Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
2.
Mol Cell ; 81(17): 3589-3603.e13, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34324863

RESUMO

Transcription elongation has emerged as a regulatory hub in gene expression of metazoans. A major control point occurs during early elongation before RNA polymerase II (Pol II) is released into productive elongation. Prior research has linked BRD4 with transcription elongation. Here, we use rapid BET protein and BRD4-selective degradation along with quantitative genome-wide approaches to investigate direct functions of BRD4 in Pol II transcription regulation. Notably, as an immediate consequence of acute BRD4 loss, promoter-proximal pause release is impaired, and transcriptionally engaged Pol II past this checkpoint undergoes readthrough transcription. An integrated proteome-wide analysis uncovers elongation and 3'-RNA processing factors as core BRD4 interactors. BRD4 ablation disrupts the recruitment of general 3'-RNA processing factors at the 5'-control region, which correlates with RNA cleavage and termination defects. These studies, performed in human cells, reveal a BRD4-mediated checkpoint and begin to establish a molecular link between 5'-elongation control and 3'-RNA processing.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas Nucleares/fisiologia , Elongação da Transcrição Genética/fisiologia , Fatores de Transcrição/fisiologia , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Expressão Gênica , Histonas/metabolismo , Humanos , Camundongos , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/fisiologia , Fatores de Transcrição/metabolismo , Terminação da Transcrição Genética/fisiologia , Transcrição Gênica/genética , Transcrição Gênica/fisiologia
3.
PLoS One ; 15(10): e0239700, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33017414

RESUMO

In the past two decades, research into the biochemical, biophysical and structural properties of the ribosome have revealed many different steps of protein translation. Nevertheless, a complete understanding of how they lead to a rapid and accurate protein synthesis still remains a challenge. Here we consider a coarse network analysis in the bacterial ribosome formed by the connectivity between ribosomal (r) proteins and RNAs at different stages in the elongation cycle. The ribosomal networks are found to be dis-assortative and small world, implying that the structure allows for an efficient exchange of information between distant locations. An analysis of centrality shows that the second and fifth domains of 23S rRNA are the most important elements in all of the networks. Ribosomal protein hubs connect to much fewer nodes but are shown to provide important connectivity within the network (high closeness centrality). A modularity analysis reveals some of the different functional communities, indicating some known and some new possible communication pathways Our mathematical results confirm important communication pathways that have been discussed in previous research, thus verifying the use of this technique for representing the ribosome, and also reveal new insights into the collective function of ribosomal elements.


Assuntos
Bactérias/genética , Redes Reguladoras de Genes/genética , Ribossomos/genética , Bactérias/metabolismo , Biologia Computacional/métodos , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/fisiologia , RNA Ribossômico 23S/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Elongação da Transcrição Genética/fisiologia
4.
Proc Natl Acad Sci U S A ; 117(44): 27365-27373, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33077595

RESUMO

Actively transcribed genes in mammals are decorated by H3K79 methylation, which is correlated with transcription levels and is catalyzed by the histone methyltransferase DOT1L. DOT1L is required for mammalian development, and the inhibition of its catalytic activity has been extensively studied for cancer therapy; however, the mechanisms underlying DOT1L's functions in normal development and cancer pathogenesis remain elusive. To dissect the relationship between H3K79 methylation, cellular differentiation, and transcription regulation, we systematically examined the role of DOT1L and its catalytic activity in embryonic stem cells (ESCs). DOT1L is dispensable for ESC self-renewal but is required for establishing the proper expression signature of neural progenitor cells, while catalytic inactivation of DOT1L has a lesser effect. Furthermore, DOT1L loss, rather than its catalytic inactivation, causes defects in glial cell specification. Although DOT1L loss by itself has no major defect in transcription elongation, transcription elongation defects seen with the super elongation complex inhibitor KL-2 are exacerbated in DOT1L knockout cells, but not in catalytically dead DOT1L cells, revealing a role of DOT1L in promoting productive transcription elongation that is independent of H3K79 methylation. Taken together, our study reveals a catalytic-independent role of DOT1L in modulating cell-fate determination and in transcriptional elongation control.


Assuntos
Diferenciação Celular/genética , Histona-Lisina N-Metiltransferase/metabolismo , Elongação da Transcrição Genética/fisiologia , Proliferação de Células/efeitos dos fármacos , Metilação de DNA/fisiologia , Células-Tronco Embrionárias/metabolismo , Epigênese Genética/genética , Epigenômica , Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilação , Metiltransferases/metabolismo , Células-Tronco Neurais/metabolismo , Processamento de Proteína Pós-Traducional , Fatores de Elongação da Transcrição/metabolismo
5.
Int J Mol Sci ; 21(18)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971769

RESUMO

Contrary to the conserved Elongator composition in yeast, animals, and plants, molecular functions and catalytic activities of the complex remain controversial. Elongator was identified as a component of elongating RNA polymerase II holoenzyme in yeast, animals, and plants. Furthermore, it was suggested that Elonagtor facilitates elongation of transcription via histone acetyl transferase activity. Accordingly, phenotypes of Arabidopsis elo mutants, which show development, growth, or immune response defects, correlate with transcriptional downregulation and the decreased histone acetylation in the coding regions of crucial genes. Plant Elongator was also implicated in other processes: transcription and processing of miRNA, regulation of DNA replication by histone acetylation, and acetylation of alpha-tubulin. Moreover, tRNA modification, discovered first in yeast and confirmed in plants, was claimed as the main activity of Elongator, leading to specificity in translation that might also result indirectly in a deficiency in transcription. Heterologous overexpression of individual Arabidopsis Elongator subunits and their respective phenotypes suggest that single Elongator subunits might also have another function next to being a part of the complex. In this review, we shall present the experimental evidence of all molecular mechanisms and catalytic activities performed by Elongator in nucleus and cytoplasm of plant cells, which might explain how Elongator regulates growth, development, and immune responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Histona Acetiltransferases/metabolismo , Complexos Multienzimáticos/metabolismo , Elongação da Transcrição Genética/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Replicação do DNA/fisiologia , DNA de Plantas/biossíntese , DNA de Plantas/genética , Histona Acetiltransferases/genética , Complexos Multienzimáticos/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA de Plantas/biossíntese , RNA de Plantas/genética
6.
PLoS Genet ; 16(5): e1008755, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32379761

RESUMO

During eukaryotic DNA replication, DNA polymerase alpha/primase (Pol α) initiates synthesis on both the leading and lagging strands. It is unknown whether leading- and lagging-strand priming are mechanistically identical, and whether Pol α associates processively or distributively with the replisome. Here, we titrate cellular levels of Pol α in S. cerevisiae and analyze Okazaki fragments to study both replication initiation and ongoing lagging-strand synthesis in vivo. We observe that both Okazaki fragment initiation and the productive firing of replication origins are sensitive to Pol α abundance, and that both processes are disrupted at similar Pol α concentrations. When the replisome adaptor protein Ctf4 is absent or cannot interact with Pol α, lagging-strand initiation is impaired at Pol α concentrations that still support normal origin firing. Additionally, we observe that activation of the checkpoint becomes essential for viability upon severe depletion of Pol α. Using strains in which the Pol α-Ctf4 interaction is disrupted, we demonstrate that this checkpoint requirement is not solely caused by reduced lagging-strand priming. Our results suggest that Pol α recruitment for replication initiation and ongoing lagging-strand priming are distinctly sensitive to the presence of Ctf4. We propose that the global changes we observe in Okazaki fragment length and origin firing efficiency are consistent with distributive association of Pol α at the replication fork, at least when Pol α is limiting.


Assuntos
DNA Polimerase I/metabolismo , DNA Primase/metabolismo , Replicação do DNA , DNA Fúngico/biossíntese , Proteínas de Ligação a DNA/fisiologia , Origem de Replicação , Proteínas de Saccharomyces cerevisiae/fisiologia , DNA , Replicação do DNA/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Organismos Geneticamente Modificados , Ligação Proteica , Origem de Replicação/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Elongação da Transcrição Genética/fisiologia
7.
Genes Dev ; 33(15-16): 1008-1026, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31123061

RESUMO

Genome replication involves dealing with obstacles that can result from DNA damage but also from chromatin alterations, topological stress, tightly bound proteins or non-B DNA structures such as R loops. Experimental evidence reveals that an engaged transcription machinery at the DNA can either enhance such obstacles or be an obstacle itself. Thus, transcription can become a potentially hazardous process promoting localized replication fork hindrance and stress, which would ultimately cause genome instability, a hallmark of cancer cells. Understanding the causes behind transcription-replication conflicts as well as how the cell resolves them to sustain genome integrity is the aim of this review.


Assuntos
Replicação do DNA/fisiologia , Instabilidade Genômica/genética , Transcrição Gênica/fisiologia , Genoma/genética , Humanos , Neoplasias/fisiopatologia , Elongação da Transcrição Genética/fisiologia
8.
Nat Genet ; 50(11): 1533-1541, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30349116

RESUMO

Eukaryotic RNA polymerase II (Pol II) has been found at both promoters and distal enhancers, suggesting additional functions beyond mRNA production. To understand this role, we sequenced nascent RNAs at single-molecule resolution to unravel the interplay between Pol II initiation, capping and pausing genome-wide. Our analyses identify two pause classes that are associated with different RNA capping profiles. More proximal pausing is associated with less complete capping, less elongation and a more enhancer-like complement of transcription factors than later pausing. Unexpectedly, transcription start sites (TSSs) are predominantly found in constellations composed of multiple divergent pairs. TSS clusters are intimately associated with precise arrays of nucleosomes and correspond with boundaries of transcription factor binding and chromatin modification at promoters and enhancers. TSS architecture is largely unchanged during the dramatic transcriptional changes induced by heat shock. Together, our results suggest that promoter- and enhancer-associated Pol II is a regulatory nexus for integrating information across TSS ensembles.


Assuntos
Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , RNA/análise , Análise de Sequência de RNA/métodos , Elongação da Transcrição Genética , Transcrição Gênica , Sequência de Bases , Humanos , Células K562 , Ligação Proteica , RNA/metabolismo , Capuzes de RNA/metabolismo , RNA Polimerase II/metabolismo , Elongação da Transcrição Genética/fisiologia , Sítio de Iniciação de Transcrição
9.
Trends Biochem Sci ; 43(9): 654-667, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30145998

RESUMO

Metazoan genomes are broadly transcribed by RNA polymerase II (RNAPII), but surprisingly few of these RNAs encode proteins. Accordingly, there is great interest in understanding the origins and potential roles of the vast array of non-coding RNAs (ncRNAs) that are produced. We present here emerging evidence that the act of transcription and the presence of nascent RNA at a locus is often central to function, rather than specific ncRNA sequences or structures. We highlight examples wherein transcription elongation through a regulatory region modulates chromatin structure and/or transcription factor occupancy, and describe how nascent RNA contributes to the local epigenetic landscape through sequence-independent interactions with chromatin regulators. Finally, we discuss current strategies for probing the potential functions of ncRNA transcription.


Assuntos
Cromatina/metabolismo , Epigênese Genética/fisiologia , RNA Polimerase II/metabolismo , RNA não Traduzido/biossíntese , Elongação da Transcrição Genética/fisiologia , Animais , Humanos
10.
PLoS Pathog ; 14(5): e1007101, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29813136

RESUMO

Trypanosoma brucei undergoes life cycle form transitions from trypomastigotes to epimastigotes in the insect vector by re-positioning the mitochondrial genome and re-locating the flagellum and flagellum-associated cytoskeletal structures. The mechanism underlying these dramatic morphology transitions remains poorly understood. Here we report the regulatory role of the orphan kinesin KIN-E in controlling trypanosome morphology transitions. KIN-E localizes to the flagellum and is enriched at the flagellar tip, and this localization depends on the C-terminal m-calpain domain III-like domains. Depletion of KIN-E in the trypomastigote form of T. brucei causes major morphology changes and a gradual increase in the level of EP procyclin, generating epimastigote-like cells. Mechanistically, through its C-terminal importin α-like domain, KIN-E targets FLAM3, a flagellar protein involved in morphology transitions, to the flagellum to promote elongation of the flagellum attachment zone and positioning of the flagellum and flagellum-associated cytoskeletal structure, thereby maintaining trypomastigote cell morphology. Our findings suggest that morphology transitions in trypanosomes require KIN-E-mediated transport of FLAM3 to the flagellum.


Assuntos
Flagelos/metabolismo , Cinesinas/fisiologia , Trypanosoma brucei brucei/ultraestrutura , Sequência de Aminoácidos , Proteínas de Transporte/fisiologia , Proteínas do Citoesqueleto , Citoesqueleto/ultraestrutura , Flagelos/ultraestrutura , Cinesinas/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Estrutura Secundária de Proteína , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/fisiologia , Interferência de RNA/fisiologia , Alinhamento de Sequência , Elongação da Transcrição Genética/fisiologia , Trypanosoma brucei brucei/metabolismo
11.
PLoS One ; 13(3): e0194438, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29570714

RESUMO

Transcription as the key step in gene expression is a highly regulated process. The speed of transcription elongation depends on the underlying gene sequence and varies on a gene by gene basis. The reason for this sequence dependence is not known in detail. Recently, our group studied the cross talk between the nascent RNA and the transcribing RNA polymerase by screening the Escherichia coli genome for RNA sequences with high affinity to RNA Pol by performing genomic SELEX. This approach led to the identification of RNA polymerase-binding APtamers termed "RAPs". RAPs can have positive and negative effects on gene expression. A subgroup is able to downregulate transcription via the activity of the termination factor Rho. In this study, we used a similar SELEX setup using yeast genomic DNA as source of RNA sequences and highly purified yeast RNA Pol II as bait and obtained almost 1300 yeast-derived RAPs. Yeast RAPs are found throughout the genome within genes and antisense to genes, they are overrepresented in the non-transcribed strand of yeast telomeres and underrepresented in intergenic regions. Genes harbouring a RAP are more likely to show lower mRNA levels. By determining the endogenous expression levels as well as using a reporter system, we show that RAPs located within coding regions can reduce the transcript level downstream of the RAP. Here we demonstrate that RAPs represent a novel type of regulatory RNA signal in Saccharomyces cerevisiae that act in cis and interfere with the elongating transcription machinery to reduce the transcriptional output.


Assuntos
Proteínas Fúngicas/metabolismo , RNA Polimerase II/metabolismo , RNA Fúngico/biossíntese , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Elongação da Transcrição Genética/fisiologia , Proteínas Fúngicas/genética , RNA Polimerase II/genética , RNA Fúngico/genética , Saccharomyces cerevisiae/genética
12.
Biochem J ; 474(24): 4053-4064, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29101286

RESUMO

In bacterial RNA polymerase (RNAP), conserved region 3.2 of the σ subunit was proposed to contribute to promoter escape by interacting with the 5'-end of nascent RNA, thus facilitating σ dissociation. RNAP activity during transcription initiation can also be modulated by protein factors that bind within the secondary channel and reach the enzyme active site. To monitor the kinetics of promoter escape in real time, we used a molecular beacon assay with fluorescently labeled σ70 subunit of Escherichia coli RNAP. We show that substitutions and deletions in σ region 3.2 decrease the rate of promoter escape and lead to accumulation of inactive complexes during transcription initiation. Secondary channel factors differentially regulate this process depending on the promoter and mutations in σ region 3.2. GreA generally increase the rate of promoter escape; DksA also stimulates promoter escape on certain templates, while GreB either stimulates or inhibits this process depending on the template. When observed, the stimulation of promoter escape correlates with the accumulation of stressed transcription complexes with scrunched DNA, while changes in the RNA 5'-end structure modulate promoter clearance. Thus, the initiation-to-elongation transition is controlled by a complex interplay between RNAP-binding protein factors and the growing RNA chain.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fator sigma/metabolismo , Elongação da Transcrição Genética/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutação , Estrutura Secundária de Proteína , Fator sigma/genética , Fatores de Transcrição/genética , Fatores de Elongação da Transcrição/genética
13.
Transcription ; 8(3): 150-161, 2017 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-28301288

RESUMO

This review is focused on recent progress in understanding how Escherichia coli RNAP polymerase translocates along the DNA template and the factors that affect this movement. We discuss the fundamental aspects of RNAP translocation, template signals that influence forward or backward movement, and host or phage factors that modulate translocation.


Assuntos
DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Elongação da Transcrição Genética/fisiologia , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética
14.
Nat Commun ; 8: 14076, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28134250

RESUMO

The intrinsically disordered scaffold proteins AFF1/4 and the transcription elongation factors ELL1/2 are core components of the super elongation complex required for HIV-1 proviral transcription. Here we report the 2.0-Å resolution crystal structure of the human ELL2 C-terminal domain bound to its 50-residue binding site on AFF4, the ELLBow. The ELL2 domain has the same arch-shaped fold as the tight junction protein occludin. The ELLBow consists of an N-terminal helix followed by an extended hairpin that we refer to as the elbow joint, and occupies most of the concave surface of ELL2. This surface is important for the ability of ELL2 to promote HIV-1 Tat-mediated proviral transcription. The AFF4-ELL2 interface is imperfectly packed, leaving a cavity suggestive of a potential binding site for transcription-promoting small molecules.


Assuntos
Síndrome da Imunodeficiência Adquirida/genética , HIV-1/fisiologia , Provírus/fisiologia , Proteínas Repressoras/química , Elongação da Transcrição Genética/fisiologia , Fatores de Elongação da Transcrição/química , Síndrome da Imunodeficiência Adquirida/virologia , Sítios de Ligação/genética , Sistemas CRISPR-Cas , Cristalografia por Raios X , Regulação Viral da Expressão Gênica , Técnicas de Inativação de Genes , HIV-1/patogenicidade , Células HeLa , Humanos , Células Jurkat , Mutagênese , Ligação Proteica/genética , Domínios Proteicos/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo , Ativação Viral/genética , Latência Viral/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
15.
Transcription ; 8(2): 99-105, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28072558

RESUMO

Pausing by RNA polymerase is a major mechanism that regulates transcription elongation but can cause conflicts with fellow RNA polymerases and other cellular machineries. Here, we summarize our recent finding that misincorporation could be a major source of transcription pausing in vivo, and discuss the role of misincorporation-induced pausing.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Elongação da Transcrição Genética/fisiologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
16.
J Biol Chem ; 291(43): 22703-22713, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27601472

RESUMO

We describe here the identification and functional characterization of the enzyme O-GlcNAcase (OGA) as an RNA polymerase II elongation factor. Using in vitro transcription elongation assays, we show that OGA activity is required for elongation in a crude nuclear extract system, whereas in a purified system devoid of OGA the addition of rOGA inhibited elongation. Furthermore, OGA is physically associated with the known RNA polymerase II (pol II) pausing/elongation factors SPT5 and TRIM28-KAP1-TIF1ß, and a purified OGA-SPT5-TIF1ß complex has elongation properties. Lastly, ChIP-seq experiments show that OGA maps to the transcriptional start site/5' ends of genes, showing considerable overlap with RNA pol II, SPT5, TRIM28-KAP1-TIF1ß, and O-GlcNAc itself. These data all point to OGA as a component of the RNA pol II elongation machinery regulating elongation genome-wide. Our results add a novel and unexpected dimension to the regulation of elongation by the insertion of O-GlcNAc cycling into the pol II elongation regulatory dynamics.


Assuntos
Antígenos de Neoplasias/química , Histona Acetiltransferases/química , Hialuronoglucosaminidase/química , Proteínas Nucleares/química , RNA Polimerase II/química , Proteínas Repressoras/química , Fatores de Elongação da Transcrição/química , Antígenos de Neoplasias/metabolismo , Histona Acetiltransferases/metabolismo , Humanos , Hialuronoglucosaminidase/metabolismo , Proteínas Nucleares/metabolismo , RNA Polimerase II/metabolismo , Proteínas Repressoras/metabolismo , Elongação da Transcrição Genética/fisiologia , Fatores de Elongação da Transcrição/metabolismo , Proteína 28 com Motivo Tripartido
17.
Cell Rep ; 16(5): 1366-1378, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27425608

RESUMO

BRD4 governs pathological cardiac gene expression by binding acetylated chromatin, resulting in enhanced RNA polymerase II (Pol II) phosphorylation and transcription elongation. Here, we describe a signal-dependent mechanism for the regulation of BRD4 in cardiomyocytes. BRD4 expression is suppressed by microRNA-9 (miR-9), which targets the 3' UTR of the Brd4 transcript. In response to stress stimuli, miR-9 is downregulated, leading to derepression of BRD4 and enrichment of BRD4 at long-range super-enhancers (SEs) associated with pathological cardiac genes. A miR-9 mimic represses stimulus-dependent targeting of BRD4 to SEs and blunts Pol II phosphorylation at proximal transcription start sites, without affecting BRD4 binding to SEs that control constitutively expressed cardiac genes. These findings suggest that dynamic enrichment of BRD4 at SEs genome-wide serves a crucial role in the control of stress-induced cardiac gene expression and define a miR-dependent signaling mechanism for the regulation of chromatin state and Pol II phosphorylation.


Assuntos
MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Regiões 3' não Traduzidas/genética , Acetilação , Animais , Proteínas de Ciclo Celular , Cromatina/metabolismo , Regulação para Baixo/fisiologia , Humanos , Camundongos , Fosforilação/fisiologia , RNA Polimerase II/metabolismo , Ratos , Transdução de Sinais/fisiologia , Elongação da Transcrição Genética/fisiologia , Sítio de Iniciação de Transcrição/fisiologia
18.
Biochem Biophys Res Commun ; 477(4): 927-931, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27378424

RESUMO

The porcine reproductive and respiratory syndrome virus (PRRSV) causes a persistent threat to the swine industry, especially when highly pathogenic PRRSV (HP-PRRSV) emerges. Previous studies have indicated that PRRSV RNA synthesis was correlated with HP-PRRSV virulence. PRRSV RNA synthesis includes genomic RNA and sub-genomic mRNA, and these processes require minus-strand RNA as a template. However, the mechanisms involved in PRRSV minus-strand RNA synthesis are not fully understood. A mini-genome system can be used to assess viral replication mechanisms and to evaluate the effects of potential antiviral drugs on viral replicase activities. In this study, we developed a mini-genome system that uses firefly luciferase as a reporter. Based on this system, we found that PRRSV RNA-dependent RNA polymerase nsp9 alone failed to activate virus minus-strand RNA synthesis. We also demonstrated that combinations of open reading frames 1a (ORF1a) and ORF1b are necessary for viral minus-strand RNA synthesis.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fases de Leitura Aberta/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , RNA Viral/genética , Elongação da Transcrição Genética/fisiologia , Ativação Viral/genética , Animais , Sequência de Bases , Mapeamento Cromossômico/métodos , Dados de Sequência Molecular , Suínos
19.
Proc Natl Acad Sci U S A ; 113(11): 2946-51, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26929337

RESUMO

During DNA transcription, RNA polymerases often adopt inactive backtracked states. Recovery from backtracks can occur by 1D diffusion or cleavage of backtracked RNA, but how polymerases make this choice is unknown. Here, we use single-molecule optical tweezers experiments and stochastic theory to show that the choice of a backtrack recovery mechanism is determined by a kinetic competition between 1D diffusion and RNA cleavage. Notably, RNA polymerase I (Pol I) and Pol II recover from shallow backtracks by 1D diffusion, use RNA cleavage to recover from intermediary depths, and are unable to recover from extensive backtracks. Furthermore, Pol I and Pol II use distinct mechanisms to avoid nonrecoverable backtracking. Pol I is protected by its subunit A12.2, which decreases the rate of 1D diffusion and enables transcript cleavage up to 20 nt. In contrast, Pol II is fully protected through association with the cleavage stimulatory factor TFIIS, which enables rapid recovery from any depth by RNA cleavage. Taken together, we identify distinct backtrack recovery strategies of Pol I and Pol II, shedding light on the evolution of cellular functions of these key enzymes.


Assuntos
RNA Polimerase II/metabolismo , RNA Polimerase I/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Elongação da Transcrição Genética/fisiologia , Difusão , Modelos Químicos , Movimento (Física) , Pinças Ópticas , Ligação Proteica , Subunidades Proteicas , RNA Polimerase I/química , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Fúngico/biossíntese , RNA Mensageiro/biossíntese , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Deleção de Sequência , Processos Estocásticos , Tempo , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/metabolismo
20.
Biochem Biophys Res Commun ; 470(2): 405-410, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26773501

RESUMO

Cdt1 is a protein essential for initiation of DNA replication; it recruits MCM helicase, a core component of the replicative DNA helicase, onto replication origins. In our previous study, we showed that addition of excess Cdt1 inhibits nascent strand elongation during DNA replication in Xenopus egg extracts. In the present study, we investigated the mechanism behind the inhibitory effect of Cdt1. We found that addition of recombinant Cdt1 inhibited nascent DNA synthesis in a reinitiation-independent manner. To identify the mechanism by which Cdt1 inhibits nascent strand elongation, the effect of Cdt1 on loading of Mcm4 and Rpa70 onto chromatin was examined. The results showed that Cdt1 suppressed the excessive Rpa70 binding caused by extensive, aphidicolin-induced DNA unwinding; this unwinding occurs between stalled DNA polymerases and advancing replication forks. These findings suggested that excess Cdt1 suppressed the progression of replication forks.


Assuntos
Proteínas de Ciclo Celular/genética , Replicação do DNA/genética , Óvulo/fisiologia , Elongação da Transcrição Genética/fisiologia , Animais , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...