Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.287
Filtrar
1.
Cancer Med ; 13(9): e7207, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38686627

RESUMO

BACKGROUND: Most high-risk neuroblastoma patients who relapse succumb to disease despite the existing therapy. We recently reported increased event-free and overall survival in neuroblastoma patients receiving difluoromethylornithine (DFMO) during maintenance therapy. The effect of DFMO on cellular processes associated with neuroblastoma tumorigenesis needs further elucidation. Previous studies have shown cytotoxicity with IC50 values >5-15 mM, these doses are physiologically unattainable in patients, prompting further mechanistic studies at therapeutic doses. METHODS: We characterized the effect of DFMO on cell viability, cell cycle, apoptosis, neurosphere formation, and protein expression in vitro using five established neuroblastoma cell lines (BE2C, CHLA-90, SHSY5Y, SMS-KCNR, and NGP) at clinically relevant doses of 0, 50, 100, 500, 1000, and 2500 µM. Limiting Dilution studies of tumor formation in murine models were performed. Statistical analysis was done using GraphPad and the level of significance set at p = 0.05. RESULTS: There was not a significant loss of cell viability or gain of apoptotic activity in the in vitro assays (p > 0.05). DFMO treatment initiated G1 to S phase cell cycle arrest. There was a dose-dependent decrease in frequency and size of neurospheres and a dose-dependent increase in beta-galactosidase activity in all cell lines. Tumor formation was decreased in xenografts both with DFMO-pretreated cells and in mice treated with DFMO. CONCLUSION: DFMO treatment is cytostatic at physiologically relevant doses and inhibits tumor initiation and progression in mice. This study suggests that DFMO, inhibits neuroblastoma by targeting cellular processes integral to neuroblastoma tumorigenesis at clinically relevant doses.


Assuntos
Apoptose , Sobrevivência Celular , Eflornitina , Neuroblastoma , Ensaios Antitumorais Modelo de Xenoenxerto , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Neuroblastoma/metabolismo , Humanos , Animais , Linhagem Celular Tumoral , Camundongos , Apoptose/efeitos dos fármacos , Eflornitina/farmacologia , Eflornitina/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Feminino
2.
Br J Cancer ; 130(4): 513-516, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38316994

RESUMO

The "undruggable" MYC oncoproteins are deregulated in 70% human cancers. The approval of DFMO, an irreversible inhibitor of ornithine oxidase (ODC1) that is a direct transcriptional target of MYC, demonstrates that patients can benefit from targeting MYC activity via an indirect approach. However, the mechanism of action of DFMO needs further studies to understand how it works in post-immunotherapy neuroblastomas. Efforts to develop a more potent and safer drug to block MYC function will continue despite challenges.


Assuntos
Neuroblastoma , Humanos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Proteínas Oncogênicas/genética , Regulação Neoplásica da Expressão Gênica , Eflornitina/metabolismo , Eflornitina/farmacologia , Eflornitina/uso terapêutico
3.
Biomolecules ; 14(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38397415

RESUMO

Streptococcus pneumoniae (Spn), a Gram-positive bacterium, poses a significant threat to human health, causing mild respiratory infections to severe invasive conditions. Despite the availability of vaccines, challenges persist due to serotype replacement and antibiotic resistance, emphasizing the need for alternative therapeutic strategies. This study explores the intriguing role of polyamines, ubiquitous, small organic cations, in modulating virulence factors, especially the capsule, a crucial determinant of Spn's pathogenicity. Using chemical inhibitors, difluoromethylornithine (DFMO) and AMXT 1501, this research unveils distinct regulatory effects on the gene expression of the Spn D39 serotype in response to altered polyamine homeostasis. DFMO inhibits polyamine biosynthesis, disrupting pathways associated with glucose import and the interconversion of sugars. In contrast, AMXT 1501, targeting polyamine transport, enhances the expression of polyamine and glucose biosynthesis genes, presenting a novel avenue for regulating the capsule independent of glucose availability. Despite ample glucose availability, AMXT 1501 treatment downregulates the glycolytic pathway, fatty acid synthesis, and ATP synthase, crucial for energy production, while upregulating two-component systems responsible for stress management. This suggests a potential shutdown of energy production and capsule biosynthesis, redirecting resources towards stress management. Following DFMO and AMXT 1501 treatments, countermeasures, such as upregulation of stress response genes and ribosomal protein, were observed but appear to be insufficient to overcome the deleterious effects on capsule production. This study highlights the complexity of polyamine-mediated regulation in S. pneumoniae, particularly capsule biosynthesis. Our findings offer valuable insights into potential therapeutic targets for modulating capsules in a polyamine-dependent manner, a promising avenue for intervention against S. pneumoniae infections.


Assuntos
Eflornitina , Streptococcus pneumoniae , Humanos , Eflornitina/farmacologia , Streptococcus pneumoniae/genética , Poliaminas/metabolismo , Glucose/metabolismo , Expressão Gênica
4.
Endocrinology ; 165(3)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38195178

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease leading to dysfunction and loss of insulin-secreting ß cells. In ß cells, polyamines have been implicated in causing cellular stress and dysfunction. An inhibitor of polyamine biosynthesis, difluoromethylornithine (DFMO), has been shown to delay T1D in mouse models and preserve ß-cell function in humans with recent-onset T1D. Another small molecule, N1,N11-diethylnorspermine (DENSpm), both inhibits polyamine biosynthesis and accelerates polyamine metabolism and is being tested for efficacy in cancer clinical trials. In this study, we show that DENSpm depletes intracellular polyamines as effectively as DFMO in mouse ß cells. RNA-sequencing analysis, however, suggests that the cellular responses to DENSpm and DFMO differ, with both showing effects on cellular proliferation but the latter showing additional effects on mRNA translation and protein-folding pathways. In the low-dose streptozotocin-induced mouse model of T1D, DENSpm, unlike DFMO, did not prevent or delay diabetes outcomes but did result in improvements in glucose tolerance and reductions in islet oxidative stress. In nonobese diabetic (NOD) mice, short-term DENSpm administration resulted in a slight reduction in insulitis and proinflammatory Th1 cells in the pancreatic lymph nodes. Longer term treatment resulted in a dose-dependent increase in mortality. Notwithstanding the efficacy of both DFMO and DENSpm in reducing potentially toxic polyamine levels in ß cells, our results highlight the discordant T1D outcomes that result from differing mechanisms of polyamine depletion and, more importantly, that toxic effects of DENSpm may limit its utility in T1D treatment.


Assuntos
Antineoplásicos , Diabetes Mellitus Tipo 1 , Humanos , Animais , Camundongos , Poliaminas/metabolismo , Eflornitina/farmacologia , Eflornitina/uso terapêutico , Antineoplásicos/farmacologia , Espermina/farmacologia , Espermina/metabolismo , Citocinas , Diabetes Mellitus Tipo 1/tratamento farmacológico
5.
Dev Med Child Neurol ; 66(4): 445-455, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37469105

RESUMO

Bachmann-Bupp syndrome (BABS) is a neurodevelopmental disorder characterized by developmental delay, hypotonia, and varying forms of non-congenital alopecia. The condition is caused by 3'-end mutations of the ornithine decarboxylase 1 (ODC1) gene, which produce carboxy (C)-terminally truncated variants of ODC, a pyridoxal 5'-phosphate-dependent enzyme. C-terminal truncation of ODC prevents its ubiquitin-independent proteasomal degradation and leads to cellular accumulation of ODC enzyme that remains catalytically active. ODC is the first rate-limiting enzyme that converts ornithine to putrescine in the polyamine pathway. Polyamines (putrescine, spermidine, spermine) are aliphatic molecules found in all forms of life and are important during embryogenesis, organogenesis, and tumorigenesis. BABS is an ultra-rare condition with few reported cases, but it serves as a convincing example for drug repurposing therapy. α-Difluoromethylornithine (DFMO, also known as eflornithine) is an ODC inhibitor with a strong safety profile in pediatric use for neuroblastoma and other cancers as well as West African sleeping sickness (trypanosomiasis). Patients with BABS have been treated with DFMO and have shown improvement in hair growth, muscle tone, and development.


Assuntos
Putrescina , Espermidina , Humanos , Criança , Putrescina/metabolismo , Putrescina/farmacologia , Espermidina/metabolismo , Espermidina/farmacologia , Poliaminas/metabolismo , Poliaminas/farmacologia , Espermina/metabolismo , Espermina/farmacologia , Eflornitina/farmacologia
6.
J Biotechnol ; 378: 1-10, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37922995

RESUMO

The heterogeneity of the N-linked glycan profile of therapeutic monoclonal antibodies (mAbs) derived from animal cells affects therapeutic efficacy and, therefore, needs to be appropriately controlled during the manufacturing process. In this study, we examined the effects of polyamines on the N-linked glycan profiles of mAbs produced by CHO DP-12 cells. Normal cell growth of CHO DP-12 cells and their growth arrest by α-difluoromethylornithine (DFMO), an inhibitor of the polyamine biosynthetic pathway, was observed when 0.5% fetal bovine serum was added to serum-free medium, despite the presence of cadaverine and aminopropylcadaverine, instead of putrescine and spermidine in cells. Polyamine depletion by DFMO increased IgG galactosylation, accompanied by ß1,4-galactosyl transferase 1 (B4GAT1) mRNA elevation. Additionally, IgG production in polyamine-depleted cells was reduced by 30% compared to that in control cells. Therefore, we examined whether polyamine depletion induces an ER stress response. The results indicated increased expression levels of chaperones for glycoprotein folding in polyamine-depleted cells, suggesting that polyamine depletion causes ER stress related to glycoprotein folding. The effect of tunicamycin, an ER stress inducer that inhibits N-glycosylation, on the expression of B4GALT1 mRNA was examined. Tunicamycin treatment increased B4GALT1 mRNA expression. These results suggest that ER stress caused by polyamine depletion induces B4GALT1 mRNA expression, resulting in increased IgG galactosylation in CHO cells. Thus, introducing polyamines, particularly SPD, to serum-free CHO culture medium for CHO cells may contribute to consistent manufacturing and quality control of antibody production.


Assuntos
Anticorpos Monoclonais , Poliaminas , Cricetinae , Animais , Células CHO , Cricetulus , Tunicamicina , Putrescina/metabolismo , Eflornitina/farmacologia , RNA Mensageiro/metabolismo , Glicoproteínas , Polissacarídeos , Imunoglobulina G , Espermina/metabolismo
7.
Cell Rep Med ; 4(11): 101261, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37918404

RESUMO

In preclinical models, α-difluoromethylornithine (DFMO), an ornithine decarboxylase (ODC) inhibitor, delays the onset of type 1 diabetes (T1D) by reducing ß cell stress. However, the mechanism of DFMO action and its human tolerability remain unclear. In this study, we show that mice with ß cell ODC deletion are protected against toxin-induced diabetes, suggesting a cell-autonomous role of ODC during ß cell stress. In a randomized controlled trial (ClinicalTrials.gov: NCT02384889) involving 41 recent-onset T1D subjects (3:1 drug:placebo) over a 3-month treatment period with a 3-month follow-up, DFMO (125-1,000 mg/m2) is shown to meet its primary outcome of safety and tolerability. DFMO dose-dependently reduces urinary putrescine levels and, at higher doses, preserves C-peptide area under the curve without apparent immunomodulation. Transcriptomics and proteomics of DFMO-treated human islets exposed to cytokine stress reveal alterations in mRNA translation, nascent protein transport, and protein secretion. These findings suggest that DFMO may preserve ß cell function in T1D through islet cell-autonomous effects.


Assuntos
Diabetes Mellitus Tipo 1 , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 1/tratamento farmacológico , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , Inibidores da Ornitina Descarboxilase/farmacologia , Eflornitina/farmacologia , Eflornitina/uso terapêutico , Putrescina/metabolismo
8.
EMBO Mol Med ; 15(11): e17833, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37702369

RESUMO

Snyder-Robinson syndrome (SRS) results from mutations in spermine synthase (SMS), which converts the polyamine spermidine into spermine. Affecting primarily males, common manifestations of SRS include intellectual disability, osteoporosis, hypotonia, and seizures. Symptom management is the only treatment. Reduced SMS activity causes spermidine accumulation while spermine levels are reduced. The resulting exaggerated spermidine:spermine ratio is a biochemical hallmark of SRS that tends to correlate with symptom severity. Our studies aim to pharmacologically manipulate polyamine metabolism to correct this imbalance as a therapeutic strategy for SRS. Here we report the repurposing of 2-difluoromethylornithine (DFMO), an FDA-approved inhibitor of polyamine biosynthesis, in rebalancing spermidine:spermine ratios in SRS patient cells. Mechanistic in vitro studies demonstrate that, while reducing spermidine biosynthesis, DFMO also stimulates the conversion of spermidine into spermine in hypomorphic SMS cells and induces uptake of exogenous spermine, altogether reducing the aberrant ratios. In a Drosophila SRS model characterized by reduced lifespan, DFMO improves longevity. As nearly all SRS patient mutations are hypomorphic, these studies form a strong foundation for translational studies with significant therapeutic potential.


