Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
1.
Int J Mol Sci ; 22(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34768866

RESUMO

Adenosine deaminase acting on RNA 1 (ADAR1) is an enzyme responsible for double-stranded RNA (dsRNA)-specific adenosine-to-inosine RNA editing, which is estimated to occur at over 100 million sites in humans. ADAR1 is composed of two isoforms transcribed from different promoters: p150 and N-terminal truncated p110. Deletion of ADAR1 p150 in mice activates melanoma differentiation-associated protein 5 (MDA5)-sensing pathway, which recognizes endogenous unedited RNA as non-self. In contrast, we have recently demonstrated that ADAR1 p110-mediated RNA editing does not contribute to this function, implying that a unique Z-DNA/RNA-binding domain α (Zα) in the N terminus of ADAR1 p150 provides specific RNA editing, which is critical for preventing MDA5 activation. In addition, a mutation in the Zα domain is identified in patients with Aicardi-Goutières syndrome (AGS), an inherited encephalopathy characterized by overproduction of type I interferon. Accordingly, we and other groups have recently demonstrated that Adar1 Zα-mutated mice show MDA5-dependent type I interferon responses. Furthermore, one such mutant mouse carrying a W197A point mutation in the Zα domain, which inhibits Z-RNA binding, manifests AGS-like encephalopathy. These findings collectively suggest that Z-RNA binding by ADAR1 p150 is essential for proper RNA editing at certain sites, preventing aberrant MDA5 activation.


Assuntos
Adenosina Desaminase/metabolismo , Adenosina Desaminase/fisiologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/fisiologia , Adenosina , Animais , DNA Forma Z/metabolismo , DNA Forma Z/fisiologia , Humanos , Inosina , Interferon Tipo I/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Camundongos , Isoformas de Proteínas/metabolismo , Edição de RNA/fisiologia , RNA de Cadeia Dupla
2.
Cells ; 10(6)2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-34202997

RESUMO

The current SARS-CoV-2 pandemic underscores the importance of understanding the evolution of RNA genomes. While RNA is subject to the formation of similar lesions as DNA, the evolutionary and physiological impacts RNA lesions have on viral genomes are yet to be characterized. Lesions that may drive the evolution of RNA genomes can induce breaks that are repaired by recombination or can cause base substitution mutagenesis, also known as base editing. Over the past decade or so, base editing mutagenesis of DNA genomes has been subject to many studies, revealing that exposure of ssDNA is subject to hypermutation that is involved in the etiology of cancer. However, base editing of RNA genomes has not been studied to the same extent. Recently hypermutation of single-stranded RNA viral genomes have also been documented though its role in evolution and population dynamics. Here, we will summarize the current knowledge of key mechanisms and causes of RNA genome instability covering areas from the RNA world theory to the SARS-CoV-2 pandemic of today. We will also highlight the key questions that remain as it pertains to RNA genome instability, mutations accumulation, and experimental strategies for addressing these questions.


Assuntos
Evolução Molecular , RNA Viral/genética , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/virologia , Genoma Viral/genética , Humanos , Mutação , Pandemias , Edição de RNA/fisiologia , Estabilidade de RNA/fisiologia
3.
PLoS Pathog ; 17(6): e1009596, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34061905

RESUMO

The rapid evolution of RNA viruses has been long considered to result from a combination of high copying error frequencies during RNA replication, short generation times and the consequent extensive fixation of neutral or adaptive changes over short periods. While both the identities and sites of mutations are typically modelled as being random, recent investigations of sequence diversity of SARS coronavirus 2 (SARS-CoV-2) have identified a preponderance of C->U transitions, proposed to be driven by an APOBEC-like RNA editing process. The current study investigated whether this phenomenon could be observed in datasets of other RNA viruses. Using a 5% divergence filter to infer directionality, 18 from 36 datasets of aligned coding region sequences from a diverse range of mammalian RNA viruses (including Picornaviridae, Flaviviridae, Matonaviridae, Caliciviridae and Coronaviridae) showed a >2-fold base composition normalised excess of C->U transitions compared to U->C (range 2.1x-7.5x), with a consistently observed favoured 5' U upstream context. The presence of genome scale RNA secondary structure (GORS) was the only other genomic or structural parameter significantly associated with C->U/U->C transition asymmetries by multivariable analysis (ANOVA), potentially reflecting RNA structure dependence of sites targeted for C->U mutations. Using the association index metric, C->U changes were specifically over-represented at phylogenetically uninformative sites, potentially paralleling extensive homoplasy of this transition reported in SARS-CoV-2. Although mechanisms remain to be functionally characterised, excess C->U substitutions accounted for 11-14% of standing sequence variability of structured viruses and may therefore represent a potent driver of their sequence diversification and longer-term evolution.


Assuntos
Mamíferos/virologia , Mutação , Vírus de RNA/genética , SARS-CoV-2/genética , Desaminases APOBEC/metabolismo , Animais , Sequência de Bases , COVID-19/virologia , Citidina/genética , Dano ao DNA/fisiologia , Evolução Molecular , Regulação Viral da Expressão Gênica , Genoma Viral , Interações Hospedeiro-Patógeno/genética , Humanos , Conformação de Ácido Nucleico , Filogenia , Edição de RNA/fisiologia , Vírus de RNA/classificação , RNA Viral/química , RNA Viral/genética , SARS-CoV-2/química , SARS-CoV-2/classificação , Análise de Sequência de RNA , Transcrição Gênica/genética , Uridina/genética
4.
Methods Mol Biol ; 2284: 253-270, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33835447

RESUMO

RNA editing by A-to-I deamination is a relevant co/posttranscriptional modification carried out by ADAR enzymes. In humans, it has pivotal cellular effects and its deregulation has been linked to a variety of human disorders including neurological and neurodegenerative diseases and cancer. Despite its biological relevance, the detection of RNA editing variants in large transcriptome sequencing experiments (RNAseq) is yet a challenging computational task. To drastically reduce computing times we have developed a novel REDItools version able to identify A-to-I events in huge amount of RNAseq data employing High Performance Computing (HPC) infrastructures.Here we show how to use REDItools v2 in HPC systems.


Assuntos
Metodologias Computacionais , Edição de RNA/fisiologia , Análise de Sequência de RNA/métodos , Animais , Biologia Computacional/métodos , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias/genética , Doenças do Sistema Nervoso/genética , Doenças Neurodegenerativas/genética , Software , Transcriptoma
5.
J Neurochem ; 158(2): 182-196, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33894004

RESUMO

Calcium-dependent activator protein for secretion 1 (CAPS1) is a SNARE accessory protein that facilitates formation of the SNARE complex to enable neurotransmitter release. Messenger RNAs encoding CAPS1 are subject to a site-specific adenosine-to-inosine (A-to-I) editing event resulting in a glutamate-to-glycine (E-to-G) substitution in the C-terminal domain of the encoded protein product. The C-terminal domain of CAPS1 is necessary for its synaptic enrichment and Cadps RNA editing has been shown previously to enhance the release of neuromodulatory transmitters. Using mutant mouse lines engineered to solely express CAPS1 protein isoforms encoded by either the non-edited or edited Cadps transcript, primary neuronal cultures from mouse hippocampus were used to explore the effect of Cadps editing on neurotransmission and CAPS1 synaptic localization at both glutamatergic and GABAergic synapses. While the editing of Cadps does not alter baseline evoked neurotransmission, it enhances short-term synaptic plasticity, specifically short-term depression, at inhibitory synapses. Cadps editing also alters spontaneous inhibitory neurotransmission. Neurons that solely express edited Cadps have a greater proportion of synapses that contain CAPS1 than neurons that solely express non-edited Cadps for both glutamatergic and GABAergic synapses. Editing of Cadps transcripts is regulated by neuronal activity, as global network stimulation increases the extent of transcripts edited in wild-type hippocampal neurons, whereas chronic network silencing decreases the level of Cadps editing. Taken together, these results provide key insights into the importance of Cadps editing in modulating its own synaptic localization, as well as the modulation of neurotransmission at inhibitory synapses in hippocampal neurons.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Edição de RNA/genética , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Adenosina Desaminase/metabolismo , Animais , Sistemas CRISPR-Cas , Fenômenos Eletrofisiológicos , Ácido Glutâmico/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Hipocampo/citologia , Hipocampo/metabolismo , Camundongos , Mutação , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Cultura Primária de Células , Edição de RNA/fisiologia , Ácido gama-Aminobutírico/fisiologia
6.
Curr Cancer Drug Targets ; 21(4): 326-352, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33504307

RESUMO

The advent of new genome-wide sequencing technologies has uncovered abnormal RNA modifications and RNA editing in a variety of human cancers. The discovery of reversible RNA N6-methyladenosine (RNA: m6A) by fat mass and obesity-associated protein (FTO) demethylase has led to exponential publications on the pathophysiological functions of m6A and its corresponding RNA modifying proteins (RMPs) in the past decade. Some excellent reviews have summarized the recent progress in this field. Compared to the extent of research into RNA: m6A and DNA 5-methylcytosine (DNA: m5C), much less is known about other RNA modifications and their associated RMPs, such as the role of RNA: m5C and its RNA cytosine methyltransferases (RCMTs) in cancer therapy and drug resistance. In this review, we will summarize the recent progress surrounding the function, intramolecular distribution and subcellular localization of several major RNA modifications, including 5' cap N7-methylguanosine (m7G) and 2'-O-methylation (Nm), m6A, m5C, A-to-I editing, and the associated RMPs. We will then discuss dysregulation of those RNA modifications and RMPs in cancer and their role in cancer therapy and drug resistance.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Metiltransferases , Neoplasias , Processamento Pós-Transcricional do RNA/fisiologia , RNA/metabolismo , Epigênese Genética/genética , Humanos , Metiltransferases/classificação , Metiltransferases/genética , Metiltransferases/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Edição de RNA/fisiologia
7.
Methods Mol Biol ; 2181: 177-191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32729081

RESUMO

RNA editing is a widespread co/posttranscriptional mechanism affecting primary RNAs by specific nucleotide modifications, which plays relevant roles in molecular processes including regulation of gene expression and/or processing of noncoding RNAs (ncRNAs). In recent years, the detection of editing sites has been greatly improved through the availability of high-throughput RNA sequencing technologies. Several pipelines, employing various read mappers and variant callers with a wide range of adjustable parameters, are currently available for the detection of RNA editing events. Hereafter, we describe some of the most recent and popular tools and provide guidelines for the detection of RNA editing in massive transcriptome data.


Assuntos
Biologia Computacional/métodos , Edição de RNA/fisiologia , Animais , Biologia Computacional/normas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Guias de Prática Clínica como Assunto , Análise de Sequência de RNA , Transcriptoma
8.
Methods Mol Biol ; 2181: 193-212, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32729082

RESUMO

The advent of deep sequencing technologies has greatly improved the study of complex eukaryotic genomes and transcriptomes, allowing the investigation of posttranscriptional molecular mechanisms as alternative splicing and RNA editing at unprecedented throughput and resolution. The most prevalent type of RNA editing in higher eukaryotes is the deamination of adenosine to inosine (A-to-I) in double-stranded RNAs. Depending on the RNA type or the RNA region involved, A-to-I RNA editing contributes to the transcriptome and proteome diversity.Hereafter, we present an easy and reproducible computational protocol for the identification of candidate RNA editing sites in humans using deep transcriptome (RNA-Seq) and genome (DNA-Seq) sequencing.


Assuntos
DNA/análise , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Edição de RNA/fisiologia , RNA/análise , Animais , Biologia Computacional/instrumentação , Biologia Computacional/métodos , Computadores , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Humanos , Análise de Sequência de RNA/métodos , Software , Transcriptoma/fisiologia
9.
Methods Mol Biol ; 2181: 229-251, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32729084

RESUMO

RNA editing is an RNA modification that alters the RNA sequence relative to its genomic blueprint. The most common type of RNA editing is A-to-I editing by double-stranded RNA-specific adenosine deaminase (ADAR) enzymes. Editing of a protein-coding region within the RNA molecule may result in non-synonymous substitutions, leading to a modified protein product. These editing sites, also known as "recoding" sites, contribute to the complexity and diversification of the proteome. Recent computational transcriptomic studies have identified thousands of recoding sites in multiple species, many of which are conserved within (but not usually across) lineages and have functional and evolutionary importance. In this chapter we describe the recoding phenomenon across species, consider its potential utility for diversity and adaptation, and discuss its evolution.


Assuntos
Variação Genética , Proteoma/genética , Edição de RNA/fisiologia , Adaptação Biológica/genética , Adenosina/análise , Adenosina/genética , Animais , Evolução Molecular , Especiação Genética , Humanos , Inosina/análise , Inosina/genética , Fases de Leitura Aberta/genética , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/genética , Transcriptoma/genética
10.
Methods Mol Biol ; 2181: 253-267, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32729085

RESUMO

MicroRNAs (miRNAs) are a class of ~22 nt noncoding RNAs playing essential roles in the post-transcriptional regulation of gene expression, cell proliferation, and cell differentiation and are often found deregulated in several diseases including cancer.The A-to-I RNA editing, mediated by ADAR enzymes, is a diffuse post-transcriptional mechanism that converts the genetically coded adenosine (A) into inosine (I) at the RNA level. Among different RNA targets, the ADAR enzymes can also edit miRNA precursors. Specifically, a single nucleotide change (A/I) lying within the mature miRNA can alter the miRNA binding specificity and redirect the edited miRNA to a different mRNA target. In several cancer types a consistent deregulation of A-to-I RNA editing machinery also involves important miRNAs (either oncomiRs or tumor-suppressor miRNAs). Herein we describe a combined in silico and experimental approach for the detection of edited miRNAs and the identification and validation of their target genes potentially involved in cancer progression or invasion.


Assuntos
MicroRNAs/genética , Neoplasias/genética , Oncogenes , Edição de RNA/fisiologia , Análise de Sequência de DNA/métodos , Adenosina/análise , Adenosina/genética , Animais , Carcinogênese/genética , Biologia Computacional/métodos , Humanos , Inosina/análise , Inosina/genética , MicroRNAs/química , Neoplasias/patologia , Estudos de Validação como Assunto
11.
Methods Mol Biol ; 2181: 269-286, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32729086

RESUMO

The type I interferonopathies comprise a heterogenous group of monogenic diseases associated with a constitutive activation of type I interferon signaling.The elucidation of the genetic causes of this group of diseases revealed an alteration of nucleic acid processing and signaling.ADAR1 is among the genes found mutated in patients with this type of disorders.This enzyme catalyzes the hydrolytic deamination of adenosines in inosines within a double-stranded RNA target (RNA editing of A to I). This RNA modification is widespread in human cells and deregulated in a variety of human diseases, ranging from cancers to neurological abnormalities.In this review, we briefly summarize the knowledge about the RNA editing alterations occurring in patients with mutations in ADAR1 gene and how these alterations might cause the inappropriate IFN activation.


Assuntos
Doenças Genéticas Inatas/genética , Interferon Tipo I/genética , Edição de RNA/fisiologia , Adenosina Desaminase/genética , Doenças da Aorta/genética , Doenças Autoimunes do Sistema Nervoso/genética , Hipoplasia do Esmalte Dentário/genética , Humanos , Imunidade Inata/genética , Interferon Tipo I/metabolismo , Metacarpo/anormalidades , Doenças Musculares/genética , Malformações do Sistema Nervoso/genética , Odontodisplasia/genética , Osteoporose/genética , RNA de Cadeia Dupla/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Calcificação Vascular/genética
12.
Methods Mol Biol ; 2181: 287-307, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32729087

RESUMO

The innate immune receptors in higher organisms have evolved to detect molecular signatures associated with pathogenic infection and trigger appropriate immune response. One common class of molecules utilized by the innate immune system for self vs. nonself discrimination is RNA, which is ironically present in all forms of life. To avoid self-RNA recognition, the innate immune sensors have evolved sophisticated discriminatory mechanisms that involve cellular RNA metabolic machineries. Posttranscriptional RNA modification and editing represent one such mechanism that allows cells to chemically tag the host RNAs as "self" and thus tolerate the abundant self-RNA molecules. In this chapter, we discuss recent advances in our understanding of the role of RNA editing/modification in the modulation of immune signaling pathways, and application of RNA editing/modification in RNA-based therapeutics and cancer immunotherapies.


Assuntos
Imunidade/genética , Edição de RNA/fisiologia , Animais , Humanos , Imunidade Inata/genética , RNA/química , Transdução de Sinais/genética , Transdução de Sinais/imunologia
13.
Methods Mol Biol ; 2181: 309-330, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32729088

RESUMO

The brain is one of the organs that are preferentially targeted by adenosine-to-inosine (A-to-I) RNA editing, a posttranscriptional modification. This chemical modification affects neuronal development and functions at multiple levels, leading to normal brain homeostasis by increasing the complexity of the transcriptome. This includes modulation of the properties of ion channel and neurotransmitter receptors by recoding, redirection of miRNA targets by changing sequence complementarity, and suppression of immune response by altering RNA structure. Therefore, from another perspective, it appears that the brain is highly vulnerable to dysregulation of A-to-I RNA editing. Here, we focus on how aberrant A-to-I RNA editing is involved in neurological and neurodegenerative diseases of humans including epilepsy, amyotrophic lateral sclerosis, psychiatric disorders, developmental disorders, brain tumors, and encephalopathy caused by autoimmunity. In addition, we provide information regarding animal models to better understand the mechanisms behind disease phenotype.


Assuntos
Doenças do Sistema Nervoso/genética , Doenças Neurodegenerativas/genética , Edição de RNA/fisiologia , Adenosina/química , Adenosina/genética , Esclerose Lateral Amiotrófica/genética , Animais , Epilepsia/genética , Humanos , Inosina/química , Inosina/genética , Fenótipo
14.
Methods Mol Biol ; 2181: 331-349, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32729089

RESUMO

RNA editing activity can be exploited for the restoration of disease-causing nonsense and missense mutations and as a tool to manipulate the transcriptome in a simple and programmable way. The general concept is called site-directed RNA editing and has high potential for translation into the clinics. Due to its different mode of action RNA editing may well complement gene editing and other gene therapy options. In this method chapter, we particularly highlight RNA editing strategies that harness endogenous ADARs. Such strategies circumvent the delivery and expression of engineered editases and are notably precise and simple. This is particularly true if endogenous ADARs are recruited with chemically modified antisense oligonucleotides, an approach we call RESTORE (recruiting endogenous ADAR to specific transcripts for oligonucleotide-mediated RNA editing). To foster the research and development of RESTORE we now report a detailed protocol for the procedure of editing reactions, and a protocol for the generation of partly chemically modified RESTORE ASOs with a combination of in vitro transcription and ligation.


Assuntos
Adenosina Desaminase/fisiologia , Mutagênese Sítio-Dirigida/métodos , Edição de RNA/fisiologia , Proteínas de Ligação a RNA/fisiologia , Células A549 , Adenosina Desaminase/genética , Células Cultivadas , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Mutagênese Sítio-Dirigida/tendências , Proteínas de Ligação a RNA/genética
15.
Cell ; 181(5): 955-960, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32470403

RESUMO

The first clinical studies utilizing RNA-guided endonucleases (RGENs) to therapeutically edit RNA and DNA in cancer patients were recently published. These groundbreaking technological advances promise to revolutionize genetic therapy and, as I discuss, represent the culmination of decades of innovative work to engineer RGENs for such editing applications.


Assuntos
Edição de Genes/métodos , Edição de Genes/tendências , Edição de RNA/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , DNA/genética , Endonucleases/metabolismo , Mutação , RNA/genética , Edição de RNA/fisiologia , RNA Catalítico/genética , RNA Guia de Cinetoplastídeos/genética
16.
Nat Neurosci ; 23(6): 718-729, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32367065

RESUMO

DNA forms conformational states beyond the right-handed double helix; however, the functional relevance of these noncanonical structures in the brain remains unknown. Here we show that, in the prefrontal cortex of mice, the formation of one such structure, Z-DNA, is involved in the regulation of extinction memory. Z-DNA is formed during fear learning and reduced during extinction learning, which is mediated, in part, by a direct interaction between Z-DNA and the RNA-editing enzyme Adar1. Adar1 binds to Z-DNA during fear extinction learning, which leads to a reduction in Z-DNA at sites where Adar1 is recruited. Knockdown of Adar1 leads to an inability to modify a previously acquired fear memory and blocks activity-dependent changes in DNA structure and RNA state-effects that are fully rescued by the introduction of full-length Adar1. These findings suggest a new mechanism of learning-induced gene regulation that is dependent on proteins that recognize alternate DNA structure states, which are required for memory flexibility.


Assuntos
Adenosina Desaminase/metabolismo , Adenosina Desaminase/fisiologia , DNA Forma Z/fisiologia , Extinção Psicológica/fisiologia , Edição de RNA/fisiologia , Animais , DNA Forma Z/metabolismo , Medo , Aprendizagem/fisiologia , Camundongos , Córtex Pré-Frontal/metabolismo , RNA Interferente Pequeno/farmacologia
18.
Hypertension ; 75(6): 1532-1541, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32306769

RESUMO

Dysregulated RNA editing is well documented in several diseases, such as cancer and neurodegenerative diseases. The extent to which RNA editing might be involved in diseases originated in the placenta remains unknown. Here, we have systematically profiled RNA editome on the placentae, 9 from patients with early-onset severe preeclampsia (EOSPE) and 32 from normal subjects, and a widespread RNA editing dysregulation in EOSPE has been identified. The mis-edited gene set is enriched with known preeclampsia-associated genes and differentially expressed genes in EOSPE. The RNA editing events at 2 microRNA binding sites in 3'-untranslated region of the LEP mRNA were generated, which could inhibit the microRNA-induced mRNA downregulation of LEP in placenta-derived cell line, consistent with the observation in the placentae of preeclampsia patients. These results demonstrate the association of dysregulated placental RNA editing with preeclampsia, and providing a resource for further study on the role of RNA editing in the pathogenesis of this disease.


Assuntos
Leptina , MicroRNAs/genética , Placenta/metabolismo , Pré-Eclâmpsia , Edição de RNA/fisiologia , Adulto , Sítios de Ligação , Linhagem Celular , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Idade Gestacional , Humanos , Leptina/genética , Leptina/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/fisiopatologia , Gravidez , Trimestres da Gravidez , Índice de Gravidade de Doença , Regulação para Cima
19.
Mol Cell ; 78(5): 850-861.e5, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32348779

RESUMO

Cas13 has demonstrated unique and broad utility in RNA editing, nucleic acid detection, and disease diagnosis; however, a constantly active Cas enzyme may induce unwanted effects. Bacteriophage- or prophage-region-encoded anti-CRISPR (acr) gene molecules provide the potential to control targeting specificity and potency to allow for optimal RNA editing and nucleic acid detection by spatiotemporally modulating endonuclease activities. Using integrated approaches to screen acrVI candidates and evaluate their effects on Cas13 function, we discovered a series of acrVIA1-7 genes that block the activities of Cas13a. These VI-A CRISPR inhibitors substantially attenuate RNA targeting and editing by Cas13a in human cells. Strikingly, type VI-A anti-CRISPRs (AcrVIAs) also significantly muffle the single-nucleic-acid editing ability of the dCas13a RNA-editing system. Mechanistically, AcrVIA1, -4, -5, and -6 bind LwaCas13a, while AcrVIA2 and -3 can only bind the LwaCas13-crRNA (CRISPR RNA) complex. These identified acr molecules may enable precise RNA editing in Cas13-based application and study of phage-bacterium interaction.


Assuntos
Proteínas Associadas a CRISPR/antagonistas & inibidores , Sistemas CRISPR-Cas/fisiologia , Edição de RNA/fisiologia , Animais , Bactérias/genética , Bacteriófagos/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Edição de Genes , Células HEK293 , Humanos , Leptotrichia/genética , Leptotrichia/metabolismo , RNA/genética , Edição de RNA/genética
20.
Elife ; 92020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32314960

RESUMO

Slo2 potassium channels play important roles in neuronal function, and their mutations in humans may cause epilepsies and cognitive defects. However, it is largely unknown how Slo2 is regulated by other proteins. Here we show that the function of C. elegans Slo2 (SLO-2) depends on adr-1, a gene important to RNA editing. ADR-1 promotes SLO-2 function not by editing the transcripts of slo-2 but those of scyl-1, which encodes an orthologue of mammalian SCYL1. Transcripts of scyl-1 are greatly decreased in adr-1 mutants due to deficient RNA editing at a single adenosine in their 3'-UTR. SCYL-1 physically interacts with SLO-2 in neurons. Single-channel open probability (Po) of neuronal SLO-2 is ~50% lower in scyl-1 knockout mutant than wild type. Moreover, human Slo2.2/Slack Po is doubled by SCYL1 in a heterologous expression system. These results suggest that SCYL-1/SCYL1 is an evolutionarily conserved regulator of Slo2 channels.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/fisiologia , Neurônios/metabolismo , Canais de Potássio Ativados por Sódio/metabolismo , Animais , Caenorhabditis elegans , Humanos , Camundongos , Edição de RNA/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...