Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 681
Filtrar
1.
ACS Appl Mater Interfaces ; 16(17): 21582-21594, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634578

RESUMO

Excessive blood loss and infections are the prominent risks accounting for mortality and disability associated with acute wounds. Consequently, wound dressings should encompass adequate adhesive, hemostatic, and bactericidal attributes, yet their development remains challenging. This investigation presented the benefits of incorporating a perfluorocarbon nanoemulsion (PPP NE) into a silk-fibroin (SF)-based hydrogel. By stimulating the ß-sheet conformation of the SF chains, PPP NEs drastically shortened the gelation time while augmenting the elasticity, mechanical stability, and viscosity of the hydrogel. Furthermore, the integration of PPP NEs improved hemostatic competence by boosting the affinity between cells and biomacromolecules. It also endowed the hydrogel with ultrasound-controlled bactericidal ability through the inducement of inner cavitation by perfluorocarbon and reactive oxygen species (ROS) generated by the sonosensitizer protoporphyrin. Ultimately, we employed a laparotomy bleeding model and a Staphylococcus aureus-infected trauma wound to demonstrate the first-aid efficacy. Thus, our research suggested an emulsion-incorporating strategy for managing emergency wounds.


Assuntos
Antibacterianos , Emulsões , Fibroínas , Fluorocarbonos , Hidrogéis , Staphylococcus aureus , Fluorocarbonos/química , Fluorocarbonos/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Emulsões/química , Emulsões/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Fibroínas/química , Fibroínas/farmacologia , Camundongos , Hemostáticos/química , Hemostáticos/farmacologia , Nanopartículas/química , Infecções Estafilocócicas/tratamento farmacológico , Ondas Ultrassônicas , Masculino , Ratos , Humanos
2.
AAPS PharmSciTech ; 25(3): 39, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38366149

RESUMO

Quantitative in silico tools may be leveraged to mechanistically predict the dermato-pharmacokinetics of compounds delivered from topical and transdermal formulations by integrating systems of rate equations that describe permeation through the formulation and layers of skin and pilo-sebaceous unit, and exchange with systemic circulation via local blood flow. Delivery of clobetasol-17 propionate (CP) from DermovateTM cream was simulated using the Transdermal Compartmental Absorption & Transit (TCATTM) Model in GastroPlus®. The cream was treated as an oil-in-water emulsion, with model input parameters estimated from publicly available information and quantitative structure-permeation relationships. From the ranges of values available for model input parameters, a set of parameters was selected by comparing model outputs to CP dermis concentration-time profiles measured by dermal open-flow microperfusion (Bodenlenz et al. Pharm Res. 33(9):2229-38, 2016). Predictions of unbound dermis CP concentrations were reasonably accurate with respect to time and skin depth. Parameter sensitivity analyses revealed considerable dependence of dermis CP concentration profiles on drug solubility in the emulsion, relatively less dependence on dispersed phase volume fraction and CP effective diffusivity in the continuous phase of the emulsion, and negligible dependence on dispersed phase droplet size. Effects of evaporative water loss from the cream and corticosteroid-induced vasoconstriction were also assessed. This work illustrates the applicability of computational modeling to predict sensitivity of dermato-pharmacokinetics to changes in thermodynamic and transport properties of a compound in a topical formulation, particularly in relation to rate-limiting steps in skin permeation. Where these properties can be related to formulation composition and processing, such a computational approach may support the design of topically applied formulations.


Assuntos
Clobetasol , Pele , Humanos , Clobetasol/farmacocinética , Emulsões/farmacologia , Simulação por Computador , Água
3.
Braz J Biol ; 84: e278013, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422288

RESUMO

Colloidal systems have been used to encapsulate, protect and release essential oils in mouthwashes. In this study, we investigated the effect of cetylpyridinium chloride (CPC) on the physicochemical properties and antimicrobial activity of oil-in-water colloidal systems containing tea tree oil (TTO) and the nonionic surfactant polysorbate 80. Our main aim was to evaluate whether CPC could improve the antimicrobial activity of TTO, since this activity is impaired when this essential oil is encapsulated with polysorbate 80. These systems were prepared with different amounts of TTO (0-0.5% w/w) and CPC (0-0.5% w/w), at a final concentration of 2% (w/w) polysorbate 80. Dynamic light scattering (DLS) results revealed the formation of oil-swollen micelles and oil droplets as a function of TTO concentration. Increases in CPC concentrations led to a reduction of around 88% in the mean diameter of oil-swollen micelles. Although this variation was of only 20% for the oil droplets, the samples appearance changed from turbid to transparent. The surface charge of colloidal structures was also markedly affected by the CPC as demonstrated by the transition in zeta potential from slightly negative to highly positive values. Electron paramagnetic resonance (EPR) studies showed that this transition is followed by significant increases in the fluidity of surfactant monolayer of both colloidal structures. The antimicrobial activity of colloidal systems was tested against a Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureaus) bacteria. Our results revealed that the inhibition of bacterial growth is observed for the same CPC concentration (0.05% w/w for E. coli and 0.3% w/w for S. aureus) regardless of TTO content. These findings suggest that TTO may not act as an active ingredient in polysorbate 80 containing mouthwashes.


Assuntos
Óleos Voláteis , Óleo de Melaleuca , Emulsões/química , Emulsões/farmacologia , Polissorbatos/farmacologia , Polissorbatos/química , Micelas , Staphylococcus aureus , Escherichia coli , Antissépticos Bucais/farmacologia , Tensoativos/farmacologia , Tensoativos/química , Óleos Voláteis/farmacologia , Antibacterianos/farmacologia , Óleo de Melaleuca/farmacologia
4.
Int J Pharm ; 653: 123903, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38350500

RESUMO

Phospholipids are versatile formulation compounds with high biocompatibility. However, no data on their effect on skin in combination with UVA radiation exist. Thus, it was the aim of this work to (i) develop o/w nanoemulsions (NEs) differing in surfactant type and to investigate their physicochemical stability at different storage temperatures, (ii) establish a standardized protocol for in vitro phototoxicity testing using primary human skin cells and (iii) investigate the phototoxicity of amphoteric phospholipids (S45, S75, E80, S100, LPC80), sodium lauryl ether sulfate (SLES) and polysorbate 80 (PS80). Satisfying systems were developed with all surfactants except S100 due to low zeta potential (-21.4 mV ± 4.69). SLES and PS80-type NEs showed the highest stability after eight weeks; temperature-dependent variations in storage stability were most noticeable for phospholipid surfactants. For phospholipid-based NEs, higher phosphatidylcholine content led to unstable formulations. Phototoxicity assays with primary skin fibroblasts confirmed the lack of UVA-related phototoxicity but revealed cytotoxic effects of LPC80 and SLES, resulting in cell viability as low as 2.7 % ±0.78 and 1.9 % ±1.57 compared to the control. Our findings suggest that surfactants S45, S75 and PS80 are the most promising candidates for skin-friendly emulsifiers in sensitive applications involving exposure to UV light.


Assuntos
Dermatite Fototóxica , Tensoativos , Humanos , Tensoativos/química , Polissorbatos/farmacologia , Raios Ultravioleta , Fosfolipídeos , Emulsões/farmacologia , Pele
5.
Food Chem ; 446: 138831, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402759

RESUMO

Carvacrol is well-known natural antimicrobial compounds. However, its usage in fruit preservation is restricted owing to poor water solubility. Our study aims to address this limitation by combining carvacrol with whey protein isolate (WPI) to form nanoemulsion and enhancing antimicrobial properties and stability of nanoemulsion through ε-polylysine addition, thereby improving their application in fruit preservation. The results indicated that the nanoemulsion exhibited a double-layer structure. The physicochemical properties and storage stability were found to be favorable under the conditions of WPI (0.3 wt% v/v), Carvacrol (0.5 % v/v), and ε-polylysine (0.3 wt% v/v). In addition, the nanoemulsion had inhibitory effects on Staphylococcus aureus, Escherichia coli, and Aspergillus niger at concentrations of minimal inhibition concentration (32, 32, and 200 µg/mL, respectively). In addition, during a 7-day storage period, the nanoemulsion effectively preserved mangoes. Therefore, nanoemulsion could serve as a candidate for control of postharvest mangoes spoilage and extend its period of storage.


Assuntos
Anti-Infecciosos , Cimenos , Mangifera , Polilisina/química , Emulsões/farmacologia , Anti-Infecciosos/farmacologia , Escherichia coli
6.
Parasitol Int ; 100: 102848, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38159836

RESUMO

The present work aimed to develop and evaluate AmB-loaded nano-emulsion (AmB-NE) which will augment the solubility of AmB and lead to enhanced anti-leishmanial activity. The composition of AmB-NE was optimized by systematic screening followed by DoE-extreme vertices mixture design. The optimized NE revealed mean droplet size and PDI of 44.19 ± 5.5 nm, 0.265 ± 0.0723, respectively. The NE could efficiently encapsulate AmB with drug content and efficiency 83.509 ± 0.369% and 81.659 ± 0.013%, respectively. The presence of cholesterol and stearyl amine retarded the release (P < 0.0001) of AmB significantly compared to AmB suspension. The AmB-NE and pure AmB suspension demonstrated the IC50 of 0.06309 µg/mL and 0.3309 µg/mL against L.donovani promastigotes after 48 h incubation. The formulation was robust at all exaggerated stability conditions such as freeze-thaw and centrifugation. These findings indicate that AmB-NE is an attractive approach to treat visceral leishmaniasis with improved activity.


Assuntos
Antiprotozoários , Leishmania donovani , Leishmania , Leishmaniose Visceral , Animais , Anfotericina B/farmacologia , Antiprotozoários/farmacologia , Leishmaniose Visceral/tratamento farmacológico , Emulsões/farmacologia
7.
Sci Rep ; 13(1): 22730, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123572

RESUMO

Fungal infections of skin including mycoses are one of the most common infections in skin or skins. Mycosis is caused by dermatophytes, non-dermatophyte moulds and yeasts. Various studies show different drugs to treat mycoses, yet there is need to treat it with applied drugs delivery. This study was designed to prepare a bio curcumin (CMN) nanoemulsion (CMN-NEs) for transdermal administration to treat mycoses. The self-nanoemulsification approach was used to prepare a nanoemulsion (NE), utilizing an oil phase consisting of Cremophor EL 100 (Cre EL), glyceryl monooleate (GMO), and polyethylene glycol 5000 (PEG 5000). Particle size (PS), polydispersity index (PDI), zeta potential (ZP), Fourier transform infrared (FTIR) spectrophotometric analysis, and morphological analyses were performed to evaluate the nanoemulsion (NE). The in vitro permeation of CMN was investigated using a modified vertical diffusion cell with an activated dialysis membrane bag. Among all the formulations, a stable, spontaneously produced nanoemulsion was determined with 250 mg of CMN loaded with 10 g of the oil phase. The average droplet size, ZP, and PDI of CMN-NEs were 90.0 ± 2.1 nm, - 7.4 ± 0.4, and 0.171 ± 0.03 mV, respectively. The release kinetics of CMN differed from zero order with a Higuchi release profile as a result of nanoemulsification, which also significantly increased the flux of CMN permeating from the hydrophilic matrix gel. Overall, the prepared nanoemulsion system not only increased the permeability of CMN but also protected it against chemical deterioration. Both CMN-ME (24.0 ± 0.31 mm) and CMN-NE gel (29.6 ± 0.25 mm) had zones of inhibition against Candida albicans that were significantly larger than those of marketed Itrostred gel (21.5 ± 0.34 mm). The prepared CMN-NE improved the bioavailability, better skin penetration, and the CMN-NE gel enhanced the release of CMN from the gel matrix on mycotic patients.


Assuntos
Curcumina , Micoses , Humanos , Absorção Cutânea , Curcumina/farmacologia , Curcumina/metabolismo , Diálise Renal , Pele/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Emulsões/farmacologia , Micoses/tratamento farmacológico , Micoses/metabolismo
8.
Colloids Surf B Biointerfaces ; 232: 113599, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37857183

RESUMO

Interventional therapies are increasingly used in clinical trials for hepatocellular carcinoma (HCC). Sorafenib is the front-line remedy for HCC, however, chemoresistance occurs immutably and affects the effectiveness of treatment. In a previous study, a norcantharidin liposome emulsion hybrid (NLEH) delivery system for HCC was developed. This study aims to examine the therapeutic effects of the combination of intratumoral injection of NLEH and sorafenib in treating HCC. Sorafenib combined with NLEH activated the apoptosis pathway by synergistically upregulating caspase-9, promoting cytotoxicity, apoptosis (64.57%), and G2/M cell cycle arrest (48.96%). Norcantharidin could alleviate sorafenib resistance by counteracting sorafenib-induced phosphorylation of Akt. Additionally, intratumoral injection of NLEH exhibited a sustained accumulation in the tumor within 24 h and didn't distribute to other major organs. Intratumoral injection of NLEH in combination with oral sorafenib displayed the most potent tumor growth inhibitory effect (77.91%) in vivo. H&E staining results and the indicators of the renal and liver function tests demonstrated the safety of this combination therapy. Overall, these results showed that intratumoral injection of NLEH in combination with oral sorafenib treatment represented a rational potential therapeutic option for HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Lipossomos/farmacologia , Neoplasias Hepáticas/patologia , Emulsões/farmacologia , Injeções Intralesionais , Linhagem Celular Tumoral , Apoptose , Proliferação de Células
9.
Sci Rep ; 13(1): 18364, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884604

RESUMO

Bupivacaine (BPV) can cause severe central nervous system toxicity when absorbed into the blood circulation system. Rapid intravenous administration of lipid emulsion (LE) could be used to treat local anaesthetic toxicity. This study aimed to investigate the mechanism by which the BDNF-TrkB/proBDNF-p75NTR pathway regulation by LE rescues BPV induced neurotoxicity in hippocampal neurons in rats. Seven- to nine-day-old primary cultured hippocampal neurons were randomly divided into 6 groups: the blank control group (Ctrl), the bupivacaine group (BPV), the lipid emulsion group (LE), the bupivacaine + lipid emulsion group (BPV + LE), the bupivacaine + lipid emulsion + tyrosine kinase receptor B (TrkB) inhibitor group (BPV + LE + K252a), the bupivacaine + lipid emulsion + p75 neurotrophic factor receptor (p75NTR) inhibitor group (BPV + LE + TAT-Pep5). All hippocampal neurons were incubated for 24 h, and their growth state was observed by light microscopy. The relative TrkB and p75NTR mRNA levels were detected by real-time PCR. The protein expression levels of brain-derived neurotrophic factor (BDNF), proBDNF, TrkB, p75NTR and cleaved caspase-3 were detected by western blotting. The results showed that primary hippocampal neuron activity was reduced by BPV. As administration of LE elevated hippocampal neuronal activity, morphology was also somewhat improved. The protein expression and mRNA levels of TrkB and p75NTR were decreased when BPV induced hippocampal neuronal toxicity, while the expression of BDNF was increased. At the same time, BPV increased the original generation of cleaved caspase-3 protein content by hippocampal neurons, while the content of cleaved caspase-3 protein in hippocampal neurons cotreated with LE and BPV was decreased. Thus, this study has revealed LE may reduce apoptosis and promote survival of hippocampal neurons by regulating the BDNF-TrkB pathway and the proBDNF-p75NTR pathway to rescue BPV induced central neurotoxicity in rats.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Bupivacaína , Ratos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Caspase 3 , Emulsões/farmacologia , Receptor trkB/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , RNA Mensageiro/metabolismo , Lipídeos
10.
Molecules ; 28(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37836750

RESUMO

Cannabidiol (CBD) is a promising natural agent for treating psoriasis. CBD activity is attributed to inhibition of NF-kB, IL-1ß, IL-6, and IL-17A. The present study evaluated the anti-psoriatic effect of cannabidiol in lipid-stabilized nanoparticles (LSNs) using an imiquimod (IMQ)-induced psoriasis model in mice. CBD-loaded LSNs were stabilized with three types of lipids, Cetyl alcohol (CA), Lauric acid (LA), and stearic-lauric acids (SALA), and were examined in-vitro using rat skin and in-vivo using the IMQ-model. LSNs loaded with coumarin-6 showed a localized penetration depth of about 100 µm into rat skin. The LSNs were assessed by the IMQ model accompanied by visual (psoriasis area severity index; PASI), histological, and pro-psoriatic IL-17A evaluations. Groups treated with CBD-loaded LSNs were compared to groups treated with CBD-containing emulsion, unloaded LSNs, and clobetasol propionate, and to an untreated group. CBD-loaded LSNs significantly reduced PASI scoring compared to the CBD emulsion, the unloaded LSNs, and the untreated group (negative controls). In addition, SALA- and CA-containing nanoparticles significantly inhibited IL-17A release, showing a differential response: SALA > CA > LA. The data confirms the effectiveness of CBD in psoriasis therapy and underscores LSNs as a promising platform for delivering CBD to the skin.


Assuntos
Canabidiol , Nanopartículas , Psoríase , Camundongos , Ratos , Animais , Interleucina-17 , Canabidiol/uso terapêutico , Emulsões/farmacologia , Psoríase/induzido quimicamente , Pele , Imiquimode/efeitos adversos , Lipídeos/farmacologia , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
11.
Molecules ; 28(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37836753

RESUMO

Essential oil nanoemulsions have received much attention due to their biological activities. Thus, a thyme essential oil nanoemulsion (Th-nanoemulsion) was prepared using a safe and eco-friendly method. DLS and TEM were used to characterize the prepared Th-nanoemulsion. Our findings showed that the nanoemulsion was spherical and ranged in size from 20 to 55.2 nm. The micro-broth dilution experiment was used to evaluate the in vitro antibacterial activity of a Th-emulsion and the Th-nanoemulsion. The MIC50 values of the thymol nanoemulsion were 62.5 mg/mL against Escherichia coli and Klebsiella oxytoca, 250 mg/mL against Bacillus cereus, and 125 mg/mL against Staphylococcus aureus. Meanwhile, it emerged that the MIC50 values of thymol against four strains were not detected. Moreover, the Th-nanoemulsion exhibited promising antifungal activity toward A. brasiliensis and A. fumigatus, where inhibition zones and MIC50 were 20.5 ± 1.32 and 26.4 ± 1.34 mm, and 12.5 and 6.25 mg/mL, respectively. On the other hand, the Th-nanoemulsion displayed weak antifungal activity toward C. albicans where the inhibition zone was 12.0 ± 0.90 and MIC was 50 mg/mL. Also, the Th-emulsion exhibited antifungal activity, but lower than that of the Th-nanoemulsion, toward all the tested fungal strains, where MIC was in the range of 12.5-50 mg/mL. The in vitro anticancer effects of Taxol, Th-emulsion, and Th-nanoemulsion were evaluated using the standard MTT method against breast cancer (MCF-7) and hepatocellular carcinoma (HepG2). Additionally, the concentration of VEGFR-2 was measured, and the activities of caspase-8 (casp-8) and caspase-9 (casp-9) were evaluated. The cytotoxic effect was the most potent against the MCF-7 breast cancer cell line after the Th-nanoemulsion treatment (20.1 ± 0.85 µg/mL), and was 125.1 ± 5.29 µg/mL after the Th-emulsion treatment. The lowest half-maximal inhibitory concentration (IC50) value, 20.1 ± 0.85 µg/mL, was achieved when the MCF-7 cell line was treated with the Th-nanoemulsion. In addition, Th-nanoemulsion treatments on MCF-7 cells led to the highest elevations in casp-8 and casp-9 activities (0.66 ± 0.042 ng/mL and 17.8 ± 0.39 pg/mL, respectively) compared to those with Th-emulsion treatments. In comparison to that with the Th-emulsion (0.982 0.017 ng/mL), the VEGFR-2 concentration was lower with the Th-nanoemulsion treatment (0.672 ± 0.019ng/mL). In conclusion, the Th-nanoemulsion was successfully prepared and appeared in nanoform with a spherical shape according to DLS and TEM, and also exhibited antibacterial, antifungal, as well as anticancer activities.


Assuntos
Anti-Infecciosos , Neoplasias da Mama , Óleos Voláteis , Humanos , Feminino , Timol/farmacologia , Antifúngicos/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Emulsões/farmacologia , Anti-Infecciosos/farmacologia , Óleos Voláteis/farmacologia , Antibacterianos/farmacologia , Candida albicans
12.
Clin Nutr ; 42(12): 2422-2433, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37871483

RESUMO

BACKGROUND AND AIMS: Parenteral nutrition (PN) rich in n-6 and n-3 long-chain fatty acids is used in clinical practice for nourishing patients who are unable to receive adequate nutrition through their digestive systems. In this study, we compare the effect on inflammation of the commonly used lipid emulsions Omegaven (n-3-rich) and Intralipid (n-6-rich) in human peripheral blood mononuclear cells (PBMCs). METHODS: PBMCs were treated with different doses of n-3-rich Omegaven and n-6-rich Intralipid and the immune cells were characterized by flow cytometry. RESULTS: We show that incubation of PBMCs with n-3-rich Omegaven leads to an increase in expression of CD1d and CD86 in CD14+monocytes. At the same time, an increased number of NKT cells expressing cytotoxic T cell antigen 4 is observed, suggesting immunological synapse formation. Both CD14+monocytes and NKT cells showed an increase in IL-10 production and a reduction in the pro-inflammatory cytokines IFN-γ, TNF-α, and IL-4, which led to an increase in the number of FOXP3+T regulatory cells. In addition, we show that n-3-rich Omegaven reduces the expression of TNFα, IFNγ and IL-4 in CD4+T and CD8+T cells independent of the presented interaction between CD14+monocytes and NKT cells. The described mechanism of n-3 rich lipid emulsions was confirmed in PBMCs from patients with inflammatory bowel disease but not in colorectal cancer patients which seem to lack the interaction between CD14+monocytes and NKT cells. CONCLUSIONS: These results show a mechanism for the beneficial effect of the n-3-rich Omegaven in patients with inflammatory conditions but questions its use in patients with cancer. Hence, our results may assist in choosing the best lipid emulsion for patients who require PN.


Assuntos
Ácidos Graxos Ômega-3 , Humanos , Ácidos Graxos Ômega-3/farmacologia , Emulsões/farmacologia , Interleucina-4 , Leucócitos Mononucleares/metabolismo , Nutrição Parenteral/métodos , Fator de Necrose Tumoral alfa/metabolismo , Anti-Inflamatórios
13.
J Pharm Sci ; 112(12): 3197-3208, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37777011

RESUMO

In this study, a polymer-stabilized nanoemulsion (PNE) was developed to improve the inflammatory and analgesic activities of diclofenac (DA). DA-PNEs were prepared from sesame oil and poloxamer 188 (P188), polysorbate 80, and span 80 as emulsifiers and optimized by a systematic multi-objective optimization method. The developed DA-PNEs exhibited thermodynamical stability with low viscosity. The mean diameter, PDI, surface charge, and entrapment efficiency of DA-PNEs were 122.49±3.42 nm, 0.226±0.08, -47.3 ± 3.6 mV, and 93.57±3.4 %, respectively. The cumulative in vitro release profile of DA-PNEs was significantly higher than the neat drug in simulated gastrointestinal fluids. The anti-inflammatory activities of DA-PNEs were evaluated in the λ-carrageenan-induced paw edema model. To investigate the effect of P188 on analgesic and anti-inflammatory activities, a formulation without P188 was also prepared and named DA-NEs. Following oral administration, DA-PNEs showed a significantly higher (p<0.05) effect in reducing pain and inflammation symptoms as compared to free diclofenac and DA-NEs. Moreover, histopathological examination confirmed that DA-PNEs meaningfully reduced the extent of paw edema, comparable to that of DA. Taken together, the findings of the in vitro and in vivo studies suggest that diclofenac-loaded P188-stabilized nanoemulsion can be considered a potential drug delivery system for treating and controlling inflammatory disorders and alleviating pains.


Assuntos
Diclofenaco , Poloxâmero , Humanos , Diclofenaco/farmacologia , Emulsões/farmacologia , Anti-Inflamatórios/farmacologia , Analgésicos/efeitos adversos , Dor/tratamento farmacológico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Convulsões/tratamento farmacológico
14.
Front Cell Infect Microbiol ; 13: 1193775, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560319

RESUMO

Introduction: The seeds of Brucea javanica (L.) Merr. (BJ) have been traditionally used to treat various types of cancers for many years in China. In this study, we systematically investigated a BJ oil emulsion (BJOE) produced from BJ seeds with the purpose of evaluating its antiviral effect against hepatitis B virus (HBV). Methods: HepG2.215 (a wild-type HBV cell line), HepG2, and Huh7, transfected with wildtype (WT) or lamivudine-resistance mutant (LMV-MT) HBV replicon plasmids, were treated with different doses of BJOE and then used for pharmacodynamic evaluation. Cell viability was determined using CCK8 assay. The levels of HBsAg/HBeAg in cell cultured supernatant, HBcAg in cell lysis solution, and HBV DNA in both were evaluated. Results: BJOE at ≤5 mg/ml was nontoxic to carcinoma cell lines, but could significantly inhibit WT/LMV-MT HBV replication and HBs/e/c antigen expression in a dose-dependent manner by upregulating interleukin-6 (IL-6), demonstrating that it possesses moderate anti-HBV activity. As one of the major components of BJOE, bruceine B was found to play a dominant role in IL-6 induction and HBV inhibition. Discussion: Our results demonstrated that BJOE suppressed HBV replication by stimulating IL-6, indicating that it has promising clinical therapeutic potential for both WT and LMV-MT HBV.


Assuntos
Brucea javanica , Vírus da Hepatite B , Antivirais/farmacologia , Brucea javanica/química , Emulsões/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/fisiologia , Interleucina-6 , Replicação Viral
15.
J Dent ; 137: 104647, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37536430

RESUMO

OBJECTIVES: We aimed to solubilize Curcuma xanthorrhiza oil (CXO) using nanoemulsification and evaluate its inhibitory effects against biofilm formation. METHODS: The components of CXO were evaluated through high-performance liquid chromatography (HPLC) analysis. Healthy human saliva was inoculated onto hydroxyapatite discs to form microcosm biofilms for four days and treated six times with each antimicrobial agent: distilled water (DW), CXO emulsion (EM), CXO nanoemulsion (NE), and positive controls (Listerine and chlorhexidine). Biofilm fluorescence imaging was performed using quantitative light-induced fluorescence, and cell viability and dry-weight measurements were obtained. We compared the bacterial cell and extracellular polysaccharide (EPS) biovolume and thickness using confocal laser scanning microscopy (CLSM). RESULTS: HPLC analysis revealed that CXO was composed of approximately 47% xanthorrhizol. Compared with DW, NE exhibited significantly lower red fluorescence intensity and area (42% and 37%, p < 0.001 and p < 0.001, respectively), and reduced total and aciduric bacterial cell viability (7.3% and 3.9%, p < 0.001, p = 0.01, respectively). Furthermore, the bacterial cell and EPS biovolume and thickness in NE decreased by 40-80% compared to DW, similar to chlorhexidine. Conversely, EM showed a significant difference only in cell viability against total bacteria when compared with DW (p = 0.003), with EPS biovolume and thickness exhibiting higher values than DW. CONCLUSIONS: Nanoemulsification successfully solubilized CXO and demonstrated superior anti-biofilm effects compared to the emulsion form. CLINICAL SIGNIFICANCE: These findings suggest the potential use of NE as a novel antimicrobial agent for preventing oral diseases.


Assuntos
Anti-Infecciosos , Água Potável , Humanos , Clorexidina/farmacologia , Curcuma , Emulsões/farmacologia , Anti-Infecciosos/farmacologia , Saliva/microbiologia , Bactérias , Biofilmes
16.
Int J Biol Macromol ; 249: 125918, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37495002

RESUMO

The injury of vascular endothelial cells caused by high glucose (HG) is one of the driving factors of vascular complications of diabetes. Oral administration is the most common route of administration for the treatment of diabetes and its vascular complications. Essential oil extracts from Chinese medicine possess potential therapeutic effects on vascular endothelial injury. However, low solubility and volatility of essential oils generally result in poor oral absorption. Development of nanocarriers for essential oils is a promising strategy to overcome the physiological barriers of oral absorption. In this study, a nanoemulsion composed of bovine serum albumin (BSA)-dextran sulfate (DS) conjugate and sodium deoxycholate (SD) was constructed. The nanoemulsions were verified with promoted oral absorption and prolonged circulation time. After the primary evaluation of the nanoemulsion, essential oil from Alpinia zerumbet Fructus (EOFAZ)-loaded nanoemulsion (denoted as EOFAZ@BD5/S) was prepared and characterized. Compared to the free EOFAZ, EOFAZ@BD5/S increased the protective effects on HG-induced HUVEC injury in vitro and ameliorative effects on the vascular endothelium disorder and tunica media fibroelastosis in a T2DM mouse model. Collectively, this study provides a nanoemulsion for the oral delivery of essential oils, which holds strong promise in the treatment of diabetes-induced vascular endothelial injury.


Assuntos
Alpinia , Óleos Voláteis , Camundongos , Animais , Óleos Voláteis/farmacologia , Células Endoteliais , Dextranos/farmacologia , Frutas , Emulsões/farmacologia
17.
J Invertebr Pathol ; 199: 107938, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37268287

RESUMO

Formulation technology has been the primordial focus to improve the low viability and erratic infectivity of entomopathogenic nematodes (EPNs) for foliar application. Adaptability to the fluctuating environment is a key trait in ensuring the survival and efficacy of EPNs. Hence, tailoring formulations towards EPNs foliar applications would effectively deliver consistent and reliable results for above-ground applications. EPNs survival and activity were characterized in novel Pickering emulsion post-application in planta cotton foliage. Two different types of novel formulations, Titanium Pickering emulsion (TPE) and Silica Pickering emulsion Gel (SPEG), were tailored for EPNs foliar applications. We report an extension of survival and infectivity to 96 hrs under controlled conditions by SPEG formulations for survival of IJ's on cotton foliage. In addition, survival of IJs (LT50) was extended from 14hrs in water to > 80 hrs and > 40 hrs by SPEG and TPE respectively. SPEG accounted for the slowest decrease of live IJs per surface area in comparison to TPE and control samples over time, exhibiting a 6-fold increase at 48 hrs. Under extreme conditions, survival and efficacy were extended for 8hrs in SPEG compared to merely 2hrs in control. Potential implications and possible mechanisms of protection are discussed.


Assuntos
Nematoides , Controle Biológico de Vetores , Animais , Emulsões/farmacologia , Controle Biológico de Vetores/métodos
18.
Colloids Surf B Biointerfaces ; 227: 113379, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37267682

RESUMO

In this study, the optimal emulsifier for prothioconazole nanoemulsions was initially screened based on appearance, microscopic observation, mean droplet size and polydispersity index (PDI). In addition, the BoxBehnken design method is adopted, and the optimal formula is screened with an emulsification time, emulsifier content, and solvent content as a single factor. On this basis, the nanoemulsion meets FAO standards for various indicators. The contact angle of droplets on wheat leaves was significantly reduced. This nanoemulsion also showed good inhibitory activity against Fusarium graminearum (EC50 =1.94 mg L-1), low acute toxicity to zebrafish (LC50 =26.35 mg L-1) and good biosafety to BEAS-2B cells. The nanoemulsion reduced the adverse effects of pesticide on wheat seed germination and growth. This study can help promote the design and manufacture of stable, efficient and safe agricultural nanoemulsions, and is expected to benefit the sustainable development of green plant protection.


Assuntos
Fusarium , Peixe-Zebra , Animais , Triazóis/farmacologia , Emulsões/farmacologia
19.
AAPS PharmSciTech ; 24(6): 145, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353673

RESUMO

Dissolving microneedle (DMN) has been researched as a drug delivery technology that improves drug molecule transportation through the skin with little discomfort. However, the sluggish drug absorption, poor skin dissolution, and lengthy time lags of DMN have limited its potential uses. The aim of this study was to design a novel DMN system for the administration of the poorly water-soluble drug, estradiol (E2), with fast skin penetration and a stable release rate for a long time. DMN containing E2 emulsion (E2-EM-DMN) and traditional DMN (T-DMN) were prepared. Rat skin was used for penetration test and guinea pig skin was used for skin irritation experiment. The drug release profiles and stability properties of these two kinds of DMNs were also investigated. High performance liquid chromatography was employed to determine the E2 content in DMN. The E2 concentration in rat plasma was achieved by a newly developed liquid chromatography-mass spectrometry method that was fast, reproducible, and specific. The height of E2-EM-DMN and T-DMN was 600 µm. The drug loading of the E2-EM-DMN and T-DMN was 667.30 ± 7.21 µg/patch and 672.56 ± 6.98 µg/patch. E2-EM-DMN possessed enough mechanical strength to penetrate the skin and caused no irritation to the skin. E2-EM-DMN could release the drug more rapidly and more continuously than T-DMN. E2-EM-DMN had good pharmaceutical stability. In summary, the E2-EM-DMN showed reliable quality and superior release performance. Emulsion-embedded DMN is an ideal transdermal delivery system for drugs.


Assuntos
Estradiol , Pele , Ratos , Animais , Estradiol/farmacologia , Preparações de Ação Retardada/farmacologia , Emulsões/farmacologia , Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos , Inflamação , Agulhas
20.
ACS Appl Mater Interfaces ; 15(21): 25354-25368, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37204221

RESUMO

The intravesical instillation procedure is a proven method in modern urology for the treatment of bladder diseases. However, the low therapeutic efficiency and painfulness of the instillation procedure are significant limitations of this method. In the present study, we propose an approach to solving this problem by using microsized mucoadhesive macromolecular carriers based on whey protein isolate with the possibility of prolonged release of drugs as a drug delivery system. The optimal water-to-oil ratio (1:3) and whey protein isolate concentration (5%) were determined to obtain emulsion microgels with sufficient loading efficiency and mucoadhesive properties. The droplet diameter of emulsion microgels varies from 2.2 to 3.8 µm. The drug release kinetics from the emulsion microgels was evaluated. The release of the model dye in saline and artificial urine in vitro was observed for 96 h and reached up to 70% of loaded cargo for samples. The effect of emulsion microgels on the morphology and viability of two cell lines was observed: L929 mouse fibroblasts (normal adherent cells) and THP-1 human monocytes (cancer suspension cells). Developed emulsion microgels (5%, 1:3 and 1:5) showed sufficient mucoadhesion to a porcine bladder urothelium ex vivo. The biodistribution of emulsion microgels (5%, 1:3 and 1:5) in mice (n = 3) after intravesical (instillation) and systemic (intravenous) administration was assessed in vivo and ex vivo using near-infrared fluorescence live imaging for real time. It was demonstrated that intravesical instillation allows approximately 10 times more efficient accumulation of emulsion microgels in the mice urinary bladder in vivo 1 h after injection compared to systemic injection. The retention of the emulsion of mucoadhesive microgels in bladders after the intravesical instillation was observed for 24 h.


Assuntos
Microgéis , Neoplasias da Bexiga Urinária , Camundongos , Humanos , Animais , Suínos , Distribuição Tecidual , Urotélio/metabolismo , Emulsões/farmacologia , Proteínas do Soro do Leite/metabolismo , Proteínas do Soro do Leite/farmacologia , Proteínas do Soro do Leite/uso terapêutico , Sistemas de Liberação de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...