Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 273: 31-38, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30292371

RESUMO

This work presents a simple and low-cost analytical approach to detect adulterations in ground roasted coffee by using voltammetry and chemometrics. The voltammogram of a coffee extract (prepared as simulating a home-made coffee cup) obtained with a single working electrode is submitted to pattern recognition analysis preceded by variable selection to detect the addition of coffee husks and sticks (adulterated/unadulterated), or evaluate the shelf-life condition (expired/unexpired). Two pattern recognition methods were tested: linear discriminant analysis (LDA) with variable selection by successive projections algorithm (SPA), or genetic algorithm (GA); and partial least squares discriminant analysis (PLS-DA). Both LDA models presented satisfactory results. The voltammograms were also evaluated for the quantitative determination of the percentage of impurities in ground roasted coffees. PLS and multivariate linear regression (MLR) preceded by variable selection with SPA or GA were evaluated. An excellent predictive power (RMSEP = 0.05%) was obtained with MLR aided by GA.


Assuntos
Café/química , Eletroquímica/métodos , Nariz Eletrônico , Contaminação de Alimentos/análise , Algoritmos , Análise Discriminante , Eletroquímica/estatística & dados numéricos , Nariz Eletrônico/estatística & dados numéricos , Contaminação de Alimentos/estatística & dados numéricos , Análise dos Mínimos Quadrados , Reconhecimento Automatizado de Padrão , Extratos Vegetais/análise , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA