Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
ACS Chem Biol ; 19(5): 1056-1065, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38620063

RESUMO

Lanmodulins are small, ∼110-residue proteins with four EF-hand motifs that demonstrate a picomolar affinity for lanthanide ions, making them efficient in the recovery and separation of these technologically important metals. In this study, we examine the thermodynamic and structural complexities of lanthanide ion binding to a 41-residue domain, EF 2-3, that constitutes the two highest-affinity metal-binding sites in the lanmodulin protein from Methylorubrum extorquens. Using a combination of circular dichroism (CD) spectroscopy, isothermal titration calorimetry (ITC), two-dimensional infrared (2D IR) spectroscopy, and molecular dynamics (MD) simulations, we characterize the metal binding capabilities of EF 2-3. ITC demonstrates that binding occurs between peptide and lanthanides with conditional dissociation constants (Kd) in the range 20-30 µM, with no significant differences in the Kd values for La3+, Eu3+, and Tb3+ at pH 7.4. In addition, CD spectroscopy suggests that only one binding site of EF 2-3 undergoes a significant conformational change in the presence of lanthanides. 2D IR spectroscopy demonstrates the presence of both mono- and bidentate binding configurations in EF 2-3 with all three lanthanides. MD simulations, supported by Eu3+ luminescence measurements, explore these results, suggesting a competition between water-lanthanide and carboxylate-lanthanide interactions in the EF 2-3 domain. These results underscore the role of the core helical bundle of the protein architecture in influencing binding affinities and communication between the metal-binding sites in the full-length protein.


Assuntos
Elementos da Série dos Lantanídeos , Simulação de Dinâmica Molecular , Espectrofotometria Infravermelho , Elementos da Série dos Lantanídeos/química , Elementos da Série dos Lantanídeos/metabolismo , Termodinâmica , Sítios de Ligação , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínios Proteicos , Dicroísmo Circular , Ligação Proteica , Metaloproteínas
2.
BMC Biol ; 22(1): 41, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369453

RESUMO

BACKGROUND: Prior to soil formation, phosphate liberated by rock weathering is often sequestered into highly insoluble lanthanide phosphate minerals. Dissolution of these minerals releases phosphate and lanthanides to the biosphere. Currently, the microorganisms involved in phosphate mineral dissolution and the role of lanthanides in microbial metabolism are poorly understood. RESULTS: Although there have been many studies of soil microbiology, very little research has investigated microbiomes of weathered rock. Here, we sampled weathered granite and associated soil to identify the zones of lanthanide phosphate mineral solubilisation and genomically define the organisms implicated in lanthanide utilisation. We reconstructed 136 genomes from 11 bacterial phyla and found that gene clusters implicated in lanthanide-based metabolism of methanol (primarily xoxF3 and xoxF5) are surprisingly common in microbial communities in moderately weathered granite. Notably, xoxF3 systems were found in Verrucomicrobia for the first time, and in Acidobacteria, Gemmatimonadetes and Alphaproteobacteria. The xoxF-containing gene clusters are shared by diverse Acidobacteria and Gemmatimonadetes, and include conserved hypothetical proteins and transporters not associated with the few well studied xoxF systems. Given that siderophore-like molecules that strongly bind lanthanides may be required to solubilise lanthanide phosphates, it is notable that candidate metallophore biosynthesis systems were most prevalent in bacteria in moderately weathered rock, especially in Acidobacteria with lanthanide-based systems. CONCLUSIONS: Phosphate mineral dissolution, putative metallophore production and lanthanide utilisation by enzymes involved in methanol oxidation linked to carbonic acid production co-occur in the zone of moderate granite weathering. In combination, these microbial processes likely accelerate the conversion of granitic rock to soil.


Assuntos
Elementos da Série dos Lantanídeos , Lantânio , Dióxido de Silício , Elementos da Série dos Lantanídeos/metabolismo , Metanol , Solo , Bactérias/genética , Fosfatos/metabolismo , Minerais/metabolismo
3.
ACS Synth Biol ; 13(3): 958-962, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377571

RESUMO

Lanthanides, a series of 15 f-block elements, are crucial in modern technology, and their purification by conventional chemical means comes at a significant environmental cost. Synthetic biology offers promising solutions. However, progress in developing synthetic biology approaches is bottlenecked because it is challenging to measure lanthanide binding with current biochemical tools. Here we introduce LanTERN, a lanthanide-responsive fluorescent protein. LanTERN was designed based on GCaMP, a genetically encoded calcium indicator that couples the ion binding of four EF hand motifs to increased GFP fluorescence. We engineered eight mutations across the parent construct's four EF hand motifs to switch specificity from calcium to lanthanides. The resulting protein, LanTERN, directly converts the binding of 10 measured lanthanides to 14-fold or greater increased fluorescence. LanTERN development opens new avenues for creating improved lanthanide-binding proteins and biosensing systems.


Assuntos
Elementos da Série dos Lantanídeos , Elementos da Série dos Lantanídeos/metabolismo , Cálcio/metabolismo , Proteínas
4.
Microbes Environ ; 38(4)2023.
Artigo em Inglês | MEDLINE | ID: mdl-38092408

RESUMO

The effects of soluble and insoluble lanthanides on gene expression in Methylococcus capsulatus Bath were investigated. Genes for lanthanide-containing methanol dehydrogenases (XoxF-MDHs) and their calcium-containing counterparts (MxaFI-MDHs) were up- and down-regulated, respectively, by supplementation with soluble lanthanide chlorides, indicating that M. capsulatus has the "lanthanide switch" observed in other methanotrophs. Insoluble lanthanide oxides also induced the lanthanide switch and were dissolved by the spent medium of M. capsulatus, suggesting the presence of lanthanide-chelating compounds. A transcriptome ana-lysis indicated that a gene cluster for the synthesis of an enterobactin-like metal chelator contributed to the dissolution of insoluble lanthanides.


Assuntos
Elementos da Série dos Lantanídeos , Methylococcus capsulatus , Elementos da Série dos Lantanídeos/metabolismo , Metanol/metabolismo , Metano/metabolismo , Methylococcus capsulatus/genética , Methylococcus capsulatus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
5.
Microbiol Spectr ; 11(6): e0086723, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37909735

RESUMO

IMPORTANCE: Since its discovery, Ln-dependent metabolism in bacteria attracted a lot of attention due to its bio-metallurgical application potential regarding Ln recycling and circular economy. The physiological role of Ln is mostly studied dependent on presence and absence. Comparisons of how different (utilizable) Ln affect metabolism have rarely been done. We noticed unexpectedly pronounced changes in gene expression caused by different Ln supplementation. Our research suggests that strain RH AL1 distinguishes different Ln elements and that the effect of Ln reaches into many aspects of metabolism, for instance, chemotaxis, motility, and polyhydroxyalkanoate metabolism. Our findings regarding Ln accumulation suggest a distinction between individual Ln elements and provide insights relating to intracellular Ln homeostasis. Understanding comprehensively how microbes distinguish and handle different Ln elements is key for turning knowledge into application regarding Ln-centered biometallurgy.


Assuntos
Elementos da Série dos Lantanídeos , Elementos da Série dos Lantanídeos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Expressão Gênica
6.
Environ Sci Technol ; 57(48): 19902-19911, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37983372