Assuntos
Poliaminas , Espermidina , Masculino , Humanos , Poliaminas/metabolismo , Espermidina/metabolismo , Espermidina/farmacologia , Espermina/metabolismo , Eflornitina/farmacologia , Eflornitina/uso terapêutico , Espermina Sintase/genética , Espermina Sintase/metabolismo
9.
Neurosurgery ; 93(4): 932-938, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37246885

RESUMO

BACKGROUND AND OBJECTIVES: No new drug has improved survival for glioblastoma since temozolomide in 2005, due in part to the relative inaccessibility of each patient's individualized tumor biology and its response to therapy. We have identified a conserved extracellular metabolic signature of enhancing high-grade gliomas enriched for guanidinoacetate (GAA). GAA is coproduced with ornithine, the precursor to protumorigenic polyamines through ornithine decarboxylase (ODC). AMXT-1501 is a polyamine transporter inhibitor that can overcome tumoral resistance to the ODC inhibitor, difluoromethylornithine (DFMO). We will use DFMO with or without AMXT-1501 to identify candidate pharmacodynamic biomarkers of polyamine depletion in patients with high-grade gliomas in situ . We aim to determine (1) how blocking polyamine production affects intratumoral extracellular guanidinoacetate abundance and (2) the impact of polyamine depletion on the global extracellular metabolome within live human gliomas in situ. METHODS: DFMO, with or without AMXT-1501, will be administered postoperatively in 15 patients after clinically indicated subtotal resection for high-grade glioma. High-molecular weight microdialysis catheters implanted into residual tumor and adjacent brain will be used for postoperative monitoring of extracellular GAA and polyamines throughout therapeutic intervention from postoperative day (POD) 1 to POD5. Catheters will be removed on POD5 before discharge. EXPECTED OUTCOMES: We anticipate that GAA will be elevated in tumor relative to adjacent brain although it will decrease within 24 hours of ODC inhibition with DFMO. If AMXT-1501 effectively increases the cytotoxic impact of ODC inhibition, we expect an increase in biomarkers of cytotoxicity including glutamate with DFMO + AMXT-1501 treatment when compared with DFMO alone. DISCUSSION: Limited mechanistic feedback from individual patients' gliomas hampers clinical translation of novel therapies. This pilot Phase 0 study will provide in situ feedback during DFMO + AMXT-1501 treatment to determine how high-grade gliomas respond to polyamine depletion.


Assuntos
Eflornitina , Glioma , Humanos , Eflornitina/farmacologia , Eflornitina/uso terapêutico , Retroalimentação , Microdiálise , Peso Molecular , Poliaminas/metabolismo , Biomarcadores , Glioma/tratamento farmacológico
10.
Expert Opin Ther Pat ; 33(3): 247-263, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36933190

RESUMO

INTRODUCTION: Human African Trypanosomiasis is a neglected disease caused by infection from parasites belonging to the Trypanosoma brucei species. Only six drugs are currently available and employed depending on the stage of the infection: pentamidine, suramin, melarsoprol, eflornithine, nifurtimox, and fexinidazole. Joint research projects were launched in an attempt to find new therapeutic options for this severe and often lethal disease. AREAS COVERED: After a brief description of the recent literature on the parasite and the disease, we searched for patents dealing with the proposal of new antitrypanosomiasis agents and, following the PRISMA guidelines, we filtered the results to those published from 2018 onwards returning suitable entries, which represent the contemporary landscape of compounds/strategies against Trypanosoma brucei. In addition, some relevant publications from the overall scientific literature were also discussed. EXPERT OPINION: This review comprehensively covers and analyzes the most recent advances not only in the discovery of new inhibitors and their structure-activity relationships but also in the assessment of innovative biological targets opening new scenarios in the MedChem field. Finally, also new vaccines and formulations recently patented were described. However, natural and synthetic compounds were analyzed in terms of inhibitory activity and selective toxicity against human cells.


Assuntos
Tripanossomicidas , Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Humanos , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Patentes como Assunto , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Eflornitina/farmacologia , Eflornitina/uso terapêutico
11.
Semin Cell Dev Biol ; 146: 70-79, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36604249

RESUMO

Viruses rely on host cells for energy and synthesis machinery required for genome replication and particle assembly. Due to the dependence of viruses on host cells, viruses have evolved multiple mechanisms by which they can induce metabolic changes in the host cell to suit their specific requirements. The host immune response also involves metabolic changes to be able to react to viral insult. Polyamines are small ubiquitously expressed polycations, and their metabolism is critical for viral replication and an adequate host immune response. This is due to the variety of functions that polyamines have, ranging from condensing DNA to enhancing the translation of polyproline-containing proteins through the hypusination of eIF5A. Here, we review the diverse mechanisms by which viruses exploit polyamines, as well as the mechanisms by which immune cells utilize polyamines for their functions. Furthermore, we highlight potential avenues for further study of the host-virus interface.


Assuntos
Interações entre Hospedeiro e Microrganismos , Poliaminas , Viroses , Replicação Viral , Vírus , Humanos , Imunidade Adaptativa , Antineoplásicos/farmacologia , Antivirais/farmacologia , Eflornitina/farmacologia , Interações entre Hospedeiro e Microrganismos/imunologia , Poliaminas/antagonistas & inibidores , Poliaminas/metabolismo , Viroses/metabolismo , Viroses/virologia , Vírus/metabolismo , Processamento de Proteína Pós-Traducional , Lisina , Fator de Iniciação de Tradução Eucariótico 5A
12.
Laryngoscope ; 133(3): 676-682, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35620919

RESUMO

OBJECTIVE: Evaluate the effects of α-difluoromethylornithine (DFMO) on hearing thresholds as part of a randomized, double-blind, placebo-controlled trial. METHODS: Subjects were randomized and assigned to the control (placebo) or experimental (DFMO) group. DFMO or placebo were administered orally (500 mg/m2 /day) for up to 5 years. RESULTS: Subjects taking DFMO had, on average, increased hearing thresholds from baseline across the frequency range compared to subjects in the control group. Statistical analysis revealed this was significant in the lower frequency range. CONCLUSIONS: This randomized controlled trial revealed the presence of increased hearing thresholds associated with long-term DFMO use. As a whole, DFMO may help prevent and treat certain types of cancers; however, it can result in some degree of hearing loss even when administered at low doses. This study further highlights the importance of closely monitoring hearing thresholds in subjects taking DFMO. Laryngoscope, 133:676-682, 2023.


Assuntos
Perda Auditiva , Ototoxicidade , Neoplasias Cutâneas , Humanos , Eflornitina/uso terapêutico , Eflornitina/farmacologia , Audição , Perda Auditiva/induzido quimicamente , Perda Auditiva/prevenção & controle , Perda Auditiva/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico
13.
J Med Chem ; 65(22): 15391-15415, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36382923

RESUMO

Polyamine biosynthesis is regulated by ornithine decarboxylase (ODC), which is transcriptionally activated by c-Myc. A large library was screened to find molecules that potentiate the ODC inhibitor, difluoromethylornithine (DFMO). Anthranilic acid derivatives were identified as DFMO adjunct agents. Further studies identified the far upstream binding protein 1 (FUBP1) as the target of lead compound 9. FUBP1 is a single-stranded DNA/RNA binding protein and a master controller of specific genes including c-Myc and p21. We showed that 9 does not inhibit 3H-spermidine uptake yet works synergistically with DFMO to limit cell growth in the presence of exogenous spermidine. Compound 9 was also shown to inhibit the KH4 FUBP1-FUSE interaction in a gel shift assay, bind to FUBP1 in a ChIP assay, reduce both c-Myc mRNA and protein expression, increase p21 mRNA and protein expression, and deplete intracellular polyamines. This promising hit opens the door to new FUBP1 inhibitors with increased potency.


Assuntos
Eflornitina , Espermidina , Eflornitina/farmacologia , RNA Mensageiro/genética , Proteínas de Ligação a RNA , Espermidina/metabolismo
14.
Med Sci (Basel) ; 10(3)2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36135830

RESUMO

Polyamines are small organic cations that are essential for many biological processes such as cell proliferation and cell cycle progression. While the metabolism of polyamines has been well studied, the mechanisms by which polyamines are transported into and out of cells are poorly understood. Here, we describe a novel role of Chmp1, a vesicular trafficking protein, in the transport of polyamines using a well-defined leg imaginal disc assay in Drosophila melanogaster larvae. We show that Chmp1 overexpression had no effect on leg development in Drosophila, but does attenuate the negative impact on leg development of Ant44, a cytotoxic drug known to enter cells through the polyamine transport system (PTS), suggesting that the overexpression of Chmp1 downregulated the PTS. Moreover, we showed that the addition of spermine did not rescue the leg development in Chmp1-overexpressing leg discs treated with difluoromethylornithine (DFMO), an inhibitor of polyamine metabolism, while putrescine and spermidine did, suggesting that there may be unique mechanisms of import for individual polyamines. Thus, our data provide novel insight into the underlying mechanisms that are involved in polyamine transport and highlight the utility of the Drosophila imaginal disc assay as a fast and easy way to study potential players involved in the PTS.


Assuntos
Poliaminas , Espermidina , Animais , Drosophila melanogaster/metabolismo , Eflornitina/farmacologia , Poliaminas/metabolismo , Poliaminas/farmacologia , Putrescina/metabolismo , Putrescina/farmacologia , Espermidina/metabolismo , Espermidina/farmacologia , Espermina/metabolismo , Espermina/farmacologia
15.
J Biol Chem ; 298(10): 102407, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988653

RESUMO

Cytosolic histone deacetylase-10 (HDAC10) specifically deacetylates the modified polyamine N8-acetylspermidine (N8-AcSpd). Although intracellular concentrations of N8-AcSpd are low, extracellular sources can be abundant, particularly in the colonic lumen. Extracellular polyamines, including those from the diet and microbiota, can support tumor growth both locally and at distant sites. However, the contribution of N8-AcSpd in this context is unknown. We hypothesized that HDAC10, by converting N8- AcSpd to spermidine, may provide a source of this growth-supporting polyamine in circumstances of reduced polyamine biosynthesis, such as in polyamine-targeting anticancer therapies. Inhibitors of polyamine biosynthesis, including α-difluoromethylornithine (DFMO), inhibit tumor growth, but compensatory uptake of extracellular polyamines has limited their clinical success. Combining DFMO with inhibitors of polyamine uptake have improved the antitumor response. However, acetylated polyamines may use different transport machinery than the parent molecules. Here, we use CRISPR/Cas9-mediated HDAC10-knockout cell lines and HDAC10-specific inhibitors to investigate the contribution of HDAC10 in maintaining tumor cell proliferation. We demonstrate inhibition of cell growth by DFMO-associated polyamine depletion is successfully rescued by exogenous N8-AcSpd (at physiological concentrations), which is converted to spermidine and spermine, only in cell lines with HDAC10 activity. Furthermore, we show loss of HDAC10 prevents both restoration of polyamine levels and growth rescue, implicating HDAC10 in supporting polyamine-associated tumor growth. These data suggest the utility of HDAC10-specific inhibitors as an antitumor strategy that may have value in improving the response to polyamine-blocking therapies. Additionally, the cell-based assay developed in this study provides an inexpensive, high-throughput method of screening potentially selective HDAC10 inhibitors.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias , Espermidina , Humanos , Proliferação de Células , Eflornitina/farmacologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Homeostase , Neoplasias/metabolismo , Neoplasias/patologia , Espermidina/antagonistas & inibidores , Espermidina/metabolismo , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia
16.
Reprod Fertil Dev ; 34(15): 957-970, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36031717

RESUMO

CONTEXT: Low ovarian putrescine levels and decreased peak values following luteinising hormone peaks are related to poor oocyte quantity and quality in ageing women. AIMS: To investigate the effects of putrescine supplementation in in vitro maturation (IVM) medium on oocyte quality and epigenetic modification. METHODS: Germinal vesicle oocytes retrieved from the ovaries of 8-week-old and 9-month-old mice were divided into four groups (the young, young+difluoromethylornithine (DFMO), ageing and ageing+putrescine groups) and cultured in IVM medium with or without 1mM putrescine or DFMO for 16h. The first polar body extrusion (PBE), cleavage and embryonic development were evaluated. Spindles, chromosomes, mitochondria and reactive oxygen species (ROS) were measured. The expression levels of SIRT1, H3K9ac, H3K9me2, H3K9me3, and 5mC levels were evaluated. Sirt1 and imprinted genes were detected. RESULTS: The PBE was higher in the ageing+putrescine group than in the ageing group. Putrescine increased the total and inner cell mass cell numbers of blastocysts in ageing oocytes. Putrescine decreased aberrant spindles and chromosome aneuploidy, increased the mitochondrial membrane potential and decreased ROS levels. Putrescine increased SIRT1 expression and attenuated the upregulation of H3K9ac levels in ageing oocytes. Putrescine did not affect 5mC, H3K9me2 or H3K9me3 levels or imprinted gene expression. CONCLUSIONS: Putrescine supplementation during IVM improved the maturation and quality of ageing oocytes and promoted embryonic development by decreasing ROS generation, maintaining mitochondrial and spindle function and correcting aberrant epigenetic modification. IMPLICATIONS: Putrescine shows application potential for human-assisted reproduction, especially for IVM of oocytes from ageing women.


Assuntos
Putrescina , Sirtuína 1 , Animais , Eflornitina/metabolismo , Eflornitina/farmacologia , Epigênese Genética , Feminino , Humanos , Técnicas de Maturação in Vitro de Oócitos , Lactente , Hormônio Luteinizante/metabolismo , Camundongos , Oócitos/metabolismo , Gravidez , Putrescina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo
17.
Sci Rep ; 12(1): 11804, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35821246

RESUMO

Polyamines are small cationic molecules that have been linked to various cellular processes including replication, translation, stress response and recently, capsule regulation in Streptococcus pneumoniae (Spn, pneumococcus). Pneumococcal-associated diseases such as pneumonia, meningitis, and sepsis are some of the leading causes of death worldwide and capsule remains the principal virulence factor of this versatile pathogen. α-Difluoromethyl-ornithine (DFMO) is an irreversible inhibitor of the polyamine biosynthesis pathway catalyzed by ornithine decarboxylase and has a long history in modulating cell growth, polyamine levels, and disease outcomes in eukaryotic systems. Recent evidence shows that DFMO can also target arginine decarboxylation. Interestingly, DFMO-treated cells often escape polyamine depletion via increased polyamine uptake from extracellular sources. Here, we examined the potential capsule-crippling ability of DFMO and the possible synergistic effects of the polyamine transport inhibitor, AMXT 1501, on pneumococci. We characterized the changes in pneumococcal metabolites in response to DFMO and AMXT 1501, and also measured the impact of DFMO on amino acid decarboxylase activities. Our findings show that DFMO inhibited pneumococcal polyamine and capsule biosynthesis as well as decarboxylase activities, albeit, at a high concentration. AMXT 1501 at physiologically relevant concentration could inhibit both polyamine and capsule biosynthesis, however, in a serotype-dependent manner. In summary, this study demonstrates the utility of targeting polyamine biosynthesis and transport for pneumococcal capsule inhibition. Since targeting capsule biosynthesis is a promising way for the eradication of the diverse and pathogenic pneumococcal strains, future work will identify small molecules similar to DFMO/AMXT 1501, which act in a serotype-independent manner.


Assuntos
Antineoplásicos , Eflornitina , Eflornitina/farmacologia , Ornitina Descarboxilase/metabolismo , Inibidores da Ornitina Descarboxilase , Poliaminas/metabolismo , Streptococcus pneumoniae/metabolismo
18.
Med Sci (Basel) ; 10(2)2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35736348

RESUMO

Ovarian cancer accounts for 3% of the total cancers in women, yet it is the fifth leading cause of cancer deaths among women. The BRCA1/2 germline and somatic mutations confer a deficiency of the homologous recombination (HR) repair pathway. Inhibitors of poly (ADP-ribose) polymerase (PARP), another important component of DNA damage repair, are somewhat effective in BRCA1/2 mutant tumors. However, ovarian cancers often reacquire functional BRCA and develop resistance to PARP inhibitors. Polyamines have been reported to facilitate the DNA damage repair functions of PARP. Given the elevated levels of polyamines in tumors, we hypothesized that treatment with the polyamine synthesis inhibitor, α-difluoromethylornithine (DFMO), may enhance ovarian tumor sensitivity to the PARP inhibitor, rucaparib. In HR-competent ovarian cancer cell lines with varying sensitivities to rucaparib, we show that co-treatment with DFMO increases the sensitivity of ovarian cancer cells to rucaparib. Immunofluorescence assays demonstrated that, in the presence of hydrogen peroxide-induced DNA damage, DFMO strongly inhibits PARylation, increases DNA damage accumulation, and reduces cell viability in both HR-competent and deficient cell lines. In vitro viability assays show that DFMO and rucaparib cotreatment significantly enhances the cytotoxicity of the chemotherapeutic agent, cisplatin. These results suggest that DFMO may be a useful adjunct chemotherapeutic to improve the anti-tumor efficacy of PARP inhibitors in treating ovarian cancer.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Inibidores de Poli(ADP-Ribose) Polimerases , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Eflornitina/farmacologia , Eflornitina/uso terapêutico , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/metabolismo , Poliaminas/farmacologia , Poliaminas/uso terapêutico
19.
Med Sci (Basel) ; 10(2)2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35736351

RESUMO

Polyamine biosynthesis is frequently dysregulated in cancers, and enhanced flux increases intracellular polyamines necessary for promoting cell growth, proliferation, and function. Polyamine depletion strategies demonstrate efficacy in reducing tumor growth and increasing survival in animal models of cancer; however, mechanistically, the cell-intrinsic and cell-extrinsic alterations within the tumor microenvironment underlying positive treatment outcomes are not well understood. Recently, investigators have demonstrated that co-targeting polyamine biosynthesis and transport alters the immune landscape. Although the polyamine synthesis-targeting drug 2-difluoromethylornithine (DFMO) is well tolerated in humans and is FDA-approved for African trypanosomiasis, its clinical benefit in treating established cancers has not yet been fully realized; however, combination therapies targeting compensatory mechanisms have shown tolerability and efficacy in animal models and are currently being tested in clinical trials. As demonstrated in pre-clinical models, polyamine blocking therapy (PBT) reduces immunosuppression in the tumor microenvironment and enhances the therapeutic efficacy of immune checkpoint blockade (ICB). Thus, DFMO may sensitize tumors to other therapeutics, including immunotherapies and chemotherapies.


Assuntos
Neoplasias , Poliaminas , Animais , Proliferação de Células , Eflornitina/farmacologia , Eflornitina/uso terapêutico , Neoplasias/tratamento farmacológico , Microambiente Tumoral
20.
Front Biosci (Landmark Ed) ; 27(6): 194, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35748270

RESUMO

BACKGROUND: Polyamines have been demonstrated to be beneficial to porcine intestinal development. Our previous study showed that putrescine mitigates intestinal atrophy in weanling piglets and suppresses inflammatory response in porcine intestinal epithelial cells, it is still unknown the role of spermidine in mediating putrescine function. OBJECTIVE: The current study aimed to investigate the effect of spermidine on the proliferation, migration, and inflammatory response in porcine intestinal epithelial cells (IPEC-J2 cell line). METHODS: The effects of spermidine on proliferation and migration of IPEC-J2 cells were measured. Difluoromethyl ornithine (DFMO) and diethylglyoxal bis (guanylhydrazone) (DEGBG) were used to block the production of putrescine and spermidine, respectively. A cell inflammation model was established with lipopolysaccharides (LPS) stimulation. Gene expression and protein abundance were determined by real-time quantitative PCR and western blotting, respectively. RESULT: Spermidine significantly enhanced cell proliferation in DFMO (or/and) DEGBG treated IPEC-J2 cells (p < 0.05). Pretreatment with putrescine restored cell growth inhibited by DFMO but did not prevent the decrease in cell proliferation caused by DEGBG (p > 0.05). Similarly, spermidine but not putrescine significantly elevated the rate of migration in DEGBG treated IPEC-J2 cells (p < 0.05). Spermidine deprivation by DEGBG dramatically enhanced mRNA abundance of pro-inflammatory cytokines IL-8, IL-6, and TNF-α (p < 0.05), and the addition of spermidine attenuated excessive expression of those inflammatory pro-inflammatory cytokines, moreover, spermidine but not putrescine suppressed the phosphorylation of NF-κB induced by DEGBG. Spermidine supplementation also significantly suppressed LPS-induced the expression of TNF-α. CONCLUSIONS: The present study highlights a novel insight that putrescine may be converted into spermidine to modulate cell proliferation, migration, and inflammatory response on porcine enterocytes.


Assuntos
Putrescina , Espermidina , Animais , Proliferação de Células , Citocinas , Eflornitina/farmacologia , Enterócitos/metabolismo , Lipopolissacarídeos/farmacologia , Putrescina/metabolismo , Putrescina/farmacologia , Espermidina/metabolismo , Espermidina/farmacologia , Suínos , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...