Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.406
Filtrar
1.
Sci Rep ; 14(1): 10149, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698048

RESUMO

This study aims to investigate the potential impact of high-dose radiotherapy (RT) on brain structure, cognitive impairment, and the psychological status of patients undergoing brain tumor treatment. We recruited and grouped 144 RT-treated patients with brain tumors into the Low dose group (N = 72) and the High dose group (N = 72) according to the RT dose applied. Patient data were collected by using the HADS and QLQ-BN20 system for subsequent analysis and comparison. Our analysis showed no significant correlation between the RT doses and the clinicopathological characteristics. We found that a high dose of RT could aggravate cognitive impairment and deteriorate patient role functioning, indicated by a higher MMSE and worsened role functioning in the High dose group. However, the depression status, social functioning, and global health status were comparable between the High dose group and the Low dose group at Month 0 and Month 1, while being worsened in the High dose group at Month 3, indicating the potential long-term deterioration of depression status in brain tumor patients induced by high-dose RT. By comparing patient data at Month 0, Month 1, Month 3, Month 6, and Month 9 after RT, we found that during RT treatment, RT at a high dose could aggravate cognitive impairment in the short term and lead to worsened patient role functioning, and even deteriorate the overall psychological health status of patients in the long term.


Assuntos
Neoplasias Encefálicas , Disfunção Cognitiva , Humanos , Masculino , Feminino , Disfunção Cognitiva/etiologia , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/psicologia , Pessoa de Meia-Idade , Idoso , Encéfalo/efeitos da radiação , Encéfalo/patologia , Adulto , Dosagem Radioterapêutica , Depressão/etiologia , Qualidade de Vida
2.
Sci Rep ; 14(1): 10313, 2024 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705875

RESUMO

Sunlight is closely intertwined with daily life. It remains unclear whether there are associations between sunlight exposure and brain structural markers. General linear regression analysis was used to compare the differences in brain structural markers among different sunlight exposure time groups. Stratification analyses were performed based on sex, age, and diseases (hypertension, stroke, diabetes). Restricted cubic spline was performed to examine the dose-response relationship between natural sunlight exposure and brain structural markers, with further stratification by season. A negative association of sunlight exposure time with brain structural markers was found in the upper tertile compared to the lower tertile. Prolonged natural sunlight exposure was associated with the volumes of total brain (ß: - 0.051, P < 0.001), white matter (ß: - 0.031, P = 0.023), gray matter (ß: - 0.067, P < 0.001), and white matter hyperintensities (ß: 0.059, P < 0.001). These associations were more pronounced in males and individuals under the age of 60. The results of the restricted cubic spline analysis showed a nonlinear relationship between sunlight exposure and brain structural markers, with the direction changing around 2 h of sunlight exposure. This study demonstrates that prolonged exposure to natural sunlight is associated with brain structural markers change.


Assuntos
Bancos de Espécimes Biológicos , Encéfalo , Luz Solar , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos da radiação , Idoso , Reino Unido , Imageamento por Ressonância Magnética , Biomarcadores , Substância Branca/diagnóstico por imagem , Substância Branca/efeitos da radiação , Adulto , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/efeitos da radiação , Estações do Ano , Biobanco do Reino Unido
3.
Environ Sci Pollut Res Int ; 31(21): 31015-31027, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38619766

RESUMO

The 5G sub-6 GHz radio frequency (RF) electromagnetic fields (EMF) are the most widely used in China's communications. The public has expressed concerns about possible brain health effects of the higher frequency bands in 5G compared to 2G, 3G, and 4G bands. It is imperative to empirically investigate the potential health hazards of these novel frequency bands in 5G communication technology. This study evaluates the assessment of brain tissue dose coupling from sub-6 GHz band EMF emitted by base stations in China. Based on the 3D virtual human body model, the simulation environment was established. Dose including specific absorption rate (SAR) and internal electric field (IEF) between 2G, 3G, and 4G bands and 5G sub-6 GHz was investigated using normalized exposure values and exposure limits. The results indicate that the sub-6 GHz high-frequency band of 5G has the lowest dose value. It can be concluded that high-frequency electromagnetic radiation in 5G sub-6 GHz reduces the dose and health threats to the brain. This provides strong support for the promotion of 5G commutation in China and other regions.


Assuntos
Encéfalo , Campos Eletromagnéticos , Ondas de Rádio , China , Humanos , Encéfalo/efeitos da radiação , Radiação Eletromagnética
4.
Phys Med Biol ; 69(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38648787

RESUMO

Laser interstitial thermal therapy (LITT) is popular for treating brain tumours and epilepsy. The strict control of tissue thermal damage extent is crucial for LITT. Temperature prediction is useful for predicting thermal damage extent. Accurately predictingin vivobrain tissue temperature is challenging due to the temperature dependence and the individual variations in tissue properties. Considering these factors is essential for improving the temperature prediction accuracy.Objective. To present a method for predicting patient-specific tissue temperature distribution within a target lesion area in the brain during LITT.Approach. A magnetic resonance temperature imaging (MRTI) data-driven estimation model was constructed and combined with a modified Pennes bioheat transfer equation (PBHE) to predict patient-specific temperature distribution. In the PBHE for temperature prediction, the individual specificity and temperature dependence of thermal tissue properties and blood perfusion, as well as the individual specificity of optical tissue properties were considered. Only MRTI data during one laser irradiation were required in the method. This enables the prediction of patient-specific temperature distribution and the resulting thermal damage region for subsequent ablations.Main results. Patient-specific temperature prediction was evaluated based on clinical data acquired during LITT in the brain, using intraoperative MRTI data as the reference standard. Our method significantly improved the prediction performance of temperature distribution and thermal damage region. The average root mean square error was decreased by 69.54%, the average intraclass correlation coefficient was increased by 37.5%, the average Dice similarity coefficient was increased by 43.14% for thermal damage region prediction.Significance. The proposed method can predict temperature distribution and thermal damage region at an individual patient level during LITT, providing a promising approach to assist in patient-specific treatment planning for LITT in the brain.


Assuntos
Terapia a Laser , Temperatura , Humanos , Terapia a Laser/métodos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/diagnóstico por imagem , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos da radiação , Hipertermia Induzida/métodos
5.
Radiat Prot Dosimetry ; 200(7): 648-658, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38648160

RESUMO

A manual radiation dose management system was developed to track the radiation dose and scan parameters of patients for brain computed tomography (CT). Radiation dose in volume computed tomography dose index (CTDIvol) and dose length product (DLP) were monitored to identify procedures that may require optimisation using notification values. The data were analysed and compared with national and international diagnostic reference levels (DRLs). A total of 596 brain CTs were monitored and grouped as <1: 36, 1-<5: 38, 5-<10: 25, 10-<15: 31 and adult: 466. The CTDIvol notification value identified the following number of examinations having high CTDIvol in <1 y: 1, 1-<5: 1, 5-<10: 0, 10-<15: 0 and adult (>15): 11. Furthermore, the DLP notification values identified the following examinations with high DLP in <1 y: 1, 1-<5:1, 5-<10:1, 10-<15: 1 and adults (>15): 18. The established local paediatric DLP DRLs were 2-3 times higher than the international paediatric DLP DRLs. This calls for a total protocol review and optimisation considering the local CT practices for paediatric imaging.


Assuntos
Encéfalo , Doses de Radiação , Monitoramento de Radiação , Centros de Atenção Terciária , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Nigéria , Criança , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos da radiação , Pré-Escolar , Feminino , Estudos Prospectivos , Masculino , Adolescente , Lactente , Monitoramento de Radiação/métodos , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Recém-Nascido , Proteção Radiológica/normas
6.
Neuroimage ; 292: 120606, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604538

