dorsal root ganglia (DRGs) in CIBP. A CIBP rat model was generated by the intratibial inoculation of MRMT-1 breast carcinoma cells. Transcriptome sequencing was conducted to assess the gene expression profiles. The expression levels of key genes and differentiated genes related to activated pathways were measured by Western blotting and qPCR. We implanted a catheter intrathecally for the administration of lentivirus and drugs. Then, the changes in the mechanical withdrawal threshold (MWT) were measured. We identified 149 differentially expressed mRNAs (DEmRNAs) in the DRGs of CIBP model rats. The expression of Nav1.6, which was among these DEmRNAs, was significantly upregulated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the DEmRNAs showed that they were mainly enriched in the mitogen-activated protein kinase (MAPK) pathway. The decrease in MWT induced by bone cancer was attenuated by Nav1.6 knockdown. Western blot analysis revealed that a p38 inhibitor decreased the expression of Nav1.6 and attenuated pain behavior. Our study shows that the upregulation of Nav1.6 expression by p38 MAPK in the DRGs of rats contributes to CIBP.


Assuntos
Dor do Câncer , Canal de Sódio Disparado por Voltagem NAV1.6 , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Ratos , Neoplasias Ósseas/complicações , Neoplasias Ósseas/metabolismo , Gânglios Espinais/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Dor/genética , Dor/metabolismo , Ratos Sprague-Dawley , Regulação para Cima , Canais de Sódio Disparados por Voltagem/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Dor do Câncer/genética , Dor do Câncer/metabolismo
14.
Cells ; 11(17)2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36078040

RESUMO

In addition to the poor prognosis, excruciating abdominal pain is a major challenge in pancreatic cancer. Neurotropism appears to be the underlying mechanism leading to neuronal invasion. However, there is a lack of animal models suitable for translationally bridging in vitro findings with clinical trials. We characterized KPC (KrasG12D/+; Trp53R172H/+; P48-Cre) and KPPC (KrasG12D/+; Trp53R172H/R172H; P48-Cre) mice with genetically determined pancreatic ductal adenocarcinoma (PDAC) and compared them with an orthotopic pancreatic cancer mouse model, healthy littermates and human tissue. We analyzed behavioral correlates of cancer-associated pain and well-being, and studied neuronal remodeling and cytokine expression. Histologically, we found similarities between KPC and KPPC tissue with human samples. Compared to healthy littermates, we detect nerve fiber hypertrophy, which was not restricted to a certain fiber type. Interestingly, while KPPC mice showed significantly reduced well-being, KPC mice emerged to be better suited for studying long-lasting cancer pain that emerges over a slow course of tumor progression. To address the neuroinflammatory correlate of loss of well-being, we studied cytokine levels in KPPC mice and observed a significant upregulation of CXCL16, TNFRSF5, CCL24, CXCL1, CCL22, CLL20 and CX2CL1. In summary, we demonstrate that the KPC mouse model is best suited to studying cancer pain, whereas the KPPC model can be employed to study cancer-associated reduction in well-being.


Assuntos
Dor do Câncer , Neoplasias Pancreáticas , Dor Abdominal , Animais , Dor do Câncer/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas
15.
Mol Pain ; 18: 17448069221127811, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-36069070

RESUMO

BACKGROUND: Noncoding microRNAs have emerged as critical players of gene expression in the nervous system, where they contribute to regulating nervous disease. As stated in previous research, the miR-155-5p upregulation happens in the spinal cord at the nociceptive state. It was unclear if miR-155-5p is linked to bone cancer pain (BCP). Herein, we aimed at investigating the miR-155-5p functional regulatory function in BCP process and delineating the underlying mechanism. METHODS: The miRNA-155-5p levels and cellular distribution were determined by RNA sequencing, fluorescent in situ hybridization (FISH), and quantitative real-time PCR (qPCR). Immunoblotting, qPCR, dual-luciferase reporter gene assays, immunofluorescence, recombinant overexpression adeno-associated virus, small interfering RNA, intraspinal administration, and behavioral tests were utilized for exploring the downstream signaling pathway. RESULTS: The miR-155-5p high expression in spinal neurons contributes to BCP maintenance. The miR-155-5p blockage via the intrathecal injection of miR-155-5p antagomir alleviated the pain behavior; in contrast, upregulating miR-155-5p by agomir induced pain hypersensitivity. The miR-155-5p bounds directly to TCF4 mRNA's 3' UTR. BCP significantly reduced protein expression of TCF4 versus the Sham group. The miR-155-5p inhibition relieved the spinal TCF4 protein's down-expression level, while miR-155-5p upregulation by miR-155-5p agomir intrathecal injection decreased TCF4 protein expression in naïve rats. Additionally, TCF4 overexpression in BCP rats could increase Kv1.1. Moreover, TCF4 knockdown inhibited Kv1.1 expression in BCP rats. Indeed, TCF4 and Kv1.1 were co-expressed in BCP spinal cord neurons. CONCLUSION: The study findings stated the miR-155-5p pivotal role in regulating BCP by directly targeting TCF4 in spinal neurons and suggested that miR-155-5p could be a promising target in treating BCP.


Assuntos
Neoplasias Ósseas , Dor do Câncer , MicroRNAs , Regiões 3' não Traduzidas , Animais , Antagomirs/metabolismo , Neoplasias Ósseas/complicações , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Dor do Câncer/genética , Dor do Câncer/metabolismo , Hibridização in Situ Fluorescente , Luciferases/genética , Luciferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Dor/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Medula Espinal/metabolismo
16.
Sci Rep ; 12(1): 10126, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710811

RESUMO

Tapentadol (TAP) and oxycodone/naloxone (OXN) potentially offer an improved opioid tolerability. However, real-world studies in chronic non-cancer pain (CNCP) remain scarce. Our aim was to compare effectiveness and security in daily pain practice, together with the influence of pharmacogenetic markers. An observational study was developed with ambulatory test cases under TAP (n = 194) or OXN (n = 175) prescription with controls (prescribed with other opioids (control), n = 216) CNCP patients. Pain intensity and relief, quality of life, morphine equivalent daily doses (MEDD), concomitant analgesic drugs, adverse events (AEs), hospital frequentation and genetic variants of OPRM1 (rs1799971, A118G) and COMT (rs4680, G472A) genes, were analysed. Test CNCP cases evidenced a significantly higher pain relief predictable due to pain intensity and quality of life (R2 = 0.3), in front of controls. Here, OXN achieved the greatest pain relief under a 28% higher MEDD, 8-13% higher use of pregabalin and duloxetine, and 23% more prescription change due to pain, compared to TAP. Whilst, TAP yielded a better tolerability due the lower number of 4 [0-6] AEs/patient, in front of OXN. Furthermore, OXN COMT-AA homozygotes evidenced higher rates of erythema and vomiting, especially in females. CNCP real-world patients achieved higher pain relief than other traditional opioids with a better tolerability for TAP. Further research is necessary to clarify the potential influence of COMT and sex on OXN side-effects.


Assuntos
Dor do Câncer , Dor Crônica , Analgésicos Opioides/efeitos adversos , Dor do Câncer/tratamento farmacológico , Dor do Câncer/genética , Dor Crônica/induzido quimicamente , Dor Crônica/tratamento farmacológico , Dor Crônica/genética , Constipação Intestinal/tratamento farmacológico , Preparações de Ação Retardada , Combinação de Medicamentos , Feminino , Humanos , Morfina/efeitos adversos , Naloxona/efeitos adversos , Oxicodona/efeitos adversos , Testes Farmacogenômicos , Qualidade de Vida , Tapentadol
17.
Pharmacogenomics ; 23(5): 281-289, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35189719

RESUMO

Background: The prescription of methadone in advanced cancer poses multiple challenges due to the considerable interpatient variation seen in effective dose and toxicity. Previous reports have suggested that ARRB2 influences the response to methadone in opioid substitution therapy. Associations with opioid response for pain management in advanced cancer are conflicting, with no studies including methadone as the primary intervention. Methods: In a prospective, multicenter, open-label dose-individualization study, we investigated whether polymorphisms in ARRB2 were associated with methadone dose requirements and pain severity. Results: Significant associations were found for rs3786047, rs1045280, rs2036657 and pain score. Conclusion: While studies are few and the sample size small, ARRB2 genotyping may assist in individualized management of the most feared symptom in advanced cancer.


Assuntos
Dor do Câncer , Neoplasias , Analgésicos Opioides/efeitos adversos , Dor do Câncer/tratamento farmacológico , Dor do Câncer/genética , Humanos , Metadona/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Dor/tratamento farmacológico , Dor/genética , Polimorfismo de Nucleotídeo Único/genética , Estudos Prospectivos , beta-Arrestina 2/genética
18.
Eur J Neurosci ; 55(3): 661-674, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35075718

RESUMO

Bone cancer pain (BCP) is the most frequently observed chronic cancer pain, and its development remains largely unexplored. Dysregulation of non-coding RNAs greatly contributes to the pathogenesis of BCP. In the present study, we found a new long noncoding RNA (lncRNA), NONRATT009773.2, and investigated its role in the spinal cord of BCP rats. Our results showed that NONRATT009773.2 was significantly up-regulated in BCP model rats, whereas depletion of NONRATT009773.2 attenuated BCP. In contrast, overexpression of NONRATT009773.2 triggered pain-like symptoms in normal animals. Moreover, NONRATT009773.2 functioned as a microRNA (miRNA) sponge to absorb miR-708-5p and up-regulated miRNA downstream target CXCL13, which plays fundamental roles in the initiation and maintenance of neuroinflammation and hyperalgesia. Collectively, our current findings indicated that NONRATT009773.2 could be employed as a new therapeutic target for BCP.


Assuntos
Dor do Câncer , MicroRNAs , Neoplasias , RNA Longo não Codificante , Animais , Dor do Câncer/genética , Dor do Câncer/patologia , Hiperalgesia/genética , MicroRNAs/genética , Neoplasias/patologia , RNA Longo não Codificante/genética , Ratos , Medula Espinal/patologia
20.
Biochem Biophys Res Commun ; 572: 98-104, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364296

RESUMO

BACKGROUND: Cancer-induced bone pain (CIBP) is one of the most severe types of chronic pain which the involved mechanisms are largely unknown. LncRNA has been found to play critical roles in chronic pain. However, its function in peripheral nervous system in CIBP remains unknown. Identifying the different lncRNA expression pattern is essential for understanding the genetic mechanisms underlying the pathogenesis of CIBP. METHODS: The model was induced by injection of Walker 256 cells into the rat tibia canal. Behavior tests and X-ray microtomography (MicroCT) analysis were performed to verify the model's establishment. L2-L5 DRGs were harvested at 14-day post operation and the differential lncRNA and mRNA expression patterns were investigated by microarray analyses. RT-qPCR analysis and RNA interference were performed for expression and function verifications. Bioinformatics analysis was conducted for further function study. RESULTS: CIBP rats showed hyperalgesia and the MicroCT analysis showed tibia destruction. A total of 73 lncRNAs and 187 mRNAs were dysregulated. The expressions of several lncRNAs and mRNAs were validated by RT-qPCR experiment. Biological analyses showed that the changed mRNAs were mainly related to cellular and single-organism process, cell and cell part, binding function and immune system pathway. The top 30 lncRNA-predicted mRNAs are mainly related to peroxisome, DNA-dependent DNA replication, double-stranded RNA binding, tuberculosis and purine metabolism. 56 lncRNAs (30 downregulated and 26 upregulated) and 179 DEGs (35 downregulated and 144 upregulated) have a significant correlation and constructed a co-expression network. Downregulation of lncRNA NONRATT021203.2 by siRNA intrathecal injection increased PWL and WBD in CIBP rats, alleviating cancer induced bone hyperalgesia. CONCLUSION: LncRNA played important roles in regulation of CIBP or mRNA expression in peripheral neuropathy in CIBP. These alterd mRNAs and lncRNAs might be potential therapeutic targets for the treatment of CIBP.


Assuntos
Neoplasias Ósseas/genética , Dor do Câncer/genética , Gânglios Espinais/patologia , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Animais , Neoplasias Ósseas/patologia , Dor do Câncer/patologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...