Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 4000, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506444

RESUMO

Is there only one electric eel species? For two and a half centuries since its description by Linnaeus, Electrophorus electricus has captivated humankind by its capacity to generate strong electric discharges. Despite the importance of Electrophorus in multiple fields of science, the possibility of additional species-level diversity in the genus, which could also reveal a hidden variety of substances and bioelectrogenic functions, has hitherto not been explored. Here, based on overwhelming patterns of genetic, morphological, and ecological data, we reject the hypothesis of a single species broadly distributed throughout Greater Amazonia. Our analyses readily identify three major lineages that diverged during the Miocene and Pliocene-two of which warrant recognition as new species. For one of the new species, we recorded a discharge of 860 V, well above 650 V previously cited for Electrophorus, making it the strongest living bioelectricity generator.


Assuntos
Órgão Elétrico/fisiologia , Electrophorus/classificação , Electrophorus/fisiologia , Animais , Ecossistema , Electrophorus/anatomia & histologia , Electrophorus/genética , Fenômenos Eletrofisiológicos , Filogenia , América do Sul , Especificidade da Espécie
2.
BMC Genomics ; 19(Suppl 9): 238, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30999844

RESUMO

BACKGROUND: With the rapid increase in genome sequencing projects for non-model organisms, numerous genome assemblies are currently in progress or available as drafts, but not made available as satisfactory, usable genomes. Data quality assessment of genome assemblies is gaining importance not only for people who perform the assembly/re-assembly processes, but also for those who attempt to use assemblies as maps in downstream analyses. Recent studies of the quality control, quality evaluation/ assessment of genome assemblies have focused on either quality control of reads before assemblies or evaluation of the assemblies with respect to their contiguity and correctness. However, correctness assessment depends on a reference and is not applicable for de novo assembly projects. Hence, development of methods providing both post-assembly and pre-assembly quality assessment reports for examining the quality/correctness of de novo assemblies and the input reads is worth studying. RESULTS: We present SQUAT, an efficient tool for both pre-assembly and post-assembly quality assessment of de novo genome assemblies. The pre-assembly module of SQUAT computes quality statistics of reads and presents the analysis in a well-designed interface to visualize the distribution of high- and poor-quality reads in a portable HTML report. The post-assembly module of SQUAT provides read mapping analytics in an HTML format. We categorized reads into several groups including uniquely mapped reads, multiply mapped, unmapped reads; for uniquely mapped reads, we further categorized them into perfectly matched, with substitutions, containing clips, and the others. We carefully defined the poorly mapped (PM) reads into several groups to prevent the underestimation of unmapped reads; indeed, a high PM% would be a sign of a poor assembly that requires researchers' attention for further examination or improvements before using the assembly. Finally, we evaluate SQUAT with six datasets, including the genome assemblies for eel, worm, mushroom, and three bacteria. The results show that SQUAT reports provide useful information with details for assessing the quality of assemblies and reads. AVAILABILITY: The SQUAT software with links to both its docker image and the on-line manual is freely available at https://github.com/luke831215/SQUAT .


Assuntos
Confiabilidade dos Dados , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Software , Agaricales/genética , Animais , Caenorhabditis elegans/genética , Mapeamento Cromossômico , Electrophorus/genética , Controle de Qualidade
3.
PLoS One ; 11(12): e0167589, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27907137

RESUMO

This study aimed to obtain the coding cDNA sequences of voltage-gated Na+ channel (scn) α-subunit (scna) and ß-subunit (scnb) isoforms from, and to quantify their transcript levels in, the main electric organ (EO), Hunter's EO, Sach's EO and the skeletal muscle (SM) of the electric eel, Electrophorus electricus, which can generate both high and low voltage electric organ discharges (EODs). The full coding sequences of two scna (scn4aa and scn4ab) and three scnb (scn1b, scn2b and scn4b) were identified for the first time (except scn4aa) in E. electricus. In adult fish, the scn4aa transcript level was the highest in the main EO and the lowest in the Sach's EO, indicating that it might play an important role in generating high voltage EODs. For scn4ab/Scn4ab, the transcript and protein levels were unexpectedly high in the EOs, with expression levels in the main EO and the Hunter's EO comparable to those of scn4aa. As the key domains affecting the properties of the channel were mostly conserved between Scn4aa and Scn4ab, Scn4ab might play a role in electrogenesis. Concerning scnb, the transcript level of scn4b was much higher than those of scn1b and scn2b in the EOs and the SM. While the transcript level of scn4b was the highest in the main EO, protein abundance of Scn4b was the highest in the SM. Taken together, it is unlikely that Scna could function independently to generate EODs in the EOs as previously suggested. It is probable that different combinations of Scn4aa/Scn4ab and various Scnb isoforms in the three EOs account for the differences in EODs produced in E. electricus. In general, the transcript levels of various scn isoforms in the EOs and the SM were much higher in adult than in juvenile, and the three EOs of the juvenile fish could be functionally indistinct.


Assuntos
Electrophorus/metabolismo , Isoformas de Proteínas/biossíntese , RNA Mensageiro/biossíntese , Canais de Sódio Disparados por Voltagem/biossíntese , Animais , Órgão Elétrico/enzimologia , Electrophorus/genética , Regulação Enzimológica da Expressão Gênica , Músculo Esquelético/enzimologia , Isoformas de Proteínas/genética , Canais de Sódio Disparados por Voltagem/genética
4.
Brain Behav Evol ; 88(3-4): 204-212, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27820927

RESUMO

Losses of cone opsin genes are noted in animals that are nocturnal or rely on senses other than vision. We investigated the cone opsin repertoire of night-active South American weakly electric fish. We obtained opsin gene sequences from genomic DNA of 3 gymnotiforms (Eigenmannia virescens, Sternopygus macrurus, Apteronotus albifrons) and the assembled genome of the electric eel (Electrophorus electricus). We identified genes for long-wavelength-sensitive (LWS) and medium-wavelength-sensitive cone opsins (RH2) and rod opsins (RH1). Neither of the 2 short-wavelength-sensitive cone opsin genes were found and are presumed lost. The fact that Electrophorus has a complete repertoire of extraretinal opsin genes and conservation of synteny with the zebrafish (Danio rerio) for genes flanking the 2 short-wavelength-sensitive opsin genes supports the supposition of gene loss. With microspectrophotometry and electroretinograms we observed absorption spectra consistent with RH1 and LWS but not RH2 opsins in the retinal photoreceptors of E. virescens. This profile of opsin genes and their retinal expression is identical to the gymnotiform's sister group, the catfish, which are also nocturnally active and bear ampullary electroreceptors, suggesting that this pattern likely occurred in the common ancestor of gymnotiforms and catfish. Finally, we noted an unusual N-terminal motif lacking a conserved glycosylation consensus site in the RH2 opsin of gymnotiforms, a catfish and a characin (Astyanax mexicanus). Mutations at this site influence rhodopsin trafficking in mammalian photoreceptors and cause retinitis pigmentosa. We speculate that this unusual N terminus may be related to the absence of the RH2 opsin in the cones of gymnotiforms and catfish.


Assuntos
Opsinas dos Cones/genética , Expressão Gênica/fisiologia , Gimnotiformes/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Animais , Electrophorus/genética , Electrophorus/fisiologia , Eletrorretinografia , Expressão Gênica/genética , Genoma , Gimnotiformes/genética , Microespectrofotometria , América do Sul
5.
BMC Genomics ; 16: 243, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25887781

RESUMO

BACKGROUND: With its unique ability to produce high-voltage electric discharges in excess of 600 volts, the South American strong voltage electric eel (Electrophorus electricus) has played an important role in the history of science. Remarkably little is understood about the molecular nature of its electric organs. RESULTS: We present an in-depth analysis of the genome of E. electricus, including the transcriptomes of eight mature tissues: brain, spinal cord, kidney, heart, skeletal muscle, Sachs' electric organ, main electric organ, and Hunter's electric organ. A gene set enrichment analysis based on gene ontology reveals enriched functions in all three electric organs related to transmembrane transport, androgen binding, and signaling. This study also represents the first analysis of miRNA in electric fish. It identified a number of miRNAs displaying electric organ-specific expression patterns, including one novel miRNA highly over-expressed in all three electric organs of E. electricus. All three electric organ tissues also express three conserved miRNAs that have been reported to inhibit muscle development in mammals, suggesting that miRNA-dependent regulation of gene expression might play an important role in specifying an electric organ identity from its muscle precursor. These miRNA data were supported using another complete miRNA profile from muscle and electric organ tissues of a second gymnotiform species. CONCLUSIONS: Our work on the E. electricus genome and eight tissue-specific gene expression profiles will greatly facilitate future research on determining the coding and regulatory sequences that specify the function, development, and evolution of electric organs. Moreover, these data and future studies will be informed by the first comprehensive analysis of miRNA expression in an electric fish presented here.


Assuntos
Órgão Elétrico/metabolismo , Electrophorus/metabolismo , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Transcriptoma , Animais , Electrophorus/genética , MicroRNAs/genética , América do Sul
6.
PLoS One ; 10(3): e0118352, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25793901

RESUMO

This study aimed to obtain the coding cDNA sequences of Na+/K+-ATPase α (nkaα) isoforms from, and to quantify their mRNA expression in, the skeletal muscle (SM), the main electric organ (EO), the Hunter's EO and the Sach's EO of the electric eel, Electrophorus electricus. Four nkaα isoforms (nkaα1c1, nkaα1c2, nkaα2 and nkaα3) were obtained from the SM and the EOs of E. electricus. Based on mRNA expression levels, the major nkaα expressed in the SM and the three EOs of juvenile and adult E. electricus were nkaα1c1 and nkaα2, respectively. Molecular characterization of the deduced Nkaα1c1 and Nkaα2 sequences indicates that they probably have different affinities to Na+ and K+. Western blotting demonstrated that the protein abundance of Nkaα was barely detectable in the SM, but strongly detected in the main and Hunter's EOs and weakly in the Sach's EO of juvenile and adult E. electricus. These results corroborate the fact that the main EO and Hunter's EO have high densities of Na+ channels and produce high voltage discharges while the Sach's EO produces low voltage discharges. More importantly, there were significant differences in kinetic properties of Nka among the three EOs of juvenile E. electricus. The highest and lowest Vmax of Nka were detected in the main EO and the Sach's EO, respectively, with the Hunter's EO having a Vmax value intermediate between the two, indicating that the metabolic costs of EO discharge could be the highest in the main EO. Furthermore, the Nka from the main EO had the lowest Km (or highest affinity) for Na+ and K+ among the three EOs, suggesting that the Nka of the main EO was more effective than those of the other two EOs in maintaining intracellular Na+ and K+ homeostasis and in clearing extracellular K+ after EO discharge.


Assuntos
Órgão Elétrico/enzimologia , Electrophorus/metabolismo , Regulação Enzimológica da Expressão Gênica , Músculo Esquelético/enzimologia , ATPase Trocadora de Sódio-Potássio/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Electrophorus/genética , Cinética , Dados de Sequência Molecular , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo
7.
Zebrafish ; 12(6): 440-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25695141

RESUMO

The electric eel, Electrophorus electricus, the only species of its genus, has a wide distribution in the Amazon and Orinoco drainages. There is little previous information regarding the population variation in E. electricus, with only basic karyotype data from two populations (Amazon and Araguaia Rivers). Karyotypic description and analysis of CO1 barcode sequences were performed for E. electricus from three localities (Caripetuba, Irituia, and Maicuru Rivers). All samples share the 2n=52 (42 m-sm [meta-submetacentric] +10 st-a [subtelo-acrocentric]) with previously studied material. However, the Maicuru River samples differ from the other populations, as they have B chromosomes. The distribution of noncentromeric constitutive heterochromatin between samples is relatively divergent. All samples analyzed present the Nucleolar Organizer Region (NOR) located in a single chromosome pair. In the samples from Caripetuba, NORs were colocalized with a heterochromatin block, whereas the NOR was flanked by heterochromatin in Maicuru River samples and pericentromeric heterochromatin adjacent NOR was found in Irituia River samples. Alignment of CO1 barcode sequences indicated no significant differentiation between the samples analyzed. Results suggest that karyotypic differences between samples from the Caripetuba, Irituia, and Amazon Rivers represent chromosome polymorphisms. However, differences between the samples from the Maicuru and Araguaia Rivers and the remaining populations could represent interpopulation differentiation, which has not had time to accrue divergence at the CO1 gene level.


Assuntos
Distribuição Animal , Electrophorus/genética , Cariótipo , Animais , Brasil , Código de Barras de DNA Taxonômico , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Electrophorus/fisiologia , Variação Genética , Região Organizadora do Nucléolo
9.
Science ; 344(6191): 1522-5, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24970089

RESUMO

Little is known about the genetic basis of convergent traits that originate repeatedly over broad taxonomic scales. The myogenic electric organ has evolved six times in fishes to produce electric fields used in communication, navigation, predation, or defense. We have examined the genomic basis of the convergent anatomical and physiological origins of these organs by assembling the genome of the electric eel (Electrophorus electricus) and sequencing electric organ and skeletal muscle transcriptomes from three lineages that have independently evolved electric organs. Our results indicate that, despite millions of years of evolution and large differences in the morphology of electric organ cells, independent lineages have leveraged similar transcription factors and developmental and cellular pathways in the evolution of electric organs.


Assuntos
Evolução Biológica , Peixe Elétrico/genética , Órgão Elétrico/citologia , Órgão Elétrico/fisiologia , Electrophorus/anatomia & histologia , Electrophorus/genética , Animais , Peixes-Gato/anatomia & histologia , Peixes-Gato/genética , Peixes-Gato/fisiologia , Diferenciação Celular , Peixe Elétrico/anatomia & histologia , Peixe Elétrico/fisiologia , Órgão Elétrico/anatomia & histologia , Electrophorus/fisiologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Filogenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
10.
Genet. mol. biol ; 31(1,suppl): 227-230, 2008. ilus
Artigo em Inglês | LILACS | ID: lil-484590

RESUMO

A karyotype analysis of the electric eel, Electrophorus electricus (Teleostei, Gymnotiformes), a strongly electric fish from northern South America, is presented. Two female specimens were analyzed, one from the Amazon River and one from the Araguaia River. The specimens had a chromosomal number of 2n = 52 (42M-SM + 10A). C-bands were present in a centromeric and pericentromeric position on part of the chromosomes; some interstitial C-bands were also present. Heteromorphic nucleolus organizer regions (NORs) were detected in two chromosome pairs of the specimen from the Amazon River. The chromosome number and karyotype characteristics are similar to those of other Gymnotidae species. The genera Electrophorus and Gymnotus are positioned as the basal lineages in the Gymnotiformes phylogeny.


Assuntos
Animais , Órgão Elétrico , Electrophorus/genética , Região Organizadora do Nucléolo , Ecossistema Amazônico , Brasil , Cariotipagem
11.
FEBS J ; 274(7): 1849-61, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17355286

RESUMO

The poorly known mechanism of inhibition of cholinesterases by inorganic mercury (HgCl2) has been studied with a view to using these enzymes as biomarkers or as biological components of biosensors to survey polluted areas. The inhibition of a variety of cholinesterases by HgCl2 was investigated by kinetic studies, X-ray crystallography, and dynamic light scattering. Our results show that when a free sensitive sulfhydryl group is present in the enzyme, as in Torpedo californica acetylcholinesterase, inhibition is irreversible and follows pseudo-first-order kinetics that are completed within 1 h in the micromolar range. When the free sulfhydryl group is not sensitive to mercury (Drosophila melanogaster acetylcholinesterase and human butyrylcholinesterase) or is otherwise absent (Electrophorus electricus acetylcholinesterase), then inhibition occurs in the millimolar range. Inhibition follows a slow binding model, with successive binding of two mercury ions to the enzyme surface. Binding of mercury ions has several consequences: reversible inhibition, enzyme denaturation, and protein aggregation, protecting the enzyme from denaturation. Mercury-induced inactivation of cholinesterases is thus a rather complex process. Our results indicate that among the various cholinesterases that we have studied, only Torpedo californica acetylcholinesterase is suitable for mercury detection using biosensors, and that a careful study of cholinesterase inhibition in a species is a prerequisite before using it as a biomarker to survey mercury in the environment.


Assuntos
Inibidores da Colinesterase/química , Colinesterases/química , Cloreto de Mercúrio/química , Acetilcolinesterase/química , Acetilcolinesterase/genética , Animais , Sítios de Ligação , Butirilcolinesterase/química , Butirilcolinesterase/genética , Colinesterases/genética , Cristalografia por Raios X , Cisteína/química , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Electrophorus/genética , Electrophorus/metabolismo , Humanos , Cinética , Luz , Modelos Químicos , Modelos Moleculares , Nitrobenzenos/química , Fenilacetatos/química , Conformação Proteica , Proteínas Recombinantes/química , Espalhamento de Radiação , Torpedo/genética , Torpedo/metabolismo
12.
J Membr Biol ; 196(1): 1-8, 2003 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-14724751

RESUMO

Electrocytes from the electric organ of Electrophorus electricus exhibited sodium action potentials that have been proposed to be repolarized by leak currents and not by outward voltage-gated potassium currents. However, patch-clamp recordings have suggested that electrocytes may contain a very low density of voltage-gated K(+) channels. We report here the cloning of a K(+) channel from an eel electric organ cDNA library, which, when expressed in mammalian tissue culture cells, displayed delayed-rectifier K(+) channel characteristics. The amino-acid sequence of the eel K(+) channel had the highest identity to Kv1.1 potassium channels. However, different important functional regions of eel Kv1.1 had higher amino-acid identity to other Kv1 members, for example, the eel Kv1.1 S4-S5 region was identical to Kv1.5 and Kv1.6. Northern blot analysis indicated that eel Kv1.1 mRNA was expressed at appreciable levels in the electric organ but it was not detected in eel brain, muscle, or cardiac tissue. Because electrocytes do not express robust outward voltage-gated potassium currents we speculate that eel Kv1.1 channels are chronically inhibited in the electric organ and may be functionally recruited by an unknown mechanism.


Assuntos
Órgão Elétrico/química , Órgão Elétrico/fisiologia , Electrophorus/metabolismo , Potenciais da Membrana/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/química , Canais de Potássio/fisiologia , Potássio/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Clonagem Molecular , Cricetinae , Cricetulus , Electrophorus/genética , Canal de Potássio Kv1.1 , Dados de Sequência Molecular , Especificidade de Órgãos , Canais de Potássio/genética , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Distribuição Tecidual , Xenopus laevis
13.
J Biochem ; 108(6): 947-53, 1990 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-2089041

RESUMO

Nicotinic acetylcholine receptor was synthesized in Xenopus oocytes after injection of the mRNA purified from Electrophorus electricus electroplax. Nicotine, succinylcholine, and decamethonium (agonist)-elicited membrane currents in the injected oocytes were measured electrophysiologically by the voltage-clamping method. The following four different measurements were made to establish the relationship between the agonist concentration and the membrane current: 1) the agonist-induced membrane current before desensitization, 2) the agonist-induced membrane current after desensitization equilibrium, 3) the fraction of the active form of the receptors after desensitization equilibrium, 4) the rate of recovery of desensitized receptors upon removal of the agonist. These results were analyzed on the basis of the minimal model proposed from receptor-mediated ion translocation measurements. The equilibrium and rate constants of the model were evaluated for nicotine, succinylcholine, and decamethonium, and could explain the observed electrical responses in the injected oocyte, i.e. the characteristics of the receptor response caused by these agonists.


Assuntos
Compostos de Decametônio/metabolismo , Nicotina/metabolismo , Oócitos/metabolismo , RNA Mensageiro/fisiologia , Receptores Colinérgicos/metabolismo , Succinilcolina/metabolismo , Animais , Electrophorus/genética , Potenciais da Membrana , Modelos Neurológicos , Receptores Colinérgicos/genética , Xenopus
14.
Science ; 237(4816): 744-9, 1987 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-2441469

RESUMO

The deduced amino acid sequence of a Drosophila gene isolated with a vertebrate sodium channel complementary DNA probe revealed an organization virtually identical to the vertebrate sodium channel protein; four homologous domains containing all putative membrane-spanning regions are repeated in tandem with connecting linkers of various sizes. All areas of the protein presumed to be critical for channel function show high evolutionary conservation. These include those proposed to function in voltage-sensitive gating, inactivation, and ion selectivity. All 24 putative gating charges of the vertebrate protein are in identical positions in the Drosophila gene. Ten introns interrupt the coding regions of the four homology units; introns with positions conserved among homology units bracket a region hypothesized to be the selectivity filter for the channel. The Drosophila gene maps to the right arm of the second chromosome in region 60D-E. This position does not coincide with any known mutations that confer behavioral phenotypes, but is close to the seizure locus (60A-B), which has been hypothesized to code for a voltage-sensitive sodium channel.


Assuntos
Drosophila/genética , Canais Iônicos , Proteínas de Membrana/genética , Sódio/metabolismo , Sequência de Aminoácidos , Animais , Evolução Biológica , DNA/genética , Enzimas de Restrição do DNA , Drosophila melanogaster/genética , Electrophorus/genética , Éxons , Regulação da Expressão Gênica , Íntrons , RNA Mensageiro/genética , Homologia de Sequência do Ácido Nucleico
15.
Science ; 237(4816): 770-5, 1987 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-2441471

RESUMO

Potassium currents are crucial for the repolarization of electrically excitable membranes, a role that makes potassium channels a target for physiological modifications that alter synaptic efficacy. The Shaker locus of Drosophila is thought to encode a K+ channel. The sequence of two complementary DNA clones from the Shaker locus is reported here. The sequence predicts an integral membrane protein of 70,200 daltons containing seven potential membrane-spanning sequences. In addition, the predicted protein is homologous to the vertebrate sodium channel in a region previously proposed to be involved in the voltage-dependent activation of the Na+ channel. These results support the hypothesis that Shaker encodes a structural component of a voltage-dependent K+ channel and suggest a conserved mechanism for voltage activation.


Assuntos
DNA/genética , Drosophila melanogaster/genética , Canais Iônicos , Proteínas de Membrana/genética , Potássio/metabolismo , Animais , Sequência de Bases , Códon , Electrophorus/genética , Genes , Mutação , Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...