RESUMO

As global demands for rare-earth elements (REEs) continue to grow, the biological recovery of REEs has been explored as a promising strategy, driven by potential economic and environmental benefits. It is known that calcium-binding domains, including helix-loop-helix EF hands and repeats-in-toxin (RTX) domains, can bind lanthanide ions due to their similar ionic radii and coordination preference to calcium. Recently, the lanmodulin protein from Methylorubrum extorquens was reported, which has evolved a high affinity for lanthanide ions over calcium. Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophile, which has been explored for use in bioleaching for metal recovery. In this report, A. ferrooxidans was engineered for the recombinant intracellular expression of lanmodulin. In addition, an RTX domain from the adenylate cyclase protein of Bordetella pertussis, which has previously been shown to bind Tb3+, was expressed periplasmically via fusion with the endogenous rusticyanin protein. The binding of lanthanides (Tb3+, Pr3+, Nd3+, and La3+) was improved by up to 4-fold for cells expressing lanmodulin and 13-fold for cells expressing the RTX domains in both pure and mixed metal solutions. Interestingly, the presence of lanthanides in the growth media enhanced protein expression, likely by influencing protein stability. Both engineered cell lines exhibited higher recoveries and selectivities for four tested lanthanides (Tb3+, Pr3+, Nd3+, and La3+) over non-REEs (Fe2+ and Co2+) in a synthetic magnet leachate, demonstrating the potential of these new strains for future REE reclamation and recycling applications.


Assuntos
Acidithiobacillus , Elementos da Série dos Lantanídeos , Metais Terras Raras , Cálcio/metabolismo , Acidithiobacillus/genética , Acidithiobacillus/química , Acidithiobacillus/metabolismo , Elementos da Série dos Lantanídeos/metabolismo , Íons/metabolismo
7.
Angew Chem Int Ed Engl ; 62(31): e202303669, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37074219

RESUMO

Certain f-block elements-the lanthanides-have biological relevance in the context of methylotrophic bacteria. The respective strains incorporate these 4 f elements into the active site of one of their key metabolic enzymes, a lanthanide-dependent methanol dehydrogenase. In this study, we investigated whether actinides, the radioactive 5 f elements, can replace the essential 4 f elements in lanthanide-dependent bacterial metabolism. Growth studies with Methylacidiphilum fumariolicum SolV and the Methylobacterium extorquens AM1 ΔmxaF mutant demonstrate that americium and curium support growth in the absence of lanthanides. Moreover, strain SolV favors these actinides over late lanthanides when presented with a mixture of equal amounts of lanthanides together with americium and curium. Our combined in vivo and in vitro results establish that methylotrophic bacteria can utilize actinides instead of lanthanides to sustain their one-carbon metabolism if they possess the correct size and a +III oxidation state.


Assuntos
Elementos da Série dos Lantanídeos , Methylobacterium extorquens , Elementos da Série dos Lantanídeos/metabolismo , Amerício , Cúrio , Metanol/metabolismo , Methylobacterium extorquens/metabolismo , Proteínas de Bactérias/metabolismo
8.
Appl Environ Microbiol ; 89(1): e0141322, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36645275

RESUMO

Two methanol dehydrogenases (MDHs), MxaFI and XoxF, have been characterized in methylotrophic and methanotrophic bacteria. MxaFI contains a calcium ion in its active site, whereas XoxF contains a lanthanide ion. Importantly, the expression of MxaFI and XoxF is inversely regulated by lanthanide bioavailability, i.e., the "lanthanide switch." To reveal the genetic and environmental factors affecting the lanthanide switch, we focused on two Methylosinus trichosporium OB3b mutants isolated during routine cultivation. In these mutants, MxaF was constitutively expressed, but lanthanide-dependent XoxF1 was not, even in the presence of 25 µM cerium ions, which is sufficient for XoxF expression in the wild type. Genotyping showed that both mutants harbored a loss-of-function mutation in the CQW49_RS02145 gene, which encodes a TonB-dependent receptor. Gene disruption and complementation experiments demonstrated that CQW49_RS02145 was required for XoxF1 expression in the presence of 25 µM cerium ions. Phylogenetic analysis indicated that CQW49_RS02145 was homologous to the Methylorubrum extorquens AM1 lanthanide transporter gene (lutH). These findings suggest that CQW49_RS02145 is involved in lanthanide uptake across the outer membrane. Furthermore, we demonstrated that supplementation with cerium and glycerol caused severe growth arrest in the wild type. CQW49_RS02145 underwent adaptive laboratory evolution in the presence of cerium and glycerol ions, resulting in a mutation that partially mitigated the growth arrest. This finding implies that loss-of-function mutations in CQW49_RS02145 can be attributed to residual glycerol from the frozen stock. IMPORTANCE Lanthanides are widely used in many industrial applications, including catalysts, magnets, and polishing. Recently, lanthanide-dependent metabolism was characterized in methane-utilizing bacteria. Despite the global demand for lanthanides, few studies have investigated the mechanism of lanthanide uptake by these bacteria. In this study, we identify a lanthanide transporter in Methylosinus trichosporium OB3b and indicate the potential interaction between intracellular lanthanide and glycerol. Understanding the genetic and environmental factors affecting lanthanide uptake should not only help improve the use of lanthanides for the bioconversion of methane into valuable products like methanol but also be of value for developing biomining to extract lanthanides under neutral conditions.


Assuntos
Oxirredutases do Álcool , Elementos da Série dos Lantanídeos , Methylosinus trichosporium , Oxirredutases do Álcool/metabolismo , Cério/metabolismo , Glicerol , Elementos da Série dos Lantanídeos/metabolismo , Proteínas de Membrana Transportadoras/genética , Metano/metabolismo , Metanol/metabolismo , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Filogenia
9.
Antonie Van Leeuwenhoek ; 116(5): 393-413, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36719530

RESUMO

The impact of periplasmic localisation on the functioning of the XoxF protein was evaluated in the well-studied dichloromethane-utilising methylotroph Methylorubrum extorquens DM4, which harbors only one paralogue of the xoxF gene. It was found that the cytoplasmic targeting of XoxF by expression of the corresponding gene without the sequence encoding the N-terminal signal peptide does not impair the activation and lanthanide-dependent regulation of the MxaFI-methanol dehydrogenase genes. Analysis of the viability of ΔxoxF cells complemented with the full-length and truncated xoxF gene also showed that the expression of cytoplasmically targeted XoxF even increases the resistance to acids. These results contradict the proposed function of the XoxF protein as an extracytoplasmic signal sensor. At the same time, the observed dynamics of growth with methanol, as well as with dichloromethane of strains expressing cytoplasmic-targeted XoxF, indicate the probable enzymatic activity of lanthanide-dependent methanol dehydrogenase in this compartment. Herewith, the only available substrate for this enzyme in cells growing with dichloromethane was formaldehyde, which is produced during the primary metabolism of the mentioned halogenated toxicant directly in the cytosol. These findings suggest that the maturation of XoxF-methanol dehydrogenase may occur already in the cytoplasm, while the factors changing affinity of this enzyme for formaldehyde are apparently absent there. Together with the demonstrated functioning of an enhancer-like upstream activating sequence in the promoter region of the xoxF gene in M. extorquens DM4, the obtained information enriches our understanding of the regulation, synthesis and role of the XoxF protein.


Assuntos
Elementos da Série dos Lantanídeos , Methylobacterium extorquens , Citosol , Cloreto de Metileno/metabolismo , Methylobacterium extorquens/genética , Methylobacterium extorquens/metabolismo , Metanol/metabolismo , Proteínas de Bactérias/metabolismo , Elementos da Série dos Lantanídeos/metabolismo , Formaldeído/metabolismo , Oxirredutases do Álcool/metabolismo
10.
Appl Microbiol Biotechnol ; 106(23): 7879-7890, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36303083

RESUMO

Methanotrophs are bacteria capable on growing on methane as their sole carbon source. They may provide a promising route for upgrading natural gas into more valuable fuels and chemicals. However, natural gas may contain significant quantities of hydrogen sulfide. Little is known about how hydrogen sulfide affects the growth and physiology of methanotrophs aside from a few studies showing that it is inhibitory. This study investigated how hydrogen sulfide affects the growth and physiology of the model methanotroph, Methylococcus capsulatus Bath. Growth studies demonstrated that hydrogen sulfide inhibits the growth of M. capsulatus Bath when the concentration exceeds 0.5% (v/v). To better understand how hydrogen sulfide is inhibiting the growth of M. capsulatus Bath, transcription and metabolite concentrations were profiled using RNA sequencing and gas chromatography-mass spectrometry, respectively. Our analysis of the differentially expressed genes and changes in metabolite concentrations suggests that hydrogen sulfide inhibits cellular respiration. The cells respond to sulfide stress in part by increasing the rate of sulfide oxidation and by increasing the expression of sulfide quinone reductase and a putative persulfide dioxygenase. In addition, they reduce the expression of the native calcium-dependent methanol dehydrogenase and increase the expression of XoxF, a lanthanide-dependent methanol dehydrogenase. While the reason of this switch in unknown, XoxF has previously been shown to be induced by lanthanides or nitric oxide in methanotrophs. Collectively, these results further our understanding of how methanotrophs respond to sulfide stress and may aid in the engineering of strains resistant to hydrogen sulfide. KEY POINTS: • Hydrogen sulfide inhibits growth of Methylococcus capsulatus Bath • Sulfide stress inhibits cellular respiration • Sulfide stress induces XoxF, a lanthanide-dependent methanol dehydrogenase.


Assuntos
Sulfeto de Hidrogênio , Elementos da Série dos Lantanídeos , Methylococcus capsulatus , Methylococcus capsulatus/genética , Methylococcus capsulatus/metabolismo , Sulfeto de Hidrogênio/metabolismo , Gás Natural , Proteínas de Bactérias/metabolismo , Metano/metabolismo , Elementos da Série dos Lantanídeos/metabolismo , Análise de Sistemas , Sulfetos/farmacologia , Sulfetos/metabolismo , Oxigenases/metabolismo
11.
Adv Microb Physiol ; 81: 1-24, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36167440

RESUMO

Because of their use in high technologies like computers, smartphones and renewable energy applications, lanthanides (belonging to the group of rare earth elements) are essential for our daily lives. A range of applications in medicine and biochemical research made use of their photo-physical properties. The discovery of a biological role for lanthanides has boosted research in this new field. Several methanotrophs and methylotrophs are strictly dependent on the presence of lanthanides in the growth medium while others show a regulatory response. After the first demonstration of a lanthanide in the active site of the XoxF-type pyrroloquinoline quinone methanol dehydrogenases, follow-up studies showed the same for other pyrroloquinoline quinone-containing enzymes. In addition, research focused on the effect of lanthanides on regulation of gene expression and uptake mechanism into bacterial cells. This review briefly describes the discovery of the role of lanthanides in biology and focuses on open questions in biological lanthanide research and possible application of lanthanide-containing bacteria and enzymes in recovery of these special elements.


Assuntos
Elementos da Série dos Lantanídeos , Metais Terras Raras , Biologia , Elementos da Série dos Lantanídeos/metabolismo , Metais Terras Raras/metabolismo , Metanol/metabolismo , Cofator PQQ
12.
Int J Mol Sci ; 23(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35409305

RESUMO

This study investigated the occurrence and diversity of proteobacterial XoxF-type methanol dehydrogenases (MDHs) in the microbial community that inhabits a fossil organic matter- and sedimentary lanthanide (Ln3+)-rich underground mine environment using a metagenomic and metaproteomic approach. A total of 8 XoxF-encoding genes (XoxF-EGs) and 14 protein sequences matching XoxF were identified. XoxF-type MDHs were produced by Alpha-, Beta-, and Gammaproteobacteria represented by the four orders Methylococcales, Nitrosomonadales, Rhizobiales, and Xanthomonadales. The highest number of XoxF-EG- and XoxF-matching protein sequences were affiliated with Nitrosomonadales and Rhizobiales, respectively. Among the identified XoxF-EGs, two belonged to the XoxF1 clade, five to the XoxF4 clade, and one to the XoxF5 clade, while seven of the identified XoxF proteins belonged to the XoxF1 clade, four to the XoxF4 clade, and three to the XoxF5 clade. Moreover, the accumulation of light lanthanides and the presence of methanol in the microbial mat were confirmed. This study is the first to show the occurrence of XoxF in the metagenome and metaproteome of a deep microbial community colonizing a fossil organic matter- and light lanthanide-rich sedimentary environment. The presented results broaden our knowledge of the ecology of XoxF-producing bacteria as well as of the distribution and diversity of these enzymes in the natural environment.


Assuntos
Alphaproteobacteria , Gammaproteobacteria , Elementos da Série dos Lantanídeos , Oxirredutases do Álcool/metabolismo , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Elementos da Série dos Lantanídeos/metabolismo , Metanol/metabolismo , Proteobactérias/genética , Proteobactérias/metabolismo
13.
J Am Chem Soc ; 144(2): 854-861, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34985894

RESUMO

Rare-earth elements, which include the lanthanide series, are key components of many clean energy technologies, including wind turbines and photovoltaics. Because most of these 4f metals are at high risk of supply chain disruption, the development of new recovery technologies is necessary to avoid future shortages, which may impact renewable energy production. This paper reports the synthesis of a non-natural biogenic material as a potential platform for bioinspired lanthanide extraction. The biogenic material takes advantage of the atomically precise structure of a 2D crystalline protein lattice with the high lanthanide binding affinity of hydroxypyridinonate chelators. Luminescence titration data demonstrated that the engineered protein layers have affinities for all tested lanthanides in the micromolar-range (dissociation constants) and a higher binding affinity for the lanthanide ions with a smaller ionic radius. Furthermore, competitive titrations confirmed the higher selectivity (up to several orders of magnitude) of the biogenic material for lanthanides compared to other cations commonly found in f-element sources. Lastly, the functionalized protein layers could be reused in several cycles by desorbing the bound metal with citrate solutions. Taken together, these results highlight biogenic materials as promising bioadsorption platforms for the selective binding of lanthanides, with potential applications in the recovery of these critical elements from waste.


Assuntos
Quelantes/química , Metais Terras Raras/análise , Proteínas/química , Concentração de Íons de Hidrogênio , Elementos da Série dos Lantanídeos/análise , Elementos da Série dos Lantanídeos/isolamento & purificação , Elementos da Série dos Lantanídeos/metabolismo , Ligantes , Metais Terras Raras/isolamento & purificação , Metais Terras Raras/metabolismo , Proteínas/metabolismo , Piridinas/química , Espectrofotometria
14.
Angew Chem Int Ed Engl ; 60(46): 24473-24477, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34495573

RESUMO

Herein we report unprecedented location-dependent, size-selective binding to designed lanthanide (Ln3+ ) sites within miniature protein coiled coil scaffolds. Not only do these engineered sites display unusual Ln3+ selectivity for moderately large Ln3+ ions (Nd to Tb), for the first time we demonstrate that selectivity can be location-dependent and can be programmed into the sequence. A 1 nm linear translation of the binding site towards the N-terminus can convert a selective site into a highly promiscuous one. An X-ray crystal structure, the first of a lanthanide binding site within a coiled coil to be reported, coupled with CD studies, reveal the existence of an optimal radius that likely stems from the structural constraints of the coiled coil scaffold. To the best of our knowledge this is the first report of location-dependent metal selectivity within a coiled coil scaffold, as well as the first report of location-dependent Ln3+ selectivity within a protein.


Assuntos
Elementos da Série dos Lantanídeos/química , Peptídeos/química , Sequência de Aminoácidos , Sítios de Ligação , Íons/química , Elementos da Série dos Lantanídeos/metabolismo , Modelos Moleculares , Peptídeos/metabolismo , Conformação Proteica em alfa-Hélice
15.
Chem Commun (Camb) ; 57(56): 6851-6862, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34151325

RESUMO

For much of their history, lanthanides were thought to be biologically inert. However, the last decade has seen the discovery and development of the field of native lanthanide biochemistry. Lanthanides exhibit a variety of interesting photophysical properties from which many useful applications derive. The development of effective functional lanthanide complexes requires control of their coordination sphere; something proteins manage very effectively through their 3D metal-binding sites. α-Helical coiled coil peptides are miniature scaffolds which can be designed de novo and can retain the favourable properties of larger proteins within a much simplified system. Metal binding sites, including those which bind lanthanides can be engineered into the coiled coil sequence. This review will highlight the opportunities presented by the use of coiled coil peptides as scaffolds for lanthanide binding and the potential to control the coordination environment by simple modifications to peptide sequence. Designed lanthanide coiled coils offer opportunities to gain greater insight into native lanthanide biochemistry as well as to develop new functional complexes, including imaging agents.


Assuntos
Proteínas de Transporte/química , Elementos da Série dos Lantanídeos/química , Peptídeos/química , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Humanos , Elementos da Série dos Lantanídeos/metabolismo , Ligantes , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Engenharia de Proteínas
16.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071935

RESUMO

The SPL2 protein is an E3 ubiquitin ligase of unknown function. It is one of only three types of E3 ligases found in the outer membrane of plant chloroplasts. In this study, we show that the cytosolic fragment of SPL2 binds lanthanide ions, as evidenced by fluorescence measurements and circular dichroism spectroscopy. We also report that SPL2 undergoes conformational changes upon binding of both Ca2+ and La3+, as evidenced by its partial unfolding. However, these structural rearrangements do not interfere with SPL2 enzymatic activity, as the protein retains its ability to auto-ubiquitinate in vitro. The possible applications of lanthanide-based probes to identify protein interactions in vivo are also discussed. Taken together, the results of this study reveal that the SPL2 protein contains a lanthanide-binding site, showing for the first time that at least some E3 ubiquitin ligases are also capable of binding lanthanide ions.


Assuntos
Proteínas de Transporte/química , Elementos da Série dos Lantanídeos/química , Ubiquitina-Proteína Ligases/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Cálcio/química , Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Humanos , Elementos da Série dos Lantanídeos/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Análise Espectral , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
17.
Biochem Biophys Res Commun ; 561: 40-44, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34004515

RESUMO

Proteins with hetero-bimetallic metal centers can catalyze important reactions and are challenging to design. Azurin is a mononuclear copper center that has been extensively studied for electron transfer. Here we inserted the lanthanide binding tag (LBT), which binds lanthanide with sub µM affinity, into the copper binding loop of azurin, while keeping the type 1 copper center unperturbed. The resulting protein, Az-LBT, which has two metal bonding centers, shows strong luminescence upon coordination with Tb3+ and luminescence quenching upon Cu2+ binding. The in vitro luminescence quenching has high metal specificity and a limit-of-detection of 0.65 µM for Cu2+. With the low background from lanthanide's long luminescence lifetime, bacterial cells expressing Az-LBT in the periplasm also shows sensitivity for metal sensing.


Assuntos
Azurina/metabolismo , Bactérias/metabolismo , Técnicas Biossensoriais/métodos , Cobre/análise , Elementos da Série dos Lantanídeos/metabolismo , Azurina/química , Sítios de Ligação , Catálise , Cobre/metabolismo , Elementos da Série dos Lantanídeos/química , Luminescência , Modelos Moleculares , Domínios Proteicos
18.
Biochim Biophys Acta Mol Cell Res ; 1868(1): 118864, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979423

RESUMO

Lanthanides are relative newcomers to the field of cell biology of metals; their specific incorporation into enzymes was only demonstrated in 2011, with the isolation of a bacterial lanthanide- and pyrroloquinoline quinone-dependent methanol dehydrogenase. Since that discovery, the efforts of many investigators have revealed that lanthanide utilization is widespread in environmentally important bacteria, and parallel efforts have focused on elucidating the molecular details involved in selective recognition and utilization of these metals. In this review, we discuss the particular chemical challenges and advantages associated with biology's use of lanthanides, as well as the currently known lanthano-enzymes and -proteins (the lanthanome). We also review the emerging understanding of the coordination chemistry and biology of lanthanide acquisition, trafficking, and regulatory pathways. These studies have revealed significant parallels with pathways for utilization of other metals in biology. Finally, we discuss some of the many unresolved questions in this burgeoning field and their potentially far-reaching applications.


Assuntos
Oxirredutases do Álcool/genética , Bactérias/genética , Elementos da Série dos Lantanídeos/metabolismo , Transporte Proteico/genética , Oxirredutases do Álcool/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Elementos da Série dos Lantanídeos/química , Metais/metabolismo
19.
Proc Natl Acad Sci U S A ; 117(48): 30362-30369, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33203677

RESUMO

De novo protein design has succeeded in generating a large variety of globular proteins, but the construction of protein scaffolds with cavities that could accommodate large signaling molecules, cofactors, and substrates remains an outstanding challenge. The long, often flexible loops that form such cavities in many natural proteins are difficult to precisely program and thus challenging for computational protein design. Here we describe an alternative approach to this problem. We fused two stable proteins with C2 symmetry-a de novo designed dimeric ferredoxin fold and a de novo designed TIM barrel-such that their symmetry axes are aligned to create scaffolds with large cavities that can serve as binding pockets or enzymatic reaction chambers. The crystal structures of two such designs confirm the presence of a 420 cubic Ångström chamber defined by the top of the designed TIM barrel and the bottom of the ferredoxin dimer. We functionalized the scaffold by installing a metal-binding site consisting of four glutamate residues close to the symmetry axis. The protein binds lanthanide ions with very high affinity as demonstrated by tryptophan-enhanced terbium luminescence. This approach can be extended to other metals and cofactors, making this scaffold a modular platform for the design of binding proteins and biocatalysts.


Assuntos
Elementos da Série dos Lantanídeos/química , Elementos da Série dos Lantanídeos/metabolismo , Metaloproteínas/química , Metaloproteínas/metabolismo , Engenharia de Proteínas , Sítios de Ligação , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade
20.
Sci Rep ; 10(1): 19468, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33173124

RESUMO

Lanthanide ions (Ln3+) show similar physicochemical properties in aqueous solutions, wherein they exist as + 3 cations and exhibit ionic radii differences of less than 0.26 Å. A flexible linear peptide lanthanide binding tag (LBT), which recognizes a series of 15 Ln3+, shows an interesting characteristic in binding specificity, i.e., binding affinity biphasically changes with an increase in the atomic number, and shows a greater than 60-fold affinity difference between the highest and lowest values. Herein, by combining experimental and computational investigations, we gain deep insight into the reaction mechanism underlying the specificity of LBT3, an LBT mutant, toward Ln3+. Our results clearly show that LBT3-Ln3+ binding can be divided into three, and the large affinity difference is based on the ability of Ln3+ in a complex to be directly coordinated with a water molecule. When the LBT3 recognizes a Ln3+ with a larger ionic radius (La3+ to Sm3+), a water molecule can interact with Ln3+ directly. This extra water molecule infiltrates the complex and induces dissociation of the Asn5 sidechain (one of the coordinates) from Ln3+, resulting in a destabilizing complex and low affinity. Conversely, with recognition of smaller Ln3+ (Sm3+ to Yb3+), the LBT3 completely surrounds the ions and constructs a stable high affinity complex. Moreover, when the LBT3 recognizes the smallest Ln3+, namely Lu3+, although it completely surrounds Lu3+, an entropically unfavorable phenomenon specifically occurs, resulting in lower affinity than that of Yb3+. Our findings will be useful for the design of molecules that enable the distinction of sub-angstrom size differences.


Assuntos
Cátions/química , Elementos da Série dos Lantanídeos/química , Simulação de Dinâmica Molecular , Peptídeos/química , Sítios de Ligação , Calorimetria/métodos , Cátions/metabolismo , Cristalografia por Raios X , Elementos da Série dos Lantanídeos/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Estrutura Molecular , Peptídeos/metabolismo , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...