RESUMO

Radon is a naturally occurring gas that contributes significantly to radiation in the environment and is the second leading cause of lung cancer globally. Previous studies have shown that other environmental toxins have deleterious effects on brain development, though radon has not been studied as thoroughly in this context. This study examined the impact of home radon exposure on the neural oscillatory activity serving attention reorientation in youths. Fifty-six participants (ages 6-14 years) completed a classic Posner cuing task during magnetoencephalography (MEG), and home radon levels were measured for each participant. Time-frequency spectrograms indicated stronger theta (3-7 Hz, 300-800 ms), alpha (9-13 Hz, 400-900 ms), and beta responses (14-24 Hz, 400-900 ms) during the task relative to baseline. Source reconstruction of each significant oscillatory response was performed, and validity maps were computed by subtracting the task conditions (invalidly cued - validly cued). These validity maps were examined for associations with radon exposure, age, and their interaction in a linear regression design. Children with greater radon exposure showed aberrant oscillatory activity across distributed regions critical for attentional processing and attention reorientation (e.g., dorsolateral prefrontal cortex, and anterior cingulate cortex). Generally, youths with greater radon exposure exhibited a reverse neural validity effect in almost all regions and showed greater overall power relative to peers with lesser radon exposure. We also detected an interactive effect between radon exposure and age where youths with greater radon exposure exhibited divergent developmental trajectories in neural substrates implicated in attentional processing (e.g., bilateral prefrontal cortices, superior temporal gyri, and inferior parietal lobules). These data suggest aberrant, but potentially compensatory neural processing as a function of increasing home radon exposure in areas critical for attention and higher order cognition.


Assuntos
Atenção , Magnetoencefalografia , Radônio , Humanos , Adolescente , Criança , Masculino , Feminino , Radônio/toxicidade , Radônio/efeitos adversos , Atenção/efeitos da radiação , Atenção/fisiologia , Exposição Ambiental/efeitos adversos , Encéfalo/efeitos da radiação , Ondas Encefálicas/efeitos da radiação , Ondas Encefálicas/fisiologia , Ondas Encefálicas/efeitos dos fármacos , Orientação/fisiologia
7.
Radiother Oncol ; 195: 110267, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614282

RESUMO

BACKGROUND AND PURPOSE: Medulloblastoma (MB) is a common primary brain cancer in children. Proton therapy in pediatric MB is intensively studied and widely adopted. Compared to photon, proton radiations offer potential for reduced toxicity due to the characteristic Bragg Peak at the end of their path in tissue. The aim of this study was to compare the effects of irradiation with the same dose of protons or photons in Patched1 heterozygous knockout mice, a murine model predisposed to cancer and non-cancer radiogenic pathologies, including MB and lens opacity. MATERIALS AND METHODS: TOP-IMPLART is a pulsed linear proton accelerator for proton therapy applications. We compared the long-term health effects of 3 Gy of protons or photons in neonatal mice exposed at postnatal day 2, during a peculiarly susceptible developmental phase of the cerebellum, lens, and hippocampus, to genotoxic stress. RESULTS: Experimental testing of the 5 mm Spread-Out Bragg Peak (SOBP) proton beam, through evaluation of apoptotic response, confirmed that both cerebellum and hippocampus were within the SOBP irradiation field. While no differences in MB induction were observed after irradiation with protons or photons, lens opacity examination confirmed sparing of the lens after proton exposure. Marked differences in expression of neurogenesis-related genes and in neuroinflammation, but not in hippocampal neurogenesis, were observed after irradiation of wild-type mice with both radiation types. CONCLUSION: In-vivo experiments with radiosensitive mouse models improve our mechanistic understanding of the dependence of brain damage on radiation quality, thus having important implications in translational research.


Assuntos
Animais Recém-Nascidos , Apoptose , Hipocampo , Fótons , Terapia com Prótons , Animais , Camundongos , Apoptose/efeitos da radiação , Terapia com Prótons/efeitos adversos , Hipocampo/efeitos da radiação , Meduloblastoma/radioterapia , Meduloblastoma/patologia , Carcinogênese/efeitos da radiação , Camundongos Knockout , Neoplasias Cerebelares/radioterapia , Neoplasias Cerebelares/patologia , Encéfalo/efeitos da radiação , Receptor Patched-1/genética , Modelos Animais de Doenças , Prótons/efeitos adversos
8.
Phys Med Biol ; 69(10)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38593817

RESUMO

Objective. Severe radiation-induced lymphopenia occurs in 40% of patients treated for primary brain tumors and is an independent risk factor of poor survival outcomes. We developed anin-silicoframework that estimates the radiation doses received by lymphocytes during volumetric modulated arc therapy brain irradiation.Approach. We implemented a simulation consisting of two interconnected compartmental models describing the slow recirculation of lymphocytes between lymphoid organs (M1) and the bloodstream (M2). We used dosimetry data from 33 patients treated with chemo-radiation for glioblastoma to compare three cases of the model, corresponding to different physical and biological scenarios: (H1) lymphocytes circulation only in the bloodstream i.e. circulation inM2only; (H2) lymphocytes recirculation between lymphoid organs i.e. circulation inM1andM2interconnected; (H3) lymphocytes recirculation between lymphoid organs and deep-learning computed out-of-field (OOF) dose to head and neck (H&N) lymphoid structures. A sensitivity analysis of the model's parameters was also performed.Main results. For H1, H2 and H3 cases respectively, the irradiated fraction of lymphocytes was 99.8 ± 0.7%, 40.4 ± 10.2% et 97.6 ± 2.5%, and the average dose to irradiated pool was 309.9 ± 74.7 mGy, 52.6 ± 21.1 mGy and 265.6 ± 48.5 mGy. The recirculation process considered in the H2 case implied that irradiated lymphocytes were irradiated in the field only 1.58 ± 0.91 times on average after treatment. The OOF irradiation of H&N lymphoid structures considered in H3 was an important contribution to lymphocytes dose. In all cases, the estimated doses are low compared with lymphocytes radiosensitivity, and other mechanisms could explain high prevalence of RIL in patients with brain tumors.Significance. Our framework is the first to take into account OOF doses and recirculation in lymphocyte dose assessment during brain irradiation. Our results demonstrate the need to clarify the indirect effects of irradiation on lymphopenia, in order to potentiate the combination of radio-immunotherapy or the abscopal effect.


Assuntos
Neoplasias Encefálicas , Linfócitos , Dosagem Radioterapêutica , Humanos , Linfócitos/efeitos da radiação , Linfócitos/citologia , Neoplasias Encefálicas/radioterapia , Radiometria , Doses de Radiação , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Encéfalo/efeitos da radiação
9.
Magy Onkol ; 68(1): 60-65, 2024 Mar 14.
Artigo em Húngaro | MEDLINE | ID: mdl-38484376

RESUMO

In patients with poor performance status (KPS<50), ineligibility for effective systemic treatment and multiple brain metastases (BM) best supportive care is the preferred treatment over whole brain radiotherapy (WBRT). WBRT should be considered for the treatment of non-limited number (>4) brain metastases, depending on the patient's life expectancy, neurological symptoms, size, number and location of brain metastases, indication, type and availability of systemic therapy. In these patients if life expectancy is >4 months without small cell histology and without hippocampal lesions, hippocampal sparing WBRT with or without memantine is recommended. Simultaneous integrated boost for the BM is a logical and supportable concept. Prophylactic cranial irradiation (PCI) is still recommended in small cell lung cancer patients with complete remission. Hippocampal sparing WBRT needs further validation in this indication.


Assuntos
Neoplasias Encefálicas , Neoplasias Pulmonares , Radiocirurgia , Humanos , Neoplasias Encefálicas/radioterapia , Encéfalo/patologia , Encéfalo/efeitos da radiação , Resultado do Tratamento , Irradiação Craniana/efeitos adversos , Neoplasias Pulmonares/patologia
10.
Int J Radiat Biol ; 100(5): 744-755, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38466699

RESUMO

PURPOSES: Lymphopenia is extensively studied, but not circulating leucocyte subpopulations, which however have distinct roles in tumor tolerance. Proton therapy has been shown to have a lesser impact on the immune system than conventional X-ray radiotherapy through lower dose exposure to healthy tissues. We explored the differential effects of brain X-ray and proton irradiation on circulating leucocyte subpopulations. MATERIALS AND METHODS: Leucocyte subpopulation counts from tumor-free mice were obtained 12 hours after 4 fractions of 2.5 Gy. The relationships between irradiation type (X-rays or protons), irradiated volume (whole-brain/hemi-brain) and dose rate (1 or 2 Gy/min) with circulating leucocyte subpopulations (T-CD4+, T-CD8+, B, and NK-cells, neutrophils, and monocytes) were investigated using linear regression and tree-based modeling approaches. Relationships between dose maps (brain, vessels, lymph nodes (LNs)) and leucocyte subpopulations were analyzed and applied to construct the blood dose model, assessing the hypothesis of a direct lymphocyte-killing effect in radiation-induced lymphopenia. RESULTS: Radiation-induced lymphopenia occurred after X-ray but not proton brain irradiation in lymphoid subpopulations (T-CD4+, T-CD8+, B, and NK-cells). There was an increase in neutrophil counts following protons but not X-rays. Monocytes remained unchanged under both X-rays and protons. Besides irradiation type, irradiated volume and dose rate had a significant impact on NK-cell, neutrophil and monocyte levels but not T-CD4+, T-CD8+, and B-cells. The dose to the blood had a heterogeneous impact on leucocyte subpopulations: neutrophil counts remained stable with increasing dose to the blood, while lymphocyte counts decreased with increasing dose (T-CD8+-cells > T-CD4+-cells > B-cells > NK-cells). Direct cell-killing effect of the dose to the blood mildly contributed to radiation-induced lymphopenia. LN exposure significantly contributed to lymphopenia and partially explained the distinct impact of irradiation type on circulating lymphocytes. CONCLUSIONS: Leucocyte subpopulations reacted differently to X-ray or proton brain irradiation. This difference could be partly explained by LN exposure to radiation dose. Further researches and analyses on other biological processes and interactions between leucocyte subpopulations are ongoing. The various mechanisms underlying leucocyte subpopulation changes under different irradiation modalities may have implications for the choice of radiotherapy modalities and their combination with immunotherapy in brain cancer treatment.


Assuntos
Encéfalo , Leucócitos , Animais , Camundongos , Encéfalo/efeitos da radiação , Leucócitos/efeitos da radiação , Linfopenia/etiologia , Relação Dose-Resposta à Radiação , Masculino , Raios X , Terapia com Prótons/efeitos adversos , Camundongos Endogâmicos C57BL
11.
Brain Res ; 1833: 148851, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479491

RESUMO

PURPOSE: To investigate white matter microstructural abnormalities caused by radiotherapy in nasopharyngeal carcinoma (NPC) patients using MRI high-angular resolution diffusion imaging (HARDI). METHODS: We included 127 patients with pathologically confirmed NPC: 36 in the pre-radiotherapy group, 29 in the acute response period (post-RT-AP), 23 in the early delayed period (post-RT-ED) group, and 39 in the late-delayed period (post-RT-LD) group. HARDI data were acquired for each patient, and dispersion parameters were calculated to compare the differences in specific fibre bundles among the groups. The Montreal Neurocognitive Assessment (MoCA) was used to evaluate neurocognitive function, and the correlations between dispersion parameters and MoCA were analysed. RESULTS: In the right cingulum frontal parietal bundles, the fractional anisotropy value decreased to the lowest level post-RT-AP and then reversed and increased post-RT-ED and post-RT-LD. The mean, axial, and radial diffusivity were significantly increased in the post-RT-AP (p < 0.05) and decreased in the post-RT-ED and post-RT-LD groups to varying degrees. MoCA scores were decreased post-radiotherapy than those before radiotherapy (p = 0.005). MoCA and mean diffusivity exhibited a mild correlation in the left cingulum frontal parahippocampal bundle. CONCLUSIONS: White matter tract changes detected by HARDI are potential biomarkers for monitoring radiotherapy-related brain damage in NPC patients.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Substância Branca , Humanos , Masculino , Substância Branca/efeitos da radiação , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Feminino , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/diagnóstico por imagem , Pessoa de Meia-Idade , Adulto , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Lesões por Radiação/diagnóstico por imagem , Lesões por Radiação/patologia , Idoso , Anisotropia , Encéfalo/patologia , Encéfalo/efeitos da radiação , Encéfalo/diagnóstico por imagem
12.
APMIS ; 132(6): 375-381, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38466886

RESUMO

In brain metastases, radiation necrosis (RN) is a complication that arises after single or multiple fractionated stereotactic radiosurgery (SRS/FSRS), which is challenging to distinguish from local recurrence (LR). Studies have shown increased RN incidence rates in non-small cell lung cancer (NSCLC) patients with oncogenic driver mutations (ODMs) or receiving tyrosine kinase inhibitors (TKIs). This study investigated enlarging brain lesions following SRS/FSRS, for which additional surgeries were performed to distinguish between RN and LR. We investigated seven NSCLC patients with ODMs undergoing SRS/FSRS for BM and undergoing surgery for suspicion of LR on MRI imaging. Descriptive statistics were performed. Among the seven patients, six were EGFR+, while one was ALK+. The median irradiation dose was 30 Gy (range, 20-35 Gy). The median time to develop RN after SRS/FSRS was 11.1 months (range: 6.3-31.2 months). Moreover, gradually enlarging lesions were found in all patients after 6 months post-SRS/FSR. Brain radiation necrosis was pathologically confirmed in all the patients. RN should be suspected in NSCLC patients when lesions keep enlarging after 6 months post-SRS/FSRS, especially for patients with ODMs and receiving TKIs. Further, this case series indicates that further dose reduction might be necessary to avoid RN for such patients.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Mutação , Necrose , Lesões por Radiação , Radiocirurgia , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Radiocirurgia/efeitos adversos , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/radioterapia , Pessoa de Meia-Idade , Masculino , Feminino , Neoplasias Pulmonares/patologia , Idoso , Lesões por Radiação/patologia , Lesões por Radiação/etiologia , Imageamento por Ressonância Magnética , Adulto , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos da radiação , Receptores ErbB/genética
13.
Br J Radiol ; 97(1157): 1022-1028, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38426391

RESUMO

OBJECTIVE: To investigate the incidence, timing, and the factors predictors radionecrosis (RN) development in brain metastases (BMs) undergoing stereotactic radiotherapy (SRT). METHODS: The study evaluated 245 BMs who exclusively received SRT between 2010 and 2020. RN was detected pathologically or radiologically. RESULTS: The median of follow-up was 22.6 months. RN was detected in 18.4% of the metastatic lesions, and 3.3% symptomatic, 15.1% asymptomatic. The median time of RN was 22.8 months (2.5-39.5), and the rates at 6, 12, and 24 months were 16.8%, 41.4%, and 66%, respectively. Univariate analysis revealed that Graded Prognostic Assessment (P = .005), Score Index of Radiosurgery (P = .015), Recursive Partitioning Analysis (P = .011), the presence of primary cancer (P = .004), and localization (P = .048) significantly increased the incidence of RN. No significant relationship between RN and brain-gross tumour volume doses, planning target volume, fractionation, dose (P > .05). Multivariate analysis identified SIR > 6 (OR: 1.30, P = .021), primary of breast tumour (OR: 2.33, P = .031) and supratentorial localization (OR: 3.64, P = .025) as risk factors. CONCLUSIONS: SRT is used effectively in BMs. The incidence of RN following SRT is undeniably frequent. It was observed that the incidence rate increased as the follow-up period increased. We showed that brain-GTV doses are not predictive of RN development, unlike other publications. In study, a high SIR score and supratentorial localization were identified as factors that increased the risk of RN. ADVANCES IN KNOWLEDGE: RN is still a common complication after SRT. Symptomatic RN is a significant cause of morbidity. The causes of RN are still not clearly identified. In many publications, brain dose and volumes have been found to be effective in RN. But, with this study, we found that brain dose volumes and fractionation did not increase the incidence of RN when brain doses were taken into account. The most important factor in the development of RN was found to be related to long survival after SRT.


Assuntos
Neoplasias Encefálicas , Necrose , Lesões por Radiação , Radiocirurgia , Humanos , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/radioterapia , Radiocirurgia/efeitos adversos , Feminino , Lesões por Radiação/epidemiologia , Lesões por Radiação/etiologia , Pessoa de Meia-Idade , Masculino , Fatores de Risco , Idoso , Incidência , Adulto , Estudos Retrospectivos , Idoso de 80 Anos ou mais , Encéfalo/efeitos da radiação , Encéfalo/patologia , Encéfalo/diagnóstico por imagem
14.
Neurochem Int ; 176: 105726, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38556052

RESUMO

We investigated the influence of the so-called bystander effect on metabolic and histopathological changes in the rat brain after fractionated spinal cord irradiation. The study was initiated with adult Wistar male rats (n = 20) at the age of 9 months. The group designated to irradiation (n = 10) and the age-matched control animals (n = 10) were subjected to an initial measurement using in vivo proton magnetic resonance spectroscopy (1H MRS) and magnetic resonance imaging (MRI). After allowing the animals to survive until 12 months, they received fractionated spinal cord irradiation with a total dose of 24 Gy administered in 3 fractions (8 Gy per fraction) once a week on the same day for 3 consecutive weeks. 1H MRS and MRI of brain metabolites were performed in the hippocampus, corpus striatum, and olfactory bulb (OB) before irradiation (9-month-old rats) and subsequently 48 h (12-month-old) and 2 months (14-month-old) after the completion of irradiation. After the animals were sacrificed at the age of 14 months, brain tissue changes were investigated in two neurogenic regions: the hippocampal dentate gyrus (DG) and the rostral migratory stream (RMS). By comparing the group of 9-month-old rats and individuals measured 48 h (at the age of 12 months) after irradiation, we found a significant decrease in the ratio of total N-acetyl aspartate to total creatine (tNAA/tCr) and gamma-aminobutyric acid to tCr (GABA/tCr) in OB and hippocampus. A significant increase in myoinositol to tCr (mIns/tCr) in the OB persisted up to 14 months of age. Proton nuclear magnetic resonance (1H NMR)-based plasma metabolomics showed a significant increase in keto acids and decreased tyrosine and tricarboxylic cycle enzymes. Morphometric analysis of neurogenic regions of 14-month-old rats showed well-preserved stem cells, neuroblasts, and increased neurodegeneration. The radiation-induced bystander effect more significantly affected metabolite concentration than the distribution of selected cell types.


Assuntos
Envelhecimento , Encéfalo , Efeito Espectador , Ratos Wistar , Medula Espinal , Animais , Masculino , Ratos , Envelhecimento/efeitos da radiação , Envelhecimento/metabolismo , Envelhecimento/patologia , Encéfalo/efeitos da radiação , Encéfalo/metabolismo , Efeito Espectador/efeitos da radiação , Medula Espinal/efeitos da radiação , Medula Espinal/metabolismo , Medula Espinal/patologia , Imageamento por Ressonância Magnética , Fracionamento da Dose de Radiação
15.
Int J Radiat Oncol Biol Phys ; 119(2): 655-668, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300187

RESUMO

PURPOSE: Reirradiation is increasingly used in children and adolescents/young adults (AYA) with recurrent primary central nervous system tumors. The Pediatric Normal Tissue Effects in the Clinic (PENTEC) reirradiation task force aimed to quantify risks of brain and brain stem necrosis after reirradiation. METHODS AND MATERIALS: A systematic literature search using the PubMed and Cochrane databases for peer-reviewed articles from 1975 to 2021 identified 92 studies on reirradiation for recurrent tumors in children/AYA. Seventeen studies representing 449 patients who reported brain and brain stem necrosis after reirradiation contained sufficient data for analysis. While all 17 studies described techniques and doses used for reirradiation, they lacked essential details on clinically significant dose-volume metrics necessary for dose-response modeling on late effects. We, therefore, estimated incidences of necrosis with an exact 95% CI and qualitatively described data. Results from multiple studies were pooled by taking the weighted average of the reported crude rates from individual studies. RESULTS: Treated cancers included ependymoma (n = 279 patients; 7 studies), medulloblastoma (n = 98 patients; 6 studies), any CNS tumors (n = 62 patients; 3 studies), and supratentorial high-grade gliomas (n = 10 patients; 1 study). The median interval between initial and reirradiation was 2.3 years (range, 1.2-4.75 years). The median cumulative prescription dose in equivalent dose in 2-Gy fractions (EQD22; assuming α/ß value = 2 Gy) was 103.8 Gy (range, 55.8-141.3 Gy). Among 449 reirradiated children/AYA, 22 (4.9%; 95% CI, 3.1%-7.3%) developed brain necrosis and 14 (3.1%; 95% CI, 1.7%-5.2%) developed brain stem necrosis with a weighted median follow-up of 1.6 years (range, 0.5-7.4 years). The median cumulative prescription EQD22 was 111.4 Gy (range, 55.8-141.3 Gy) for development of any necrosis, 107.7 Gy (range, 55.8-141.3 Gy) for brain necrosis, and 112.1 Gy (range, 100.2-117 Gy) for brain stem necrosis. The median latent period between reirradiation and the development of necrosis was 5.7 months (range, 4.3-24 months). Though there were more events among children/AYA undergoing hypofractionated versus conventionally fractionated reirradiation, the differences were not statistically significant (P = .46). CONCLUSIONS: Existing reports suggest that in children/AYA with recurrent brain tumors, reirradiation with a total EQD22 of about 112 Gy is associated with an approximate 5% to 7% incidence of brain/brain stem necrosis after a median follow-up of 1.6 years (with the initial course of radiation therapy being given with conventional prescription doses of ≤2 Gy per fraction and the second course with variable fractionations). We recommend a uniform approach for reporting dosimetric endpoints to derive robust predictive models of late toxicities following reirradiation.


Assuntos
Tronco Encefálico , Encéfalo , Neoplasias do Sistema Nervoso Central , Necrose , Recidiva Local de Neoplasia , Reirradiação , Humanos , Reirradiação/efeitos adversos , Necrose/etiologia , Criança , Recidiva Local de Neoplasia/radioterapia , Neoplasias do Sistema Nervoso Central/radioterapia , Neoplasias do Sistema Nervoso Central/patologia , Adolescente , Encéfalo/efeitos da radiação , Encéfalo/patologia , Tronco Encefálico/efeitos da radiação , Tronco Encefálico/patologia , Ependimoma/radioterapia , Adulto Jovem , Pré-Escolar , Meduloblastoma/radioterapia , Lesões por Radiação/patologia
17.
J Biophotonics ; 17(4): e202300458, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38253332

RESUMO

Detection of radiation-induced changes of the brain white matter is important for brain neoplasms repeated surgery. We investigated the influence of irradiation on the scattering properties of the white matter using optical coherence tomography (OCT). Healthy Wistar rats undergone the irradiation of the brain right hemisphere. At seven time points from the irradiation procedure (2-14 weeks), an ex vivo OCT study was performed with subsequent calculation of attenuation coefficient values in the corpus callosum followed by immunohistochemical analysis. As a result, we discovered acute and early-delayed changes characterized by the edema of different severity, accompanied by a statistically significant decrease in attenuation coefficient values. In particular, these changes were found at 2 weeks after irradiation in the irradiated hemisphere, while at 6- and 12-week time points they affected both irradiated and contralateral hemisphere. Thus, radiation-induced changes occurring in white matter during the first 3 months after irradiation can be detected by OCT.


Assuntos
Neoplasias Encefálicas , Substância Branca , Ratos , Animais , Substância Branca/diagnóstico por imagem , Ratos Wistar , Tomografia de Coerência Óptica/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos da radiação
18.
Int J Radiat Oncol Biol Phys ; 118(5): 1206-1216, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244874

RESUMO

PURPOSE: Intracerebral radiation-induced contrast enhancement (RICE) can occur after photon as well as proton beam therapy (PBT). This study evaluated the incidence, characteristics, and risk factors of RICE after PBT delivered to, or in direct proximity to, the brain and its effect on health-related quality of life (HRQoL). METHODS AND MATERIALS: Four hundred twenty-one patients treated with pencil beam scanning PBT between 2017 and 2021 were included. Follow-up included clinical evaluation and contrast-enhanced magnetic resonance imaging at 3, 6, and 12 months after treatment completion and annually thereafter. RICE was graded according to Common Terminology Criteria for Adverse Events version 4, and HRQoL parameters were assessed via European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ)-C30 questionnaires. RESULTS: The median follow-up was 24 months (range, 6-54), and median dose to 1% relative volume of noninvolved central nervous system (D1%CNS) was 54.3 Gy relative biologic effectiveness (RBE; range, 30-76 Gy RBE). The cumulative RICE incidence was 15% (n = 63), of which 10.5% (n = 44) were grade 1, 3.1% (n = 13) were grade 2, and 1.4% (n = 6) were grade 3. No grade 4 or 5 events were observed. Twenty-six of 63 RICE (41.3%) had resolved at the latest follow-up. The median onset after PBT and duration of RICE in patients in whom the lesions resolved were 11.8 and 9.0 months, respectively. On multivariable analysis, D1%CNS > 57.6 Gