Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 431
Filtrar
1.
Zebrafish ; 21(2): 171-176, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621215

RESUMO

The transgenic (TG) zebrafish allows researchers to bio-image specific biological phenomena in cells and tissues in vivo. We established TG lines to monitor changes in the ovaries of live fish. The original TG line with ovarian fluorescence was occasionally established. Although the cDNA integrated into the line was constructed for the expression of enhanced green fluorescent protein (EGFP) driven by the medaka ß-actin promoter, the expression of EGFP is restricted to the oocytes and gills in adult fish. Furthermore, we found that germinal vesicles (GVs) in oocytes of the established line can be observed by relatively strong fluorescence around the GV. In this study, we tried to capture the dynamic processes of germinal vesicle breakdown (GVBD) during meiotic cell division using the GV fluorescent oocytes. As a result, GV migration and GVBD could be monitored in real time. We also succeeded in observing actin filaments involved in the migration of GV to the animal pole. This strain can be used for education in the process of oocyte meiotic cell division.


Assuntos
Ectoderma/embriologia , Estruturas Embrionárias , Ovário , Peixe-Zebra , Feminino , Animais , Oócitos , Animais Geneticamente Modificados , Divisão Celular
2.
PLoS Biol ; 22(4): e3002611, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683880

RESUMO

As tissues grow and change shape during animal development, they physically pull and push on each other, and these mechanical interactions can be important for morphogenesis. During Drosophila gastrulation, mesoderm invagination temporally overlaps with the convergence and extension of the ectodermal germband; the latter is caused primarily by Myosin II-driven polarised cell intercalation. Here, we investigate the impact of mesoderm invagination on ectoderm extension, examining possible mechanical and mechanotransductive effects on Myosin II recruitment and polarised cell intercalation. We find that the germband ectoderm is deformed by the mesoderm pulling in the orthogonal direction to germband extension (GBE), showing mechanical coupling between these tissues. However, we do not find a significant change in Myosin II planar polarisation in response to mesoderm invagination, nor in the rate of junction shrinkage leading to neighbour exchange events. We conclude that the main cellular mechanism of axis extension, polarised cell intercalation, is robust to the mesoderm invagination pull. We find, however, that mesoderm invagination slows down the rate of anterior-posterior cell elongation that contributes to axis extension, counteracting the tension from the endoderm invagination, which pulls along the direction of GBE.


Assuntos
Drosophila melanogaster , Ectoderma , Gastrulação , Mesoderma , Miosina Tipo II , Animais , Mesoderma/embriologia , Mesoderma/citologia , Gastrulação/fisiologia , Ectoderma/citologia , Ectoderma/embriologia , Ectoderma/metabolismo , Miosina Tipo II/metabolismo , Drosophila melanogaster/embriologia , Polaridade Celular , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrião não Mamífero , Morfogênese , Padronização Corporal/fisiologia , Drosophila/embriologia
3.
Nature ; 626(7998): 357-366, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052228

RESUMO

Recently, several studies using cultures of human embryos together with single-cell RNA-seq analyses have revealed differences between humans and mice, necessitating the study of human embryos1-8. Despite the importance of human embryology, ethical and legal restrictions have limited post-implantation-stage studies. Thus, recent efforts have focused on developing in vitro self-organizing models using human stem cells9-17. Here, we report genetic and non-genetic approaches to generate authentic hypoblast cells (naive hPSC-derived hypoblast-like cells (nHyCs))-known to give rise to one of the two extraembryonic tissues essential for embryonic development-from naive human pluripotent stem cells (hPSCs). Our nHyCs spontaneously assemble with naive hPSCs to form a three-dimensional bilaminar structure (bilaminoids) with a pro-amniotic-like cavity. In the presence of additional naive hPSC-derived analogues of the second extraembryonic tissue, the trophectoderm, the efficiency of bilaminoid formation increases from 20% to 40%, and the epiblast within the bilaminoids continues to develop in response to trophectoderm-secreted IL-6. Furthermore, we show that bilaminoids robustly recapitulate the patterning of the anterior-posterior axis and the formation of cells reflecting the pregastrula stage, the emergence of which can be shaped by genetically manipulating the DKK1/OTX2 hypoblast-like domain. We have therefore successfully modelled and identified the mechanisms by which the two extraembryonic tissues efficiently guide the stage-specific growth and progression of the epiblast as it establishes the post-implantation landmarks of human embryogenesis.


Assuntos
Desenvolvimento Embrionário , Camadas Germinativas , Células-Tronco Pluripotentes , Humanos , Diferenciação Celular , Implantação do Embrião , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Camadas Germinativas/citologia , Camadas Germinativas/embriologia , Camadas Germinativas/metabolismo , Células-Tronco Pluripotentes/citologia , Interleucina-6/metabolismo , Gástrula/citologia , Gástrula/embriologia , Âmnio/citologia , Âmnio/embriologia , Âmnio/metabolismo , Ectoderma/citologia , Ectoderma/embriologia , Ectoderma/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(28): e2118938119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867760

RESUMO

The vertebrate inner ear arises from a pool of progenitors with the potential to contribute to all the sense organs and cranial ganglia in the head. Here, we explore the molecular mechanisms that control ear specification from these precursors. Using a multiomics approach combined with loss-of-function experiments, we identify a core transcriptional circuit that imparts ear identity, along with a genome-wide characterization of noncoding elements that integrate this information. This analysis places the transcription factor Sox8 at the top of the ear determination network. Introducing Sox8 into the cranial ectoderm not only converts non-ear cells into ear progenitors but also activates the cellular programs for ear morphogenesis and neurogenesis. Thus, Sox8 has the unique ability to remodel transcriptional networks in the cranial ectoderm toward ear identity.


Assuntos
Orelha Interna , Ectoderma , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição SOXE , Animais , Orelha Interna/embriologia , Ectoderma/embriologia , Fatores de Transcrição SOXE/fisiologia , Crânio , Vertebrados/embriologia
5.
Dev Cell ; 57(12): 1482-1495.e5, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35679863

RESUMO

Development of primordial germ cells (PGCs) is required for reproduction. During PGC development in mammals, major epigenetic remodeling occurs, which is hypothesized to establish an epigenetic landscape for sex-specific germ cell differentiation and gametogenesis. In order to address the role of embryonic ectoderm development (EED) and histone 3 lysine 27 trimethylation (H3K27me3) in this process, we created an EED conditional knockout mouse and show that EED is essential for regulating the timing of sex-specific PGC differentiation in both ovaries and testes, as well as X chromosome dosage decompensation in testes. Integrating chromatin and whole genome bisulfite sequencing of epiblast and PGCs, we identified a poised repressive signature of H3K27me3/DNA methylation that we propose is established in the epiblast where EED and DNMT1 interact. Thus, EED joins DNMT1 in regulating the timing of sex-specific PGC differentiation during the critical window when the gonadal niche cells specialize into an ovary or testis.


Assuntos
Células Germinativas , Histonas , Complexo Repressor Polycomb 2 , Animais , Diferenciação Celular/genética , Metilação de DNA , Ectoderma/embriologia , Feminino , Células Germinativas/metabolismo , Gônadas/metabolismo , Histonas/genética , Histonas/metabolismo , Masculino , Camundongos , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(20): e2117075119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35561223

RESUMO

Neurulation is the process in early vertebrate embryonic development during which the neural plate folds to form the neural tube. Spinal neural tube folding in the posterior neuropore changes over time, first showing a median hinge point, then both the median hinge point and dorsolateral hinge points, followed by dorsolateral hinge points only. The biomechanical mechanism of hinge point formation in the mammalian neural tube is poorly understood. Here we employ a mechanical finite element model to study neural tube formation. The computational model mimics the mammalian neural tube using microscopy data from mouse and human embryos. While intrinsic curvature at the neural plate midline has been hypothesized to drive neural tube folding, intrinsic curvature was not sufficient for tube closure in our simulations. We achieved neural tube closure with an alternative model combining mesoderm expansion, nonneural ectoderm expansion, and neural plate adhesion to the notochord. Dorsolateral hinge points emerged in simulations with low mesoderm expansion and zippering. We propose that zippering provides the biomechanical force for dorsolateral hinge point formation in settings where the neural plate lateral sides extend above the mesoderm. Together, these results provide a perspective on the biomechanical and molecular mechanism of mammalian spinal neurulation.


Assuntos
Tubo Neural , Neurulação , Animais , Ectoderma/embriologia , Humanos , Camundongos , Placa Neural/embriologia , Tubo Neural/embriologia , Neurulação/fisiologia , Notocorda/embriologia
7.
Dev Biol ; 483: 128-142, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35038441

RESUMO

Brachyury is a T-box family transcription factor and plays pivotal roles in morphogenesis. In sea urchin embryos, Brachyury is expressed in the invaginating endoderm, and in the oral ectoderm of the invaginating mouth opening. The oral ectoderm is hypothesized to serve as a signaling center for oral (ventral)-aboral (dorsal) axis formation and to function as a ventral organizer. Our previous results of a single-cell RNA-seq (scRNA-seq) atlas of early Strongylocentrotus purpuratus embryos categorized the constituent cells into 22 clusters, in which the endoderm consists of three clusters and the oral ectoderm four clusters (Foster et al., 2020). Here we examined which clusters of cells expressed Brachyury in relation to the morphogenesis and the identity of the ventral organizer. Our results showed that cells of all three endoderm clusters expressed Brachyury in blastulae. Based on expression profiles of genes involved in the gene regulatory networks (GRNs) of sea urchin embryos, the three clusters are distinguishable, two likely derived from the Veg2 tier and one from the Veg1 tier. On the other hand, of the four oral-ectoderm clusters, cells of two clusters expressed Brachyury at the gastrula stage and genes that are responsible for the ventral organizer at the late blastula stage, but the other two clusters did not. At a single-cell level, most cells of the two oral-ectoderm clusters expressed organizer-related genes, nearly a half of which coincidently expressed Brachyury. This suggests that the ventral organizer contains Brachyury-positive cells which invaginate to form the stomodeum. This scRNA-seq study therefore highlights significant roles of Brachyury-expressing cells in body-plan formation of early sea urchin embryos, though cellular and molecular mechanisms for how Brachyury functions in these processes remain to be elucidated in future studies.


Assuntos
Ectoderma/citologia , Ectoderma/metabolismo , Desenvolvimento Embrionário/genética , Proteínas Fetais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , RNA-Seq/métodos , Ouriços-do-Mar/embriologia , Ouriços-do-Mar/genética , Análise de Célula Única/métodos , Proteínas com Domínio T/metabolismo , Animais , Blástula/metabolismo , Ectoderma/embriologia , Endoderma/embriologia , Endoderma/metabolismo , Gástrula/metabolismo , Redes Reguladoras de Genes , Transdução de Sinais/genética
8.
Nature ; 599(7884): 268-272, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34707290

RESUMO

Understanding human organ formation is a scientific challenge with far-reaching medical implications1,2. Three-dimensional stem-cell cultures have provided insights into human cell differentiation3,4. However, current approaches use scaffold-free stem-cell aggregates, which develop non-reproducible tissue shapes and variable cell-fate patterns. This limits their capacity to recapitulate organ formation. Here we present a chip-based culture system that enables self-organization of micropatterned stem cells into precise three-dimensional cell-fate patterns and organ shapes. We use this system to recreate neural tube folding from human stem cells in a dish. Upon neural induction5,6, neural ectoderm folds into a millimetre-long neural tube covered with non-neural ectoderm. Folding occurs at 90% fidelity, and anatomically resembles the developing human neural tube. We find that neural and non-neural ectoderm are necessary and sufficient for folding morphogenesis. We identify two mechanisms drive folding: (1) apical contraction of neural ectoderm, and (2) basal adhesion mediated via extracellular matrix synthesis by non-neural ectoderm. Targeting these two mechanisms using drugs leads to morphological defects similar to neural tube defects. Finally, we show that neural tissue width determines neural tube shape, suggesting that morphology along the anterior-posterior axis depends on neural ectoderm geometry in addition to molecular gradients7. Our approach provides a new route to the study of human organ morphogenesis in health and disease.


Assuntos
Morfogênese , Tubo Neural/anatomia & histologia , Tubo Neural/embriologia , Técnicas de Cultura de Órgãos/métodos , Ectoderma/citologia , Ectoderma/embriologia , Humanos , Modelos Biológicos , Placa Neural/citologia , Placa Neural/embriologia , Tubo Neural/citologia , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/patologia , Regeneração , Células-Tronco/citologia
9.
Cell Death Dis ; 12(10): 850, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531374

RESUMO

PRC2-mediated epigenetic function involves the interaction with long non-coding RNAs (lncRNAs). Although the identity of some of these RNAs has been elucidated in the context of developmental programs, their counterparts in postmitotic adult tissue homeostasis remain uncharacterized. To this aim, we used terminally differentiated postmitotic skeletal muscle cells in which oxidative stress induces the dynamic activation of PRC2-Ezh1 through Embryonic Ectoderm Develpment (EED) shuttling to the nucleus. We identify lncRNA Malat-1 as a necessary partner for PRC2-Ezh1-dependent response to oxidative stress. We show that in this pathway, PRC2-EZH1 dynamic assembly, and in turn stress induced skeletal muscle targeted genes repression, depends specifically on Malat-1. Our study reports about PRC2-RNA interactions in the physiological context of adaptive oxidative stress response and identifies the first lncRNA involved in PRC2-Ezh1 function.


Assuntos
Epigenoma , Fibras Musculares Esqueléticas/metabolismo , Estresse Oxidativo , Complexo Repressor Polycomb 2/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Linhagem Celular , Ectoderma/embriologia , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica , Inativação Gênica , Histonas/metabolismo , Lisina/metabolismo , Metilação , Camundongos , Modelos Biológicos , Atrofia Muscular/genética , Atrofia Muscular/patologia , Estresse Oxidativo/genética , Fenótipo , Complexo Repressor Polycomb 2/genética , Ligação Proteica , RNA Longo não Codificante/genética , Transcrição Gênica
10.
Development ; 148(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34414417

RESUMO

Branchio-oto-renal syndrome (BOR) is a disorder characterized by hearing loss, and craniofacial and/or renal defects. Variants in the transcription factor Six1 and its co-factor Eya1, both of which are required for otic development, are linked to BOR. We previously identified Sobp as a potential Six1 co-factor, and SOBP variants in mouse and humans cause otic phenotypes; therefore, we asked whether Sobp interacts with Six1 and thereby may contribute to BOR. Co-immunoprecipitation and immunofluorescence experiments demonstrate that Sobp binds to and colocalizes with Six1 in the cell nucleus. Luciferase assays show that Sobp interferes with the transcriptional activation of Six1+Eya1 target genes. Experiments in Xenopus embryos that either knock down or increase expression of Sobp show that it is required for formation of ectodermal domains at neural plate stages. In addition, altering Sobp levels disrupts otic vesicle development and causes craniofacial cartilage defects. Expression of Xenopus Sobp containing the human variant disrupts the pre-placodal ectoderm similar to full-length Sobp, but other changes are distinct. These results indicate that Sobp modifies Six1 function and is required for vertebrate craniofacial development, and identify Sobp as a potential candidate gene for BOR.


Assuntos
Desenvolvimento Ósseo , Proteínas de Homeodomínio/metabolismo , Metaloproteínas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Síndrome Brânquio-Otorrenal/embriologia , Síndrome Brânquio-Otorrenal/genética , Núcleo Celular/metabolismo , Orelha Interna/embriologia , Orelha Interna/metabolismo , Ectoderma/embriologia , Ectoderma/metabolismo , Expressão Gênica , Proteínas de Homeodomínio/genética , Larva/crescimento & desenvolvimento , Metaloproteínas/genética , Crista Neural/embriologia , Crista Neural/metabolismo , Proteínas Nucleares/genética , Ligação Proteica , Proteínas Tirosina Fosfatases/metabolismo , Ativação Transcricional , Proteínas de Xenopus/genética , Xenopus laevis
11.
PLoS One ; 16(7): e0254024, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234366

RESUMO

During embryonic development, cells differentiate into a variety of distinct cell types and subtypes with diverse transcriptional profiles. To date, transcriptomic signatures of different cell lineages that arise during development have been only partially characterized. Here we used single-cell RNA-seq to perform transcriptomic analysis of over 20,000 cells disaggregated from the trunk region of zebrafish embryos at the 30 hpf stage. Transcriptional signatures of 27 different cell types and subtypes were identified and annotated during this analysis. This dataset will be a useful resource for many researchers in the fields of developmental and cellular biology and facilitate the understanding of molecular mechanisms that regulate cell lineage choices during development.


Assuntos
Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica , Análise de Célula Única , Tronco/embriologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Linhagem da Célula/genética , Ectoderma/citologia , Ectoderma/embriologia , Endoderma/citologia , Endoderma/embriologia , Endotélio Vascular/citologia , Endotélio Vascular/embriologia , Eritrócitos/metabolismo , Fibroblastos/citologia , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/citologia , Mesoderma/embriologia , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
12.
Biochem Biophys Res Commun ; 567: 99-105, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34146908

RESUMO

During vertebrate development, the formation of the central nervous system (CNS) is initiated by neural induction and patterning of the embryonic ectoderm. We previously reported that Cdc2-like kinase 2 (Clk2) promotes neural development in Xenopus embryos by regulating morphogen signaling. However, the functions of other Clk family members and their roles in early embryonic development remain unknown. Here, we show that in addition to Clk2, Clk1 and Clk3 play a role in the formation of neural tissue in Xenopus. clk1 and clk3 are co-expressed in the developing neural tissue during early Xenopus embryogenesis. We found that overexpression of clk1 and clk3 increases the expression of neural marker genes in ectodermal explants. Furthermore, knockdown experiments showed that clk3 is required for the formation of neural tissues. These results suggest that Xenopus Clk3 plays an essential role in promoting neural development during early embryogenesis.


Assuntos
Neurogênese , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteínas de Xenopus/genética , Xenopus/embriologia , Animais , Ectoderma/embriologia , Ectoderma/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Xenopus/genética
13.
Cell Rep ; 35(12): 109289, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161771

RESUMO

The spatiotemporal coordination of multiple morphogens is essential for embryonic patterning yet poorly understood. During neural crest (NC) formation, dynamic bone morphogenetic protein (BMP), fibroblast growth factor (FGF), and WNT signals cooperate by acting on mesoderm and ectoderm. Here, we show that Fhl3, a scaffold LIM domain protein, modulates BMP gradient interpretation during NC induction. During gastrulation, low BMP signaling neuralizes the neural border (NB) ectoderm, while Fhl3 enhances Smad1 intracellular response in underlying paraxial mesoderm, triggering the high WNT8 signals needed to pattern the NB. During neurulation, fhl3 activation in NC ectoderm promotes simultaneous high BMP and BMP-dependent WNT activity required for specification. Mechanistically, Fhl3 interacts with Smad1 and promotes Smad1 binding to wnt8 promoter in a BMP-dependent manner. Consequently, differential Fhl3 expression in adjacent cells ensures a finely tuned coordination of BMP and WNT signaling at several stages of NC development, starting by positioning the NC-inducing mesoderm center under competent NB ectoderm.


Assuntos
Proteínas Morfogenéticas Ósseas , Espaço Intracelular , Crista Neural , Transdução de Sinais , Proteínas Wnt , Proteínas de Xenopus , Animais , Humanos , Proteínas Morfogenéticas Ósseas/metabolismo , Ectoderma/embriologia , Gastrulação , Células HEK293 , Espaço Intracelular/metabolismo , Mesoderma/embriologia , Crista Neural/citologia , Crista Neural/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Wnt/metabolismo , Xenopus laevis/embriologia , Proteínas de Xenopus/metabolismo
14.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33723076

RESUMO

Specification of Sox2+ proneurosensory progenitors within otic ectoderm is a prerequisite for the production of sensory cells and neurons for hearing. However, the underlying molecular mechanisms driving this lineage specification remain unknown. Here, we show that the Brg1-based SWI/SNF chromatin-remodeling complex interacts with the neurosensory-specific transcriptional regulators Eya1/Six1 to induce Sox2 expression and promote proneurosensory-lineage specification. Ablation of the ATPase-subunit Brg1 or both Eya1/Six1 results in loss of Sox2 expression and lack of neurosensory identity, leading to abnormal apoptosis within the otic ectoderm. Brg1 binds to two of three distal 3' Sox2 enhancers occupied by Six1, and Brg1-binding to these regions depends on Eya1-Six1 activity. We demonstrate that the activity of these Sox2 enhancers in otic neurosensory cells specifically depends on binding to Six1. Furthermore, genome-wide and transcriptome profiling indicate that Brg1 may suppress apoptotic factor Map3k5 to inhibit apoptosis. Together, our findings reveal an essential role for Brg1, its downstream pathways, and their interactions with Six1/Eya1 in promoting proneurosensory fate induction in the otic ectoderm and subsequent neuronal lineage commitment and survival of otic cells.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/genética , Cromatina/metabolismo , Ectoderma/embriologia , Ectoderma/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
15.
Cold Spring Harb Protoc ; 2021(6)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33782096

RESUMO

Problems of cell biology and the molecular controls underpinning them have been studied in the remarkably versatile Xenopus systems for many years. This versatility is showcased in several accompanying protocols, which are introduced here. One protocol demonstrates how the Xenopus embryonic ectoderm can be used to study the effects of mechanical cell deformation; another illustrates how the developing eye can be used as a platform for determining cell-cycle length. Two protocols show how extracts from Xenopus embryos can be exploited to characterize the behavior of specific intracellular proteins-specifically, to determine protein phosphorylation status and the ability to bind to chromatin. Finally, because specific antibodies to Xenopus proteins are pivotal reagents for cell biology and biochemistry applications, four protocols describing how to generate, purify, and assay the specificity of antibodies raised against Xenopus proteins are included in hopes of stimulating the expansion of these critical resources across the Xenopus community.


Assuntos
Biologia Celular , Técnicas Citológicas/métodos , Ectoderma/metabolismo , Embrião não Mamífero/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Anticorpos/imunologia , Anticorpos/metabolismo , Bioquímica/métodos , Cromatina/metabolismo , Ectoderma/embriologia , Embrião não Mamífero/embriologia , Humanos , Imunidade/imunologia , Modelos Animais , Fosforilação , Ligação Proteica , Proteínas de Xenopus/imunologia , Xenopus laevis
16.
Development ; 148(4)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593754

RESUMO

The generation of the components that make up the embryonic body axis, such as the spinal cord and vertebral column, takes place in an anterior-to-posterior (head-to-tail) direction. This process is driven by the coordinated production of various cell types from a pool of posteriorly-located axial progenitors. Here, we review the key features of this process and the biology of axial progenitors, including neuromesodermal progenitors, the common precursors of the spinal cord and trunk musculature. We discuss recent developments in the in vitro production of axial progenitors and their potential implications in disease modelling and regenerative medicine.


Assuntos
Biologia , Padronização Corporal , Gastrulação/fisiologia , Camadas Germinativas/embriologia , Animais , Ectoderma/embriologia , Endoderma/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/inervação , Humanos , Técnicas In Vitro , Mesoderma/embriologia , Mesoderma/inervação , Músculo Esquelético , Células-Tronco
17.
Biomolecules ; 11(1)2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466728

RESUMO

Wnt/ß-catenin signaling controls many biological processes for the generation and sustainability of proper tissue size, organization and function during development and homeostasis. Consequently, mutations in the Wnt pathway components and modulators cause diseases, including genetic disorders and cancers. Targeted treatment of pathway-associated diseases entails detailed understanding of the regulatory mechanisms that fine-tune Wnt signaling. Here, we identify the neurotrophin receptor-associated death domain (Nradd), a homolog of p75 neurotrophin receptor (p75NTR), as a negative regulator of Wnt/ß-catenin signaling in zebrafish embryos and in mammalian cells. Nradd significantly suppresses Wnt8-mediated patterning of the mesoderm and neuroectoderm during zebrafish gastrulation. Nradd is localized at the plasma membrane, physically interacts with the Wnt receptor complex and enhances apoptosis in cooperation with Wnt/ß-catenin signaling. Our functional analyses indicate that the N-glycosylated N-terminus and the death domain-containing C-terminus regions are necessary for both the inhibition of Wnt signaling and apoptosis. Finally, Nradd can induce apoptosis in mammalian cells. Thus, Nradd regulates cell death as a modifier of Wnt/ß-catenin signaling during development.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Retroalimentação Fisiológica , Via de Sinalização Wnt , Proteínas de Peixe-Zebra/metabolismo , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular , Membrana Celular/metabolismo , Ectoderma/embriologia , Ectoderma/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mesoderma/embriologia , Mesoderma/metabolismo , Ligação Proteica , Transcrição Gênica , Via de Sinalização Wnt/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
18.
Nat Commun ; 12(1): 439, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469032

RESUMO

Developmental genes are often regulated by multiple elements with overlapping activity. Yet, in most cases, the relative function of those elements and their contribution to endogenous gene expression remain poorly characterized. An example of this phenomenon is that distinct sets of enhancers have been proposed to direct Fgf8 in the limb apical ectodermal ridge and the midbrain-hindbrain boundary. Using in vivo CRISPR/Cas9 genome engineering, we functionally dissect this complex regulatory ensemble and demonstrate two distinct regulatory logics. In the apical ectodermal ridge, the control of Fgf8 expression appears distributed between different enhancers. In contrast, we find that in the midbrain-hindbrain boundary, one of the three active enhancers is essential while the other two are dispensable. We further dissect the essential midbrain-hindbrain boundary enhancer to reveal that it is also composed by a mixture of essential and dispensable modules. Cross-species transgenic analysis of this enhancer suggests that its composition may have changed in the vertebrate lineage.


Assuntos
Desenvolvimento Embrionário/genética , Elementos Facilitadores Genéticos/genética , Fator 8 de Crescimento de Fibroblasto/genética , Regulação da Expressão Gênica no Desenvolvimento , Engenharia Genética/métodos , Animais , Sistemas CRISPR-Cas/genética , Ectoderma/embriologia , Embrião de Mamíferos , Extremidades/embriologia , Estudos de Viabilidade , Feminino , Fator 8 de Crescimento de Fibroblasto/metabolismo , Redes Reguladoras de Genes , Masculino , Mesencéfalo/embriologia , Camundongos , Camundongos Transgênicos , Rombencéfalo/embriologia
19.
PLoS Biol ; 19(1): e3001060, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33406067

RESUMO

Collective migration of cohesive tissues is a fundamental process in morphogenesis and is particularly well illustrated during gastrulation by the rapid and massive internalization of the mesoderm, which contrasts with the much more modest movements of the ectoderm. In the Xenopus embryo, the differences in morphogenetic capabilities of ectoderm and mesoderm can be connected to the intrinsic motility of individual cells, very low for ectoderm, high for mesoderm. Surprisingly, we find that these seemingly deep differences can be accounted for simply by differences in Rho-kinases (Rock)-dependent actomyosin contractility. We show that Rock inhibition is sufficient to rapidly unleash motility in the ectoderm and confer it with mesoderm-like properties. In the mesoderm, this motility is dependent on two negative regulators of RhoA, the small GTPase Rnd1 and the RhoGAP Shirin/Dlc2/ArhGAP37. Both are absolutely essential for gastrulation. At the cellular and tissue level, the two regulators show overlapping yet distinct functions. They both contribute to decrease cortical tension and confer motility, but Shirin tends to increase tissue fluidity and stimulate dispersion, while Rnd1 tends to favor more compact collective migration. Thus, each is able to contribute to a specific property of the migratory behavior of the mesoderm. We propose that the "ectoderm to mesoderm transition" is a prototypic case of collective migration driven by a down-regulation of cellular tension, without the need for the complex changes traditionally associated with the epithelial-to-mesenchymal transition.


Assuntos
Actomiosina/metabolismo , Ectoderma/fisiologia , Mesoderma/fisiologia , Animais , Movimento Celular/genética , Regulação para Baixo/fisiologia , Ectoderma/embriologia , Embrião não Mamífero , Transição Epitelial-Mesenquimal/fisiologia , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Gastrulação/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/embriologia , Morfogênese/fisiologia , Transporte Proteico/genética , Transdução de Sinais/genética , Distribuição Tecidual/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
20.
Int J Dev Biol ; 65(4-5-6): 275-287, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32930383

RESUMO

The olfactory epithelia arise from morphologically identifiable structures called olfactory placodes. Sensory placodes are generally described as being induced from the ectoderm suggesting that their development is separate from the coordinated cell movements generating the central nervous system. Previously, we have shown that the olfactory placodes arise from a large field of cells bordering the telencephalic precursors in the neural plate, and that cell movements, not cell division, underlie olfactory placode morphogenesis. Subsequently by image analysis, cells were tracked as they moved in the continuous sheet of neurectoderm giving rise to the peripheral (olfactory organs) and central (olfactory bulbs) nervous system (Torres-Paz and Whitlock, 2014). These studies lead to a model whereby the olfactory epithelia develop from within the border of the neural late and are a neural tube derivative, similar to the retina of the eye (Torres-Paz and Whitlock, 2014; Whitlock, 2008). Here we show that randomly generated clones of cells extend across the morphologically differentiated olfactory placodes/olfactory bulbs, and test the hypothesis that these structures are patterned by a different level of distal-less (dlx) gene expression subdividing the anterior neurectoderm into OP precursors (high Dlx expression) and OB precursors (lower Dlx expression). Manipulation of DLX protein and RNA levels resulted in morphological changes in the size of the olfactory epithelia and olfactory bulb. Thus, the olfactory epithelia and bulbs arise from a common neurectodermal region and develop in concert through coordinated morphological movements.


Assuntos
Ectoderma , Placa Neural , Bulbo Olfatório/embriologia , Animais , Ectoderma/embriologia , Desenvolvimento Embrionário , Sistema Nervoso , Placa Neural/embriologia , Tubo Neural
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...