Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Lipids Health Dis ; 23(1): 144, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760797

RESUMO

BACKGROUND: Cancer-associated cachexia (CAC) arises from malignant tumors and leads to a debilitating wasting syndrome. In the pathophysiology of CAC, the depletion of fat plays an important role. The mechanisms of CAC-induced fat loss include the enhancement of lipolysis, inhibition of lipogenesis, and browning of white adipose tissue (WAT). However, few lipid-metabolic enzymes have been reported to be involved in CAC. This study hypothesized that ELOVL6, a critical enzyme for the elongation of fatty acids, may be involved in fat loss in CAC. METHODS: Transcriptome sequencing technology was used to identify CAC-related genes in the WAT of a CAC rodent model. Then, the expression level of ELOVL6 and the fatty acid composition were analyzed in a large clinical sample. Elovl6 was knocked down by siRNA in 3T3-L1 mouse preadipocytes to compare with wild-type 3T3-L1 cells treated with tumor cell conditioned medium. RESULTS: In the WAT of patients with CAC, a significant decrease in the expression of ELOVL6 was found, which was linearly correlated with the extent of body mass reduction. Gas chromatographic analysis revealed an increase in palmitic acid (C16:0) and a decrease in linoleic acid (C18:2n-6) in these tissue samples. After treatment with tumor cell-conditioned medium, 3T3-L1 mouse preadipocytes showed a decrease in Elovl6 expression, and Elovl6-knockdown cells exhibited a reduction in preadipocyte differentiation and lipogenesis. Similarly, the knockdown of Elovl6 in 3T3-L1 cells resulted in a significant increase in palmitic acid (C16:0) and a marked decrease in oleic acid (C18:1n-9) content. CONCLUSION: Overall, the expression of ELOVL6 was decreased in the WAT of CAC patients. Decreased expression of ELOVL6 might induce fat loss in CAC patients by potentially altering the fatty acid composition of adipocytes. These findings suggest that ELOVL6 may be used as a valuable biomarker for the early diagnosis of CAC and may hold promise as a target for future therapies.


Assuntos
Células 3T3-L1 , Tecido Adiposo Branco , Caquexia , Elongases de Ácidos Graxos , Neoplasias , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Animais , Caquexia/genética , Caquexia/metabolismo , Caquexia/patologia , Camundongos , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/complicações , Neoplasias/patologia , Masculino , Feminino , Ácido Palmítico/metabolismo , Lipogênese/genética , Pessoa de Meia-Idade , Ácidos Graxos/metabolismo
2.
Fish Shellfish Immunol ; 149: 109530, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570120

RESUMO

The elongation of very long chain fatty acids (ELOVL) proteins are key rate-limiting enzymes that catalyze fatty acid synthesis to form long chain fatty acids. ELOVLs also play regulatory roles in the lipid metabolic reprogramming induced by mammalian viruses. However, little is known about the roles of fish ELOVLs during virus infection. Here, a homolog of ELOVL7 was cloned from Epinephelus coioides (EcELOVL7a), and its roles in red-spotted grouper nervous necrosis virus (RGNNV) and Singapore grouper iridovirus (SGIV) infection were investigated. The transcription level of EcELOVL7a was significantly increased upon RGNNV and SGIV infection or other pathogen-associated molecular patterns stimulation in grouper spleen (GS) cells. Subcellular localization analysis showed that EcELOVL7a encoded an endoplasmic reticulum (ER) related protein. Overexpression of EcELOVL7a promoted the viral production and virus release during SGIV and RGNNV infection. Furthermore, the lipidome profiling showed that EcELOVL7a overexpression reprogrammed cellular lipid components in vitro, evidenced by the increase of glycerophospholipids, sphingolipids and glycerides components. In addition, VLCFAs including FFA (20:2), FFA (20:4), FFA (22:4), FFA (22:5) and FFA (24:0), were enriched in EcELOVL7a overexpressed cells. Consistently, EcELOVL7a overexpression upregulated the transcription level of the key lipid metabolic enzymes, including fatty acid synthase (FASN), phospholipase A 2α (PLA 2α), and cyclooxygenases -2 (COX-2), LPIN1, and diacylglycerol acyltransferase 1α (DGAT1α). Together, our results firstly provided the evidence that fish ELOVL7a played an essential role in SGIV and RGNNV replication by reprogramming lipid metabolism.


Assuntos
Bass , Infecções por Vírus de DNA , Elongases de Ácidos Graxos , Doenças dos Peixes , Proteínas de Peixes , Metabolismo dos Lipídeos , Replicação Viral , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/imunologia , Bass/imunologia , Bass/genética , Elongases de Ácidos Graxos/genética , Nodaviridae/fisiologia , Regulação da Expressão Gênica , Acetiltransferases/genética , Acetiltransferases/metabolismo , Infecções por Birnaviridae/veterinária , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/virologia , Perfilação da Expressão Gênica/veterinária , Iridoviridae/fisiologia , Iridovirus/fisiologia , Filogenia , Alinhamento de Sequência/veterinária , Sequência de Aminoácidos , Reprogramação Metabólica
3.
Mol Carcinog ; 63(6): 1079-1091, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38426809

RESUMO

This study was to explore the role of ELOVL6 in the development of head and neck squamous cell carcinoma (HNSCC). Considering its previously identified oncogenic role in hepatocellular carcinoma. ELOVL6 gene expression, clinicopathological analysis, enrichment analysis, and immune infiltration analysis were based on the data from Gene Expression Omnibus and The Cancer Genome Atlas, with additional bioinformatics analyses performed. Human HNSCC tissue microarray and cell lines were used. The expression of ELOVL6 in HNSCC was detected by quantitative polymerase chain reaction, immunohistochemistry assay, and western blot analysis. The proliferation ability of HNSCC cells, invasion, and apoptosis were evaluated using cell counting kit-8 method, Transwell assay, and flow cytometry, respectively. Based on the data derived from the cancer databases and our HNSCC cell and tissue studies, we found that ELOVL6 was overexpressed in HNSCC. Moreover, ELOVL6 expression level had a positive correlation with clinicopathology of HNSCC. Gene set enrichment analysis showed that ELOVL6 affected the occurrence of HNSCC through WNT signaling pathway. Functional experiments demonstrated that ELOVL6 knockdown inhibited the proliferation and invasion of HNSCC cells while promoting apoptosis. Additionally, compound 3f, an agonist of WNT/ß-catenin signaling pathway, enhances the effect of ELOVL6 on the progression of HNSCC cells. ELOVL6 is upregulated in HNSCC and promotes the development of HNSCC cells by inducing WNT/ß-catenin signaling pathway. ELOVL6 stands a potential target for the treatment of HNSCC and a prognosis indicator of human HNSCC.


Assuntos
Apoptose , Proliferação de Células , Progressão da Doença , Elongases de Ácidos Graxos , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas de Cabeça e Pescoço , Via de Sinalização Wnt , Humanos , Via de Sinalização Wnt/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Proliferação de Células/genética , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Prognóstico , Movimento Celular/genética
4.
J Biol Chem ; 300(2): 105600, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38335573

RESUMO

The condensation of acetyl-CoA with malonyl-acyl carrier protein (ACP) by ß-ketoacyl-ACP synthase III (KAS III, FabH) and decarboxylation of malonyl-ACP by malonyl-ACP decarboxylase are the two pathways that initiate bacterial fatty acid synthesis (FAS) in Escherichia coli. In addition to these two routes, we report that Pseudomonas putida F1 ß-ketoacyl-ACP synthase I (FabB), in addition to playing a key role in fatty acid elongation, also initiates FAS in vivo. We report that although two P. putida F1 fabH genes (PpfabH1 and PpfabH2) both encode functional KAS III enzymes, neither is essential for growth. PpFabH1 is a canonical KAS III similar to E. coli FabH whereas PpFabH2 catalyzes condensation of malonyl-ACP with short- and medium-chain length acyl-CoAs. Since these two KAS III enzymes are not essential for FAS in P. putida F1, we sought the P. putida initiation enzyme and unexpectedly found that it was FabB, the elongation enzyme of the oxygen-independent unsaturated fatty acid pathway. P. putida FabB decarboxylates malonyl-ACP and condenses the acetyl-ACP product with malonyl-ACP for initiation of FAS. These data show that P. putida FabB, unlike the paradigm E. coli FabB, can catalyze the initiation reaction in FAS.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase , Pseudomonas putida , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Proteína de Transporte de Acila/metabolismo , Escherichia coli/metabolismo , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Ácidos Graxos , Glicogênio Sintase , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
5.
J Forensic Sci ; 69(3): 869-879, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308398

RESUMO

Aging is a complex process influenced by genetic, epigenetic, and environmental factors that lead to tissue deterioration and frailty. Epigenetic mechanisms, such as DNA methylation, play a significant role in gene expression regulation and aging. This study presents a new age estimation model developed for the Turkish population using blood samples. Eight CpG sites in loci TOM1L1, ELOVL2, ASPA, FHL2, C1orf132, CCDC102B, cg07082267, and RASSF5 were selected based on their correlation with age. Methylation patterns of these sites were analyzed in blood samples from 100 volunteers, grouped into age categories (20-35, 36-55, and ≥56). Sensitivity analysis indicated a reliable performance with DNA inputs ≥1 ng. Statistical modeling, utilizing Multiple Linear Regression, underscores the reliability of the primary 6-CpG model, excluding cg07082267 and TOM1L1. This model demonstrates strong correlations with chronological age (r = 0.941) and explains 88% of the age variance with low error rates (MAE = 4.07, RMSE = 5.73 years). Validation procedures, including a training-test split and fivefold cross-validation, consistently confirm the model's accuracy and consistency. The study indicates minimal variation in error scores across age cohorts and no significant gender differences. The developed model showed strong predictive accuracy, with the ability to estimate age within certain prediction intervals. This study contributes to the age prediction by using DNA methylation patterns, which can have disparate applications, including forensic and clinical assessments.


Assuntos
Envelhecimento , Amidoidrolases , Ilhas de CpG , Metilação de DNA , Epigênese Genética , Elongases de Ácidos Graxos , Fatores de Transcrição , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Idoso , Elongases de Ácidos Graxos/genética , Modelos Lineares , Turquia , Idoso de 80 Anos ou mais , Genética Forense/métodos , Reprodutibilidade dos Testes , Modelos Estatísticos , Proteínas com Homeodomínio LIM/genética , Proteínas Musculares/genética
6.
Biofactors ; 50(1): 89-100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37470206

RESUMO

The synthesis rates of n-3 and n-6 polyunsaturated fatty acids (PUFAs) in rodents and humans are not agreed upon and depend on substrate availability independently of the capacity for synthesis. Therefore, we aimed to assess the activities of the enzymes for n-3 and n-6 PUFA synthesis pathways in liver, brain, testicle, kidney, heart, and lung, in relation to their protein concentration levels. Eight-week-old Balb/c mice (n = 8) were fed a standard chow diet (6.2% fat, 18.6% protein, and 44.2% carbohydrates) until 14 weeks of age, anesthetized with isoflurane and tissue samples were collected (previously perfused) and stored at -80°C. The protein concentration of the enzymes (Δ-6D, Δ-5D, Elovl2, and Elovl5) were assessed by ELISA kits; their activities were assayed using specific PUFA precursors and measuring the respective PUFA products as fatty acid methyl esters by gas chromatographic analysis. The liver had the highest capacity for PUFA biosynthesis, with limited activity in the brain, testicles, and kidney, while we failed to detect activity in the heart and lung. The protein concentration and activity of the enzymes were significantly correlated. Furthermore, Δ-6D, Δ-5D, and Elovl2 have a higher affinity for n-3 PUFA precursors compared to n-6 PUFA. The capacity for PUFA synthesis in mice mainly resides in the liver, with enzymes having preference for n-3 PUFAs.


Assuntos
Ácidos Graxos Dessaturases , Ácidos Graxos Ômega-3 , Humanos , Masculino , Animais , Camundongos , Ácidos Graxos Dessaturases/genética , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Testículo/metabolismo , Fígado/metabolismo , Ácidos Graxos Insaturados/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Encéfalo/metabolismo , Rim/metabolismo
7.
Int J Mol Sci ; 24(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38139442

RESUMO

Colorectal cancer (CRC) cells show some alterations in lipid metabolism, including an increased fatty acid elongation. This study was focused on investigating the effect of a small interfering RNA (siRNA)-mediated decrease in fatty acid elongation on CRC cells' survival and migration. In our study, the elongase 4 (ELOVL4) and elongase 6 (ELOVL6) genes were observed to be highly overexpressed in both the CRC tissue obtained from patients and the CRC cells cultured in vitro (HT-29 and WiDr cell lines). The use of the siRNAs for ELOVL4 and ELOVL6 reduced cancer cell proliferation and migration rates. These findings indicate that the altered elongation process decreased the survival of CRC cells, and in the future, fatty acid elongases can be potentially good targets in novel CRC therapy.


Assuntos
Acetiltransferases , Neoplasias Colorretais , Humanos , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Proliferação de Células/genética , Ácidos Graxos/metabolismo , Neoplasias Colorretais/genética
8.
Eur J Med Res ; 28(1): 532, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37981715

RESUMO

BACKGROUND: The very-long-chain fatty acid elongase (ELOVL) family plays essential roles in lipid metabolism and cellular functions. This comprehensive review explores the structural characteristics, functional properties, and physiological significance of individual ELOVL isoforms, providing insights into lipid biosynthesis, cell membrane dynamics, and signaling pathways. AIM OF REVIEW: This review aims to highlight the significance of the ELOVL family in normal physiology and disease development. By synthesizing current knowledge, we underscore the relevance of ELOVLs as potential therapeutic targets. KEY SCIENTIFIC CONCEPTS OF REVIEW: We emphasize the association between dysregulated ELOVL expression and diseases, including metabolic disorders, skin diseases, neurodegenerative conditions, and cancer. The intricate involvement of ELOVLs in cancer biology, from tumor initiation to metastasis, highlights their potential as targets for anticancer therapies. Additionally, we discuss the prospects of using isoform-specific inhibitors and activators for metabolic disorders and cancer treatment. The identification of ELOVL-based biomarkers may advance diagnostics and personalized medicine. CONCLUSION: The ELOVL family's multifaceted roles in lipid metabolism and cellular physiology underscore its importance in health and disease. Understanding their functions offers potential therapeutic avenues and personalized treatments.


Assuntos
Conhecimento , Doenças Metabólicas , Humanos , Elongases de Ácidos Graxos/genética , Membrana Celular
9.
Open Biol ; 13(10): 230196, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37875161

RESUMO

Previous data revealed the unexpected presence of genes encoding for long-chain polyunsaturated fatty acid (LC-PUFA) biosynthetic enzymes in transcriptomes from freshwater gammarids but not in marine species, even though closely related species were compared. This study aimed to clarify the origin and occurrence of selected LC-PUFA biosynthesis gene markers across all published gammarid transcriptomes. Through systematic searches, we confirmed the widespread occurrence of sequences from seven elongases and desaturases involved in LC-PUFA biosynthesis, in transcriptomes from freshwater gammarids but not marine species, and clarified that such occurrence is independent from the gammarid species and geographical origin. The phylogenetic analysis established that the retrieved elongase and desaturase sequences were closely related to bdelloid rotifers, confirming that multiple transcriptomes from freshwater gammarids contain contaminating rotifers' genetic material. Using the Adineta steineri genome, we investigated the genomic location and exon-intron organization of the elongase and desaturase genes, establishing they are all genome-anchored and, importantly, identifying instances of horizontal gene transfer. Finally, we provide compelling evidence demonstrating Bdelloidea desaturases and elongases enable these organisms to perform all the reactions for de novo biosynthesis of PUFA and, from them, LC-PUFA, an advantageous trait when considering the low abundance of these essential nutrients in freshwater environments.


Assuntos
Ácidos Graxos Dessaturases , Transcriptoma , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Filogenia , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados , Água Doce
10.
Free Radic Biol Med ; 208: 708-717, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37726091

RESUMO

We have previously shown dysregulated lipid metabolism in tissues of glutathione peroxidase 1 (GPX1) overexpressing (OE) or deficient (KO) mice. This study explored underlying mechanisms of GPX1 in regulating tissue fatty acid (FA) biosynthesis. GPX1 OE, KO, and wild-type (WT) mice (n = 5, male, 3-6 months old) were fed a Se-adequate diet (0.3 mg/kg) and assayed for liver and adipose tissue FA profiles and mRNA levels of key enzymes of FA biosynthesis and redox-responsive transcriptional factors (TFs). These three genotypes of mice (n = 5) were injected intraperitoneally with diquat, ebselen, and N-acetylcysteine (NAC) at 10, 50, and 50 mg/kg of body weight, respectively, and killed at 0 and 12 h after the injections to detect mRNA levels of FA elongases and desaturases and the TFs in the liver and adipose tissue. A luciferase reporter assay with targeted deletions of mouse Elovl3 promoter was performed to determine transcriptional regulations of the gene by GPX1 mimic ebselen in HEK293T cells. Compared with WT, GPX1 OE and KO mice had 9-42% lower (p < 0.05) and 36-161% higher (p < 0.05) concentrations of C20:0, C22:0, and C24:0 in these two tissues, respectively, along with reciprocal increases and decreases (p < 0.05) of Elovl3 transcripts. Ebselen and NAC decreased (p < 0.05), whereas diquat decreased (p < 0.05), Elovl3 transcripts in the two tissues. Overexpression and knockout of GPX1 decreased (p < 0.05) and increased (p < 0.05) ELOVL3 levels in the two tissues, respectively. Three TFs (GABP, SP1, and DBP) were identified to bind the Elovl3 promoter (-1164/+33 base pairs). Deletion of DBP (-98/-86 base pairs) binding domain in the promoter attenuated (13%, p < 0.05) inhibition of ebselen on Elovl3 promoter activation. In summary, GPX1 overexpression down-regulated very long-chain FA biosynthesis via transcriptional inhibition of the Elovl3 promoter activation.


Assuntos
Glutationa Peroxidase GPX1 , Selênio , Humanos , Masculino , Camundongos , Animais , Lactente , Selênio/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Diquat/metabolismo , Células HEK293 , Camundongos Knockout , RNA Mensageiro/metabolismo , Fígado/metabolismo
11.
Medicine (Baltimore) ; 102(36): e35013, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682172

RESUMO

The aim of this paper was to reveal the correlation between the expression of ELOVL fatty acid elongase 6 (ELOVL6) gene in lung adenocarcinoma (LUAD) and its clinical significance, immune cell infiltration level and prognosis. Expression profile data of ELOVL6 mRNA were collected from the cancer genome atlas database to analyze the differences in ELOVL6 mRNA expression in LUAD tissues and normal lung tissues, and to analyze the correlation between ELOVL6 and information on clinicopathological features. Based on TIMER database, TISDIB database and GEPIA2 database, the correlation between ELOVL6 expression and tumor immune cell infiltration in LUAD was analyzed. Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses of ELOVL6-related co-expressed genes were performed to identify the involved signaling pathways and to construct their co-expressed gene protein interaction networks. Drugs affected by ELOVL6 expression were screened based on the Cell Miner database. These findings suggest that ELOVL6 plays an important role in the course of LUAD, and the expression level of this gene has a close relationship with clinicopathological characteristics and survival prognosis, and has the potential to become a prognostic marker and therapeutic target for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Elongases de Ácidos Graxos , Neoplasias Pulmonares , Humanos , Adenocarcinoma/genética , Adenocarcinoma de Pulmão/genética , Biologia Computacional , Terapia de Imunossupressão , Neoplasias Pulmonares/genética , Elongases de Ácidos Graxos/genética
12.
Transgenic Res ; 32(5): 411-421, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37615877

RESUMO

n-3 polyunsaturated fatty acids (n-3 PUFAs), including α-linolenic acid and eicosapentaenoic acid (EPA), are essential nutrients for vertebrates including humans. Vertebrates are n-3 PUFA-auxotrophic; hence, dietary intake of n-3 PUFAs is required for their normal physiology and development. Although fish meal and oil have been utilized as primary sources of n-3 PUFAs by humans and aquaculture, these traditional n-3 PUFA sources are expected to be exhausted because of the increasing consumption requirements of humans. Hence, it is necessary to establish alternative n-3 PUFA sources to reduce the gap between the supply and demand of n-3 PUFAs. Here, we investigated whether insects, which are considered as a novel source of essential nutrients, could store n-3 PUFAs by the forced expression of n-3 PUFA biosynthetic enzymes. We utilized Drosophila as an insect model to generate transgenic strains expressing Caenorhabditis elegans PUFA biosynthetic enzymes and examined their effects on the proportion of fatty acids. The ubiquitous expression of methyl-end desaturase FAT-1 prominently enhanced the proportions of α-linolenic acid, indicating that FAT-1 is useful for metabolic engineering to fortify α-linolenic acid in insect. Furthermore, the ubiquitous expression of nematode front-end desaturases (FAT-3 and FAT-4), PUFA elongase (ELO-1), and FAT-1 led to EPA bioproduction. Hence, nematode PUFA biosynthetic genes may serve as powerful genetic tools for enhancing the proportion of EPA in insects. This study represents the first step toward the establishment of n-3 PUFA-producing insects.


Assuntos
Ácidos Graxos Ômega-3 , Animais , Humanos , Ácidos Graxos Ômega-3/genética , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Elongases de Ácidos Graxos/genética , Ácido alfa-Linolênico , Ácidos Graxos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo
13.
Transgenic Res ; 32(4): 251-264, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37468714

RESUMO

Channel catfish, Ictalurus punctatus, have limited ability to synthesize Ω-3 fatty acids. The ccßA-msElovl2 transgene containing masu salmon, Oncorhynchus masou, elongase gene driven by the common carp, Cyprinus carpio, ß-actin promoter was inserted into the channel catfish melanocortin-4 receptor (mc4r) gene site using the two-hit two-oligo with plasmid (2H2OP) method. The best performing sgRNA resulted in a knockout mutation rate of 92%, a knock-in rate of 54% and a simultaneous knockout/knock-in rate of 49%. Fish containing both the ccßA-msElovl2 transgene knock-in and mc4r knockout (Elovl2) were 41.8% larger than controls at 6 months post-hatch (p = 0.005). Mean eicosapentaenoic acid (EPA, C20:5n-3) levels in Elov2 mutants and mc4r knockout mutants (MC4R) were 121.6% and 94.1% higher than in controls, respectively (p = 0.045; p = 0.025). Observed mean docosahexaenoic acid (DHA, C22:6n-3) and total EPA + DHA content was 32.8% and 45.1% higher, respectively, in Elovl2 transgenic channel catfish than controls (p = 0.368; p = 0.025). To our knowledge this is the first example of genome engineering to simultaneously target transgenesis and knock-out a gene in a commercially important aquaculture species for multiple improved performance traits. With a high transgene integration rate, improved growth, and higher omega-3 fatty acid content, the use of Elovl2 transgenic channel catfish appears beneficial for application on commercial farms.


Assuntos
Carpas , Ictaluridae , Oncorhynchus , Animais , Ictaluridae/genética , Elongases de Ácidos Graxos/genética , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Animais Geneticamente Modificados/genética , Oncorhynchus/genética
14.
Forensic Sci Int Genet ; 66: 102911, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37454509

RESUMO

In a previous study, we have provided the first proof that chronological age can be estimated through DNA methylation (DNAm) patterns in fingernails and toenails. DNAm data of 15 CpGs located in 4 genetic markers (ASPA, EDARADD, ELOVL2 and PDE4C) were evaluated, of which variable selection yielded age prediction models with a mean absolute deviation (MAD) ranging from 7.68 to 9.36 years, depending on the sampling location. Three additional age-associated markers (KLF14, MIR29B2CHG and TRIM59) were assessed in the current study with the goal of increasing the prediction accuracy of the model initially constructed for toenails. This new and improved age estimation assay yielded an MAD of 4.82 and 5.61 years for the training and test set, respectively. The feasibility of the application for post-mortem cases was also demonstrated through testing a limited set of samples collected from deceased individuals.


Assuntos
Envelhecimento , Unhas , Humanos , Criança , Pré-Escolar , Envelhecimento/genética , Elongases de Ácidos Graxos/genética , Ilhas de CpG , Metilação de DNA , Genética Forense , Proteínas com Motivo Tripartido/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
15.
Hum Genet ; 142(8): 1055-1076, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37199746

RESUMO

Fatty acid elongase ELOVL5 is part of a protein family of multipass transmembrane proteins that reside in the endoplasmic reticulum where they regulate long-chain fatty acid elongation. A missense variant (c.689G>T p.Gly230Val) in ELOVL5 causes Spinocerebellar Ataxia subtype 38 (SCA38), a neurodegenerative disorder characterized by autosomal dominant inheritance, cerebellar Purkinje cell demise and adult-onset ataxia. Having previously showed aberrant accumulation of p.G230V in the Golgi complex, here we further investigated the pathogenic mechanisms triggered by p.G230V, integrating functional studies with bioinformatic analyses of protein sequence and structure. Biochemical analysis showed that p.G230V enzymatic activity was normal. In contrast, SCA38-derived fibroblasts showed reduced expression of ELOVL5, Golgi complex enlargement and increased proteasomal degradation with respect to controls. By heterologous overexpression, p.G230V was significantly more active than wild-type ELOVL5 in triggering the unfolded protein response and in decreasing viability in mouse cortical neurons. By homology modelling, we generated native and p.G230V protein structures whose superposition revealed a shift in Loop 6 in p.G230V that altered a highly conserved intramolecular disulphide bond. The conformation of this bond, connecting Loop 2 and Loop 6, appears to be elongase-specific. Alteration of this intramolecular interaction was also observed when comparing wild-type ELOVL4 and the p.W246G variant which causes SCA34. We demonstrate by sequence and structure analyses that ELOVL5 p.G230V and ELOVL4 p.W246G are position-equivalent missense variants. We conclude that SCA38 is a conformational disease and propose combined loss of function by mislocalization and gain of toxic function by ER/Golgi stress as early events in SCA38 pathogenesis.


Assuntos
Ataxias Espinocerebelares , Animais , Camundongos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Ataxia , Elongases de Ácidos Graxos/genética , Sequência de Aminoácidos , Mutação
16.
Fish Physiol Biochem ; 49(3): 425-439, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37074473

RESUMO

The splendid alfonsino Beryx splendens is a commercially important deep-sea fish in East Asian countries. Because the wild stock of this species has been declining, there is an urgent need to develop aquaculture systems. In the present study, we investigated the long-chain polyunsaturated fatty acid (LC-PUFA) requirements of B. splendens, which are known as essential dietary components in many carnivorous marine fish species. The fatty acid profiles of the muscles, liver, and stomach contents of B. splendens suggested that it acquires substantial levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from its natural diet. The functional characterization of a fatty acid desaturase (Fads2) and three elongases (Elovl5, Elovl4a, and Elovl4b) from B. splendens confirmed their enzymatic capabilities in LC-PUFA biosynthesis. Fads2 showed Δ6 and Δ8 bifunctional desaturase activities. Elovl5 showed preferential elongase activities toward C18 and C20 PUFA substrates, whereas Elovl4a and Elovl4b showed activities toward various C18-22 substrates. Given that Fads2 showed no Δ5 desaturase activity and no other fads-like sequence was found in the B. splendens genome, EPA and arachidonic acid cannot be synthesized from C18 precursors; hence, they can be categorized as dietary essential fatty acids in B. splendens. EPA can be converted into DHA in B. splendens via the so-called Sprecher pathway. However, given that fads2 is only expressed in the brain, it is unlikely that the capacity of B. splendens to biosynthesize DHA from EPA can fulfill its physiological requirements. These results will be useful to researchers developing B. splendens aquaculture methods.


Assuntos
Proteínas de Peixes , Peixes , Animais , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Proteínas de Peixes/metabolismo , Peixes/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Essenciais , Ácido Eicosapentaenoico , Ácidos Docosa-Hexaenoicos , Dieta/veterinária , Ácidos Graxos
17.
Artigo em Inglês | MEDLINE | ID: mdl-37080058

RESUMO

The safe and low-cost acquisition of polyunsaturated fatty acids (PUFAs) has become a research hotspot. Fatty acyl elongase 5 (Elovl5), a rate-limiting enzyme for fatty acid elongation, is principally in charge of extending C18 and C20 PUFA substrates. However, the role of elovl5 in regulating pathways and genes involved in PUFA synthesis remain largely unknown. Here, hepatic transcriptome analysis of wild-type and elovl5 knockout (elovl5-/-) zebrafish was performed to identify the potential regulatory targets related to PUFA deposition and synthesis. There were 1579 differentially expressed genes (DEGs), of which 787 had their expression levels increased while 792 had the opposite effect. Peroxisome proliferators-activated receptors (PPAR) signaling pathway was considerably enriched in DEGs, according to the KEGG analysis, in which fatp2, fabp7, and pparδ were engaged in PUFA absorption and deposition. Additionally, transcriptome analysis also revealed that cyp46a1 and cyp2r1 were implicated in the synthesis of bile acids and the metabolism of vitamin D, thus indirectly participating in PUFA biosynthesis and deposition. Finally, the DEGs, which improve PUFA level following elovl5 deletion, were verified through feeding experiment with two prepared diets soybean oil diet and linolenic acid oil diet. This study revealed potential regulatory targets that improve PUFA level after elovl5 deletion in teleosts.


Assuntos
Acetiltransferases , Peixe-Zebra , Animais , Acetiltransferases/genética , Acetiltransferases/metabolismo , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Ácidos Graxos Insaturados/metabolismo , Perfilação da Expressão Gênica , Proteínas de Peixe-Zebra/genética
18.
Forensic Sci Int Genet ; 64: 102846, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36867979

RESUMO

Over the past decade, age prediction based on DNA methylation has become a vastly investigated topic; many age prediction models have been developed based on different DNAm markers and using various tissues. However, the potential of using nails to this end has not yet been explored. Their inherent resistance to decay and ease of sampling would offer an advantage in cases where post-mortem degradation poses challenges concerning sample collection and DNA-extraction. In the current study, clippings from both fingernails and toenails were collected from 108 living test subjects (age range: 0-96 years). The methylation status of 15 CpGs located in 4 previously established age-related markers (ASPA, EDARADD, PDE4C, ELOVL2) was investigated through pyrosequencing of bisulphite converted DNA. Significant dissimilarities in methylation levels were observed between all four limbs, hence both limb-specific age prediction models and prediction models combining multiple sampling locations were developed. When applied to their respective test sets, these models yielded a mean absolute deviation between predicted and chronological age ranging from 5.48 to 9.36 years when using ordinary least squares regression. In addition, the assay was tested on methylation data derived from 5 nail samples collected from deceased individuals, demonstrating its feasibility for application in post-mortem cases. In conclusion, this study provides the first proof that chronological age can be assessed through DNA methylation patterns in nails.


Assuntos
Envelhecimento , Metilação de DNA , Humanos , Recém-Nascido , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Unhas , Elongases de Ácidos Graxos/genética , Marcadores Genéticos , Ilhas de CpG , DNA/genética , Genética Forense
19.
Eur Rev Med Pharmacol Sci ; 27(5): 1954-1970, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930494

RESUMO

OBJECTIVE: This study aims to investigate the correlations between gene alterations induced in Mdr2-knockout (Mdr2-/-) models and liver fibrosis. SUBJECTS AND METHODS: The overlapping genes in Mdr2-/- models were determined and included in logistic regression analysis to identify potential candidates for predicting liver fibrosis. Correlations between the expression levels of the identified candidates and hepatic stellate cells (HSCs) were addressed. Functional enrichment of the identified candidates was also evaluated via bioinformatic analysis. RESULTS: Twenty-two overlapping genes in the GSE4612, GSE8642 and GSE14539 datasets were identified. Univariate and multivariate analysis indicated that ELOVL fatty acid elongase 7 (ELOVL7) was significantly associated with liver fibrosis S ≥ 2 (OR = 11.8, 95% CI = 2.0 - 69.2, p = 0.006). ELOVL7 was significantly upregulated in patients with various types of liver injury including hepatitis B virus (HBV) infection and fatty liver diseases, and in multiple liver injury models, including bile duct ligation (BDL), carbon tetrachloride (CCl4) and paracetamol injection-induced liver damage models (all p < 0.05). The ELOVL7 levels were significantly higher in HSCs than in other liver cells (all p < 0.05) and were significantly upregulated in activated HSCs compared to quiescent HSCs (all p < 0.05). In addition, ELOVL7 expression was positively associated with transforming growth factor ß (TGFß) and bone morphogenic protein 9 (BMP9) expression and negatively associated with BMP7 expression. Bioinformatic analysis of functional enrichment indicated that ELOVL7 is mainly involved in fatty acid synthesis and metabolism. CONCLUSIONS: ELOVL7 could accurately predict advanced liver fibrosis. It might be involved in the activation of HSCs and the TGFß signaling pathway.


Assuntos
Elongases de Ácidos Graxos , Hepatite B Crônica , Hepatite B , Humanos , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Células Estreladas do Fígado/metabolismo , Hepatite B/metabolismo , Vírus da Hepatite B/metabolismo , Hepatite B Crônica/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Fator de Crescimento Transformador beta/metabolismo
20.
Sci Rep ; 13(1): 1080, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658196

RESUMO

Long-chain polyunsaturated fatty acids (LC-PUFA), including eicosapentaenoic acid and docosahexaenoic acid, are the essential fatty acids for organs to maintain various biological functions and processes. The threadfin fish Eleutheronema, with its rich nutritional value especially the high fatty acid contents, has become one of the promising aquaculture species in China and the potential food source of fatty acids for human consumption. However, the molecular basis underlying the biosynthesis of fatty acids in Eleutheronema species is still unknown. The elongation of the very long-chain fatty acids (Elovl) gene family in fish plays several critical roles in LC-PUFA synthesis. Therefore, in the present study, we performed genome-wide identification of the Elovl gene family to study their evolutionary relationships and expression profiles in two threadfin fish species Eleutheronema tetradactylum and Eleutheronema rhadinum, the first representatives from the family Eleutheronema. Phylogenetic analysis revealed that the Elovl genes in Eleutheronema were classified into six subfamilies (elovl1a/1b, elovl4a/4b, elovl5, elovl6/6 l, elovl7a, elovl8b). Phylogenetic, gene structure, motif, and conserved domain analysis indicated that the Elovl genes were highly conserved within the same subfamily in Eleutheronema. In addition, the Elovl genes were distributed in 7/26 chromosomes, while the duplicated gene pair, elovl4a and elovl4b, showed collinear relationships. The predicted secondary structure patterns and the 3D models revealed the highly similar functions and evolutionary conserved structure of Elovl proteins in Eleutheronema. The selection pressure analysis revealed that Elovl genes underwent strong purifying selection during evolution, suggesting that their functions might be evolutionarily conserved in Eleutheronema. Additionally, the expression patterns of Elovl genes in different tissues and species were distinct, indicating the possible functional divergence during evolution in the Eleutheronema genus. Collectively, we provided the first comprehensive genomic information on Elovl genes in threadfin fish Eleutheronema. This study enhanced the understanding of the underlying mechanisms of fatty acids biosynthesis in Eleutheronema, and provided new insights on breeding new varieties of fatty acids-enriched fish with potential benefits to farmers and the health of consumers.


Assuntos
Ácidos Graxos , Peixes , Animais , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Peixes/genética , Genoma , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...