Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Biotechnol (NY) ; 10(5): 622-30, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18461393

RESUMO

The aim of our research is to design tank systems to culture Dysidea avara for the production of avarol. Flow information was needed to design culture tanks suitable for effective production. Water flow regimes were characterized over a 1-year period for a shallow rocky sublittoral environment in the Northwestern Mediterranean where D. avara sponges are particularly abundant. Three-dimensional Doppler current velocities at 8-10-m depths ranged from 5 to 15 cm/s over most seasons, occasionally spiking to 30-66 cm/s. A thermistor flow sensor was used to map flow fields in close proximity ( approximately 2 cm) to individual sponges at 4.5-, 8.8-, and 14.3-m depths. These "proximal flows" averaged 1.6 cm/s in calm seas and 5.9 cm/s during a storm, when the highest proximal flow (32.9 cm/s) was recorded next to a sponge at the shallowest station. Proximal flows diminished exponentially with depth, averaging 2.6 cm/s +/- 0.15 SE over the entire study. Flow visualization studies showed that oscillatory flow (0.20-0.33 Hz) was the most common regime around individual sponges. Sponges at the 4.5-m site maintained a compact morphology with large oscula year-around despite only seasonally high flows. Sponges at 8.8 m were more erect with large oscula on tall protuberances. At the lowest-flow 14.3-m site, sponges were more branched and heavily conulated, with small oscula. The relationship between sponge morphology and ambient flow regime is discussed.


Assuntos
Aquicultura/métodos , Dysidea/crescimento & desenvolvimento , Meio Ambiente , Movimentos da Água , Animais , Oceano Atlântico , Dysidea/anatomia & histologia , Água do Mar/análise , Espanha , Tempo (Meteorologia)
2.
Biol Lett ; 3(6): 595-8, 2007 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-17785264

RESUMO

Observations are reported for Dysidea avara sponges where once functioning oscula (outlets) are converted through internal re-plumbing into functioning oversized ostia (OSO; inlets). Flow tank studies employed high-speed photography and particle tracking of laser-illuminated 0.5-6.0 microm diameter glass beads to trace particles streaming into OSO. A fluorescein dye/glass bead uptake experiment showed that an oversized ostium was connected through internal structures to the lone osculum. Beginning 30 s after uptake and continuing over a 20 min period, dye streamed from the osculum, but no beads emerged. Scanning electron microscopy revealed that beads were deposited only on the inhalant side of particle filtering choanocyte chambers and not on the exhalant side, suggesting that internal re-plumbing had occurred. Functioning OSO were also found on freshly collected specimens in the field, making it highly unlikely that formation of OSO was only an artefact of sponges being held in a laboratory tank.


Assuntos
Dysidea/crescimento & desenvolvimento , Morfogênese , Animais , Dysidea/anatomia & histologia , Dysidea/fisiologia , Fluoresceína/análise , Vidro , Microscopia Eletrônica de Varredura , Microesferas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA