Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
J Alzheimers Dis ; 83(4): 1481-1498, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34092636

RESUMO

BACKGROUND: Transcranial photobiomodulation (tPBM) has recently emerged as a potential cognitive enhancement technique and clinical treatment for various neuropsychiatric and neurodegenerative disorders by delivering invisible near-infrared light to the scalp and increasing energy metabolism in the brain. OBJECTIVE: We assessed whether transcranial photobiomodulation with near-infrared light modulates cerebral electrical activity through electroencephalogram (EEG) and cerebral blood flow (CBF). METHODS: We conducted a single-blind, sham-controlled pilot study to test the effect of continuous (c-tPBM), pulse (p-tPBM), and sham (s-tPBM) transcranial photobiomodulation on EEG oscillations and CBF using diffuse correlation spectroscopy (DCS) in a sample of ten healthy subjects [6F/4 M; mean age 28.6±12.9 years]. c-tPBM near-infrared radiation (NIR) (830 nm; 54.8 mW/cm2; 65.8 J/cm2; 2.3 kJ) and p-tPBM (830 nm; 10 Hz; 54.8 mW/cm2; 33%; 21.7 J/cm2; 0.8 kJ) were delivered concurrently to the frontal areas by four LED clusters. EEG and DCS recordings were performed weekly before, during, and after each tPBM session. RESULTS: c-tPBM significantly boosted gamma (t = 3.02, df = 7, p < 0.02) and beta (t = 2.91, df = 7, p < 0.03) EEG spectral powers in eyes-open recordings and gamma power (t = 3.61, df = 6, p < 0.015) in eyes-closed recordings, with a widespread increase over frontal-central scalp regions. There was no significant effect of tPBM on CBF compared to sham. CONCLUSION: Our data suggest a dose-dependent effect of tPBM with NIR on cerebral gamma and beta neuronal activity. Altogether, our findings support the neuromodulatory effect of transcranial NIR.


Assuntos
Encéfalo/efeitos da radiação , Circulação Cerebrovascular , Eletroencefalografia/efeitos da radiação , Voluntários Saudáveis , Adulto , Doença de Alzheimer/terapia , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Projetos Piloto , Método Simples-Cego , Análise Espectral
2.
Biomed Environ Sci ; 32(3): 189-198, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30987693

RESUMO

OBJECTIVE: To estimate the detrimental effects of shortwave exposure on rat hippocampal structure and function and explore the underlying mechanisms. METHODS: One hundred Wistar rats were randomly divided into four groups (25 rats per group) and exposed to 27 MHz continuous shortwave at a power density of 5, 10, or 30 mW/cm2 for 6 min once only or underwent sham exposure for the control. The spatial learning and memory, electroencephalogram (EEG), hippocampal structure and Nissl bodies were analysed. Furthermore, the expressions of N-methyl-D-aspartate receptor (NMDAR) subunits (NR1, NR2A, and NR2B), cAMP responsive element-binding protein (CREB) and phosphorylated CREB (p-CREB) in hippocampal tissue were analysed on 1, 7, and 14 days after exposure. RESULTS: The rats in the 10 and 30 mW/cm2 groups had poor learning and memory, disrupted EEG oscillations, and injured hippocampal structures, including hippocampal neurons degeneration, mitochondria cavitation and blood capillaries swelling. The Nissl body content was also reduced in the exposure groups. Moreover, the hippocampal tissue in the 30 mW/cm2 group had increased expressions of NR2A and NR2B and decreased levels of CREB and p-CREB. CONCLUSION: Shortwave exposure (27 MHz, with an average power density of 10 and 30 mW/cm2) impaired rats' spatial learning and memory and caused a series of dose-dependent pathophysiological changes. Moreover, NMDAR-related CREB pathway suppression might be involved in shortwave-induced structural and functional impairments in the rat hippocampus.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Eletroencefalografia/efeitos da radiação , Hipocampo/efeitos da radiação , Memória/efeitos da radiação , Corpos de Nissl/efeitos da radiação , Ondas de Rádio/efeitos adversos , Aprendizagem Espacial/efeitos da radiação , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Relação Dose-Resposta à Radiação , Masculino , Corpos de Nissl/fisiologia , Distribuição Aleatória , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
3.
Sci Rep ; 8(1): 18010, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30573783

RESUMO

Although mobile phone (MP) use has been steadily increasing in the last decades and similar positive trends are expected for the near future, systematic investigations on neurophysiological and cognitive effects caused by recently developed technological standards for MPs are scarcely available. Here, we investigated the effects of radiofrequency (RF) fields emitted by new-generation mobile technologies, specifically, Universal Mobile Telecommunications System (UMTS) and Long-Term Evolution (LTE), on intrinsic scalp EEG activity in the alpha band (8-12 Hz) and cognitive performance in the Stroop test. The study involved 60 healthy, young-adult university students (34 for UMTS and 26 for LTE) with double-blind administration of Real and Sham exposure in separate sessions. EEG was recorded before, during and after RF exposure, and Stroop performance was assessed before and after EEG recording. Both RF exposure types caused a notable decrease in the alpha power over the whole scalp that persisted even after the cessation of the exposure, whereas no effects were found on any aspects of performance in the Stroop test. The results imply that the brain networks underlying global alpha oscillations might require minor reconfiguration to adapt to the local biophysical changes caused by focal RF exposure mimicking MP use.


Assuntos
Encéfalo/efeitos da radiação , Telefone Celular , Cognição/efeitos da radiação , Eletroencefalografia/efeitos da radiação , Exposição Ocupacional , Ondas de Rádio/efeitos adversos , Adolescente , Adulto , Encéfalo/fisiologia , Cognição/fisiologia , Eletroencefalografia/psicologia , Campos Eletromagnéticos/efeitos adversos , Feminino , Humanos , Masculino , Exposição Ocupacional/análise , Doses de Radiação , Fatores de Tempo , Adulto Jovem
4.
Int J Radiat Biol ; 94(10): 896-901, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29775395

RESUMO

PURPOSE: This feasibility study is aimed to clarify the possibility of detection of microwave radiation (MWR)-induced event related potential (ERP) in electroencephalographic (EEG) signal. METHODS: To trigger onset and offset effects in EEG, repetitive MWR stimuli were used. Four 30-channel EEG recordings on a single subject were performed, each about one month apart. The subject was exposed to 450 MHz MWR modulated at 40 Hz at the 1 g peak spatial average specific absorption rate of 0.3 W/kg. During a recording, 40 cycles of 30 s on-off MWR exposure were used. The artifact-free responses to 126 MWR-ON stimuli and 134 MWR-OFF stimuli were averaged over stimuli and channels. RESULTS: Regarding EEG signals locked to MWR-OFF stimulus, the enhanced signal level at alpha frequency band and about twice higher signal to noise ratio at 200 to 440 ms after the stimulus have been detected. No remarkable response in EEG signals locked to MWR-ON stimulus. CONCLUSIONS: The detection of offset effect confirms that there should be an imprint generated by MWR in brain. The results of this preliminary study provide evidence for the detection of MWR-induced ERP in EEG signal and encourage further research in this direction.


Assuntos
Eletroencefalografia/efeitos da radiação , Micro-Ondas/efeitos adversos , Adulto , Potenciais Evocados/efeitos da radiação , Estudos de Viabilidade , Feminino , Humanos , Fatores de Tempo
5.
Artigo em Inglês | MEDLINE | ID: mdl-29186760

RESUMO

Humans are surrounded by sources of daily exposure to power-frequency (60 Hz in North America) magnetic fields (MFs). Such time-varying MFs induce electric fields and currents in living structures which possibly lead to biological effects. The present pilot study examined possible extremely low frequency (ELF) MF effects on human neuromotor control in general, and physiological postural tremor and electroencephalography (EEG) in particular. Since the EEG cortical mu-rhythm (8-12 Hz) from the primary motor cortex and physiological tremor are related, it was hypothesized that a 60 Hz MF exposure focused on this cortical region could acutely modulate human physiological tremor. Ten healthy volunteers (age: 23.8 ± 4 SD) were fitted with a MRI-compatible EEG cap while exposed to 11 MF conditions (60 Hz, 0 to 50 mTrms, 5 mTrms increments). Simultaneously, physiological tremor (recorded from the contralateral index finger) and EEG (from associated motor and somatosensory brain regions) were measured. Results showed no significant main effect of MF exposure conditions on any of the analyzed physiological tremor characteristics. In terms of EEG, no significant effects of the MF were observed for C1, C3, C5 and CP1 electrodes. However, a significant main effect was found for CP3 and CP5 electrodes, both suggesting a decreased mu-rhythm spectral power with increasing MF flux density. This is however not confirmed by Bonferroni corrected pairwise comparisons. Considering both EEG and tremor findings, no effect of the MF exposure on human motor control was observed. However, MF exposure had a subtle effect on the mu-rhythm amplitude in the brain region involved in tactile perception. Current findings are to be considered with caution due to the small size of this pilot work, but they provide preliminary insights to international agencies establishing guidelines regarding electromagnetic field exposure with new experimental data acquired in humans exposed to high mT-range MFs.


Assuntos
Encéfalo/fisiopatologia , Eletroencefalografia/efeitos da radiação , Campos Magnéticos/efeitos adversos , Tremor/fisiopatologia , Adulto , Relação Dose-Resposta à Radiação , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Neurofisiologia , América do Norte , Projetos Piloto
6.
Sci Rep ; 7(1): 14215, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29079823

RESUMO

Artificial light endows a "round-the-clock", 24-h/7-d society. Chronic exposure to light at night contributes to health hazards for humans, including disorders of sleep. Yet the influence of inter-individual traits, such as sex-differences, on light sensitivity remains to be established. Here we investigated potential sex-differences to evening light exposure of 40 lx at 6500 K (blue-enriched) or at 2500 K (non-blue-enriched), and their impact on brightness perception, vigilant attention and sleep physiology. In contrast to women, men had higher brightness perception and faster reaction times in a sustained attention task during blue-enriched light than non-blue-enriched. After blue-enriched light exposure, men had significantly higher all-night frontal NREM sleep slow-wave activity (SWA: 2-4 Hz), than women, particularly during the beginning of the sleep episode. Furthermore, brightness perception during blue-enriched light significantly predicted men's improved sustained attention performance and increased frontal NREM SWA. Our data indicate that, in contrast to women, men show a stronger response to blue-enriched light in the late evening even at very low light levels (40lux), as indexed by increased vigilant attention and sleep EEG hallmarks. Collectively, the data indicate that sex differences in light sensitivity might play a key role for ensuring the success of individually-targeted light interventions.


Assuntos
Nível de Alerta/efeitos da radiação , Atenção/efeitos da radiação , Luz , Fotofobia/fisiopatologia , Caracteres Sexuais , Sono/efeitos da radiação , Percepção Visual/fisiologia , Adulto , Atenção/fisiologia , Eletroencefalografia/efeitos da radiação , Feminino , Humanos , Masculino , Fotofobia/psicologia , Sono/fisiologia , Adulto Jovem
7.
Physiol Behav ; 181: 1-9, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28866028

RESUMO

OBJECTIVE: The long term effects of continuous microwave exposure cannot be ignored for the simulation of the real environment and increasing concerns about the negative cognitive effects of microwave exposure. METHODS: In this study, 220 male Wistar rats were exposed by a 2.856GHz radiation source with the average power density of 0, 2.5, 5 and 10mW/cm2 for 6min/day, 5days/week and up to 6weeks. The MWM task, the EEG analysis, the hippocampus structure observation and the western blot were applied until the 12months after microwave exposure to detect the spatial learning and memory abilities, the cortical electrical activity, changes of hippocampal structure and the NMDAR subunits expressions. RESULTS: Results found that the rats in the 10mW/cm2 group showed the decline of spatial learning and memory abilities and EEG disorders (the decrease of EEG frequencies, and increase of EEG amplitudes and delta wave powers). Moreover, changes of basic structure and ultrastructure of hippocampus also found in the 10 and 5mW/cm2 groups. The decrease of NR 2A, 2B and p-NR2B might contribute to the impairment of cognitive functions. CONCLUSIONS: Our findings suggested that the continuous microwave exposure could cause the dose-dependent long term impairment of spatial learning and memory, the abnormalities of EEG and the hippocampal structure injuries. The decrease of NMDAR key subunits and phosphorylation of NR 2B might contribute to the cognitive impairment.


Assuntos
Cognição/efeitos da radiação , Hipocampo/efeitos da radiação , Micro-Ondas/efeitos adversos , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Eletroencefalografia/efeitos da radiação , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/ultraestrutura , Masculino , Aprendizagem em Labirinto/efeitos da radiação , Ratos , Receptores de N-Metil-D-Aspartato/biossíntese , Tempo
8.
Bioelectromagnetics ; 38(5): 329-338, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28426166

RESUMO

Due to its attributes, characteristics, and technological resources, the mobile phone (MP) has become one of the most commonly used communication devices. Historically, ample evidence has ruled out the substantial short-term impact of radiofrequency electromagnetic field (RF-EMF) emitted by MP on human cognitive performance. However, more recent evidence suggests potential harmful effects associated with MP EMF exposure. The aim of this review is to readdress the question of whether the effect of MP EMF exposure on brain function should be reopened. We strengthen our argument focusing on recent neuroimaging and electroencephalography studies, in order to present a more specific analysis of effects of MP EMF exposure on neurocognitive function. Several studies indicate an increase in cortical excitability and/or efficiency with EMF exposure, which appears to be more prominent in fronto-temporal regions and has been associated with faster reaction time. Cortical excitability might also underpin disruption to sleep. However, several inconsistent findings exist, and conclusions regarding adverse effects of EMF exposure are currently limited. It also should be noted that the crucial scientific question of the effect of longer-term MP EMF exposure on brain function remains unanswered and essentially unaddressed. Bioelectromagnetics. 38:329-338, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Encéfalo/fisiologia , Encéfalo/efeitos da radiação , Telefone Celular , Campos Eletromagnéticos/efeitos adversos , Ondas de Rádio/efeitos adversos , Encéfalo/diagnóstico por imagem , Eletroencefalografia/efeitos da radiação , Humanos , Sono/fisiologia , Sono/efeitos da radiação
9.
Electromagn Biol Med ; 36(2): 202-212, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27874295

RESUMO

The aim of this study is to explain the mechanism of the effect of low-level modulated microwave radiation on brain bioelectrical oscillations. The proposed model of excitation by low-level microwave radiation bases on the influence of water polarization on hydrogen bonding forces between water molecules, caused by this the enhancement of diffusion and consequences on neurotransmitters transit time and neuron resting potential. Modulated microwave radiation causes periodic alteration of the neurophysiologic parameters and parametric excitation of brain bioelectric oscillations. The experiments to detect logical outcome of the mechanism on physiological level were carried out on 15 human volunteers. The 450-MHz microwave radiation modulated at 7, 40 and 1000 Hz frequencies was applied at the field power density of 0.16 mW/cm2. A relative change in the EEG power with and without radiation during 10 cycles was used as a quantitative measure. Experimental data demonstrated that modulated at 40 Hz microwave radiation enhanced EEG power in EEG alpha and beta frequency bands. No significant alterations were detected at 7 and 1000 Hz modulation frequencies. These results are in good agreement with the theory of parametric excitation of the brain bioelectric oscillations caused by the periodic alteration of neurophysiologic parameters and support the proposed mechanism. The proposed theoretical framework has been shown to predict the results of experimental study. The suggested mechanism, free of the restrictions related to field strength or time constant, is the first one providing explanation of low-level microwave radiation effects.


Assuntos
Encéfalo/fisiologia , Encéfalo/efeitos da radiação , Micro-Ondas , Relação Dose-Resposta à Radiação , Eletroencefalografia/efeitos da radiação , Feminino , Humanos , Masculino , Adulto Jovem
10.
Radiat Res ; 184(6): 568-77, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26600173

RESUMO

Mobile equipment use of wireless fidelity (Wi-Fi) signal modulation has increased exponentially in the past few decades. However, there is inconclusive scientific evidence concerning the potential risks associated with the energy deposition in the brain from Wi-Fi and whether Wi-Fi electromagnetism interacts with cognitive function. In this study we investigated possible neurocognitive effects caused by Wi-Fi exposure. First, we constructed a Wi-Fi exposure system from commercial parts. Dosimetry was first assessed by free space radiofrequency field measurements. The experimental exposure system was then modeled based on real geometry and physical characteristics. Specific absorption rate (SAR) calculations were performed using a whole-body, realistic human voxel model with values corresponding to conventional everyday Wi-Fi exposure (peak SAR10g level was 99.22 mW/kg with 1 W output power and 100% duty cycle). Then, in two provocation experiments involving healthy human volunteers we tested for two hypotheses: 1. Whether a 60 min long 2.4 GHz Wi-Fi exposure affects the spectral power of spontaneous awake electroencephalographic (sEEG) activity (N = 25); and 2. Whether similar Wi-Fi exposure modulates the sustained attention measured by reaction time in a computerized psychomotor vigilance test (PVT) (N = 19). EEG data were recorded at midline electrode sites while volunteers watched a silent documentary. In the PVT task, button press reaction time was recorded. No measurable effects of acute Wi-Fi exposure were found on spectral power of sEEG or reaction time in the psychomotor vigilance test. These results indicate that a single, 60 min Wi-Fi exposure does not alter human oscillatory brain function or objective measures of sustained attention.


Assuntos
Nível de Alerta/fisiologia , Encéfalo/fisiologia , Eletroencefalografia/efeitos da radiação , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Tecnologia sem Fio , Absorção de Radiação , Adulto , Nível de Alerta/efeitos da radiação , Relógios Biológicos/fisiologia , Relógios Biológicos/efeitos da radiação , Encéfalo/efeitos da radiação , Campos Eletromagnéticos , Feminino , Humanos , Masculino , Desempenho Psicomotor/efeitos da radiação , Doses de Radiação , Exposição à Radiação , Ondas de Rádio , Tempo de Reação/efeitos da radiação , Valores de Referência
12.
Radiother Oncol ; 116(2): 331-3, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26253952

RESUMO

We present a series of three patients who received therapeutic external beam radiation to the brain and experienced a phenomenon of the sensation of flashes of bright or blue light, simultaneous with radiation delivery. We relate this benign phenomenon to low-dose exposure to the eye fields and postulate that the occurrence is underreported in this treated population.


Assuntos
Encéfalo/efeitos da radiação , Radioterapia/efeitos adversos , Adulto , Eletroencefalografia/efeitos da radiação , Feminino , Humanos , Luz , Masculino , Pessoa de Meia-Idade
13.
J Neurophysiol ; 113(7): 2753-9, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25695646

RESUMO

The aim of the present work was to investigate the effects of the radiofrequency (RF) electromagnetic fields (EMFs) on human resting EEG with a control of some parameters that are known to affect alpha band, such as electrode impedance, salivary cortisol, and caffeine. Eyes-open and eyes-closed resting EEG data were recorded in 26 healthy young subjects under two conditions: sham exposure and real exposure in double-blind, counterbalanced, crossover design. Spectral power of EEG rhythms was calculated for the alpha band (8-12 Hz). Saliva samples were collected before and after the study. Salivary cortisol and caffeine were assessed by ELISA and HPLC, respectively. The electrode impedance was recorded at the beginning of each run. Compared with the sham session, the exposure session showed a statistically significant (P < 0.0001) decrease of the alpha band spectral power during closed-eyes condition. This effect persisted in the postexposure session (P < 0.0001). No significant changes were detected in electrode impedance, salivary cortisol, and caffeine in the sham session compared with the exposure one. These results suggest that GSM-EMFs of a mobile phone affect the alpha band within spectral power of resting human EEG.


Assuntos
Ritmo alfa/fisiologia , Telefone Celular , Eletroencefalografia/métodos , Ondas de Rádio , Descanso/fisiologia , Saliva/metabolismo , Adulto , Ritmo alfa/efeitos da radiação , Cafeína/análise , Eletroencefalografia/efeitos da radiação , Feminino , Humanos , Hidrocortisona/análise , Masculino , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
Bioelectromagnetics ; 36(3): 169-77, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25690404

RESUMO

Pulse-modulated radiofrequency electromagnetic fields (RF EMF) can alter brain activity during sleep; increases of electroencephalographic (EEG) power in the sleep spindle (13.75-15.25 Hz) and delta-theta (1.25-9 Hz) frequency range have been reported. These field effects show striking inter-individual differences. However, it is still unknown whether individual subjects react in a similar way when repeatedly exposed. Thus, our study aimed to investigate inter-individual variation and intra-individual stability of field effects. To do so, we exposed 20 young male subjects twice for 30 min prior to sleep to the same amplitude modulated 900 MHz (2 Hz pulse, 20 Hz Gaussian low-pass filter and a ratio of peak-to-average of 4) RF EMF (spatial peak absorption of 2 W/kg averaged over 10 g) 2 weeks apart. The topographical analysis of EEG power during all-night non-rapid eye movement sleep revealed: (1) exposure-related increases in delta-theta frequency range in several fronto-central electrodes; and (2) no differences in spindle frequency range. We did not observe reproducible within-subject RF EMF effects on sleep spindle and delta-theta activity in the sleep EEG and it remains unclear whether a biological trait of how the subjects' brains react to RF EMF exists.


Assuntos
Eletroencefalografia/efeitos da radiação , Campos Eletromagnéticos , Exposição à Radiação , Ondas de Rádio , Sono/fisiologia , Sono/efeitos da radiação , Ondas Encefálicas/efeitos da radiação , Humanos , Masculino , Polissonografia/efeitos da radiação , Adulto Jovem
15.
IEEE Trans Biomed Eng ; 61(7): 1967-78, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24956615

RESUMO

The goal of this study was to develop methods for simultaneously acquiring electrophysiological data during high-definition transcranial direct current stimulation (tDCS) using high-resolution electroencephalography (EEG). Previous studies have pointed to the after-effects of tDCS on both motor and cognitive performance, and there appears to be potential for using tDCS in a variety of clinical applications. However, little is known about the real-time effects of tDCS on rhythmic cortical activity in humans due to the technical challenges of simultaneously obtaining electrophysiological data during ongoing stimulation. Furthermore, the mechanisms of action of tDCS in humans are not well understood. We have conducted a simultaneous tDCS-EEG study in a group of healthy human subjects. Significant acute and persistent changes in spontaneous neural activity and event-related synchronization (ERS) were observed during and after the application of high-definition tDCS over the left sensorimotor cortex. Both anodal and cathodal stimulation resulted in acute global changes in broadband cortical activity which were significantly different than the changes observed in response to sham stimulation. For the group of eight subjects studied, broadband individual changes in spontaneous activity during stimulation were apparent both locally and globally. In addition, we found that high-definition tDCS of the left sensorimotor cortex can induce significant ipsilateral and contralateral changes in event-related desynchronization and ERS during motor imagination following the end of the stimulation period. Overall, our results demonstrate the feasibility of acquiring high-resolution EEG during high-definition tDCS and provide evidence that tDCS in humans directly modulates rhythmic cortical synchronization during and after its administration.


Assuntos
Sincronização Cortical/efeitos da radiação , Eletroencefalografia/efeitos da radiação , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Sincronização Cortical/fisiologia , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Imagens de Fantasmas , Adulto Jovem
16.
Int J Radiat Oncol Biol Phys ; 85(4): 978-83, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23154074

RESUMO

PURPOSE: To report the results of short-term electrophysiologic monitoring of patients undergoing (12)C therapy for the treatment of skull chordomas and chondrosarcomas unsuitable for radical surgery. METHODS AND MATERIALS: Conventional electroencephalogram (EEG) and retinal and cortical electrophysiologic responses to contrast stimuli were recorded from 30 patients undergoing carbon ion radiation therapy, within a few hours before the first treatment and after completion of therapy. Methodologies and procedures were compliant with the guidelines of the International Federation for Clinical Neurophysiology and International Society for Clinical Electrophysiology of Vision. RESULTS: At baseline, clinical signs were reported in 56.6% of subjects. Electrophysiologic test results were abnormal in 76.7% (EEG), 78.6% (cortical evoked potentials), and 92.8% (electroretinogram) of cases, without correlation with neurologic signs, tumor location, or therapy plan. Results on EEG, but not electroretinograms and cortical responses, were more often abnormal in patients with reported clinical signs. Abnormal EEG results and retinal/cortical responses improved after therapy in 40% (EEG), 62.5% (cortical potentials), and 70% (electroretinogram) of cases. Results on EEG worsened after therapy in one-third of patients whose recordings were normal at baseline. CONCLUSIONS: The percentages of subjects whose EEG results improved or worsened after therapy and the improvement of retinal/cortical responses in the majority of patients are indicative of a limited or negligible (and possibly transient) acute central nervous system toxicity of carbon ion therapy, with a significant beneficial effect on the visual pathways. Research on large samples would validate electrophysiologic procedures as a possible independent test for central nervous system toxicity and allow investigation of the correlation with clinical signs; repeated testing over time after therapy would demonstrate, and may help predict, possible late toxicity.


Assuntos
Carbono/efeitos adversos , Condrossarcoma/radioterapia , Cordoma/radioterapia , Fenômenos Eletrofisiológicos/efeitos da radiação , Potenciais Evocados Visuais/efeitos da radiação , Neoplasias da Base do Crânio/radioterapia , Adulto , Idoso , Carbono/uso terapêutico , Condrossarcoma/fisiopatologia , Cordoma/fisiopatologia , Análise Custo-Benefício , Eletroencefalografia/efeitos da radiação , Fenômenos Eletrofisiológicos/fisiologia , Eletrorretinografia/efeitos da radiação , Potenciais Evocados Visuais/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias da Base do Crânio/fisiopatologia , Córtex Visual/fisiopatologia , Córtex Visual/efeitos da radiação , Adulto Jovem
17.
Bioelectromagnetics ; 34(1): 31-42, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22674213

RESUMO

Potential effects of a 30 min exposure to third generation (3G) Universal Mobile Telecommunications System (UMTS) mobile phone-like electromagnetic fields (EMFs) were investigated on human brain electrical activity in two experiments. In the first experiment, spontaneous electroencephalography (sEEG) was analyzed (n = 17); in the second experiment, auditory event-related potentials (ERPs) and automatic deviance detection processes reflected by mismatch negativity (MMN) were investigated in a passive oddball paradigm (n = 26). Both sEEG and ERP experiments followed a double-blind protocol where subjects were exposed to either genuine or sham irradiation in two separate sessions. In both experiments, electroencephalograms (EEG) were recorded at midline electrode sites before and after exposure while subjects were watching a silent documentary. Spectral power of sEEG data was analyzed in the delta, theta, alpha, and beta frequency bands. In the ERP experiment, subjects were presented with a random series of standard (90%) and frequency-deviant (10%) tones in a passive binaural oddball paradigm. The amplitude and latency of the P50, N100, P200, MMN, and P3a components were analyzed. We found no measurable effects of a 30 min 3G mobile phone irradiation on the EEG spectral power in any frequency band studied. Also, we found no significant effects of EMF irradiation on the amplitude and latency of any of the ERP components. In summary, the present results do not support the notion that a 30 min unilateral 3G EMF exposure interferes with human sEEG activity, auditory evoked potentials or automatic deviance detection indexed by MMN.


Assuntos
Encéfalo/efeitos da radiação , Telefone Celular , Eletroencefalografia/efeitos da radiação , Exposição Ambiental/efeitos adversos , Potenciais Evocados Auditivos/efeitos da radiação , Ondas de Rádio/efeitos adversos , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
18.
J Physiol Anthropol ; 31: 23, 2012 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-22943428

RESUMO

BACKGROUND: It has been assumed that light with a higher irradiance of pulsed blue light has a much greater influence than that of light with a lower irradiance of steady blue light, although they have the same multiplication value of irradiance and duration. We examined the non-visual physiological effects of blue pulsed light, and determined whether it is sensed visually as being blue. FINDINGS: Seven young male volunteers participated in the study. We placed a circular screen (diameter 500 mm) in front of the participants and irradiated it using blue and/or white light-emitting diodes (LEDs), and we used halogen lamps as a standard illuminant. We applied three steady light conditions of white LED (F0), blue LED + white LED (F10), and blue LED (F100), and a blue pulsed light condition of a 100-µs pulse width with a 10% duty ratio (P10). The irradiance of all four conditions at the participant's eye level was almost the same, at around 12 µW/cm2. We measured their pupil diameter, recorded electroencephalogram readings and Kwansei Gakuin Sleepiness Scale score, and collected subjective evaluations. The subjective bluish score under the F100 condition was significantly higher than those under other conditions. Even under the P10 condition with a 10% duty ratio of blue pulsed light and the F10 condition, the participant did not perceive the light as bluish. Pupillary light response under the P10 pulsed light condition was significantly greater than under the F10 condition, even though the two conditions had equal blue light components. CONCLUSIONS: The pupil constricted under the blue pulsed light condition, indicating a non-visual effect of the lighting, even though the participants did not perceive the light as bluish.


Assuntos
Eletroencefalografia/efeitos da radiação , Fadiga/fisiopatologia , Luz , Pupila/fisiologia , Pupila/efeitos da radiação , Humanos , Masculino , Reflexo Pupilar/fisiologia , Reflexo Pupilar/efeitos da radiação , Adulto Jovem
19.
J Sleep Res ; 21(6): 620-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22724534

RESUMO

Studies have repeatedly shown that electroencephalographic power during sleep is enhanced in the spindle frequency range following radio frequency electromagnetic field exposures pulse-modulated with fundamental frequency components of 2, 8, 14 or 217 Hz and combinations of these. However, signals used in previous studies also had significant harmonic components above 20 Hz. The current study aimed: (i) to determine if modulation components above 20 Hz, in combination with radio frequency, are necessary to alter the electroencephalogram; and (ii) to test the demodulation hypothesis, if the same effects occur after magnetic field exposure with the same pulse sequence used in the pulse-modulated radio frequency exposure. In a randomized double-blind crossover design, 25 young healthy men were exposed at weekly intervals to three different conditions for 30 min before sleep. Cognitive tasks were also performed during exposure. The conditions were a 2-Hz pulse-modulated radio frequency field, a 2-Hz pulsed magnetic field, and sham. Radio frequency exposure increased electroencephalogram power in the spindle frequency range. Furthermore, delta and theta activity (non-rapid eye movement sleep), and alpha and delta activity (rapid eye movement sleep) were affected following both exposure conditions. No effect on sleep architecture and no clear impact of exposure on cognition was observed. These results demonstrate that both pulse-modulated radio frequency and pulsed magnetic fields affect brain physiology, and the presence of significant frequency components above 20 Hz are not fundamental for these effects to occur. Because responses were not identical for all exposures, the study does not support the hypothesis that effects of radio frequency exposure are based on demodulation of the signal only.


Assuntos
Encéfalo/efeitos da radiação , Eletroencefalografia/efeitos da radiação , Campos Eletromagnéticos/efeitos adversos , Fases do Sono/efeitos da radiação , Adulto , Encéfalo/fisiologia , Estudos Cross-Over , Método Duplo-Cego , Humanos , Masculino , Testes Neuropsicológicos , Polissonografia/instrumentação , Polissonografia/métodos , Fases do Sono/fisiologia , Fatores de Tempo , Adulto Jovem
20.
Neurosci Lett ; 516(1): 54-6, 2012 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-22484013

RESUMO

Previous correlations between geomagnetic activity and quantitative changes in electroencephalographic power revealed particular associations with the right parietal lobe for theta activity and the right frontal region for gamma activity. In the present experiment subjects were exposed to either no field (sham conditions) or to either 20 nT or 70 nT, 7 Hz, amplitude modulated (mHz range) magnetic fields for 30 min. Quantitative electroencephalographic (QEEG) measurements were completed before, during, and after the field exposures. After about 10 min of exposure theta power over the right parietal region was enhanced for the 20 nT exposure but suppressed for the 70 nT exposure relative to sham field exposures. The effect dissipated by the end of the exposure. These results support the contention that magnetic field fluctuations were primarily responsible for the significant geomagnetic-QEEG correlations reported in several studies.


Assuntos
Encéfalo/fisiologia , Encéfalo/efeitos da radiação , Estimulação Elétrica/métodos , Eletroencefalografia/efeitos da radiação , Campos Eletromagnéticos , Adulto , Relação Dose-Resposta à Radiação , Fenômenos Ecológicos e Ambientais , Feminino , Humanos , Masculino , Doses de Radiação , Estatística como Assunto , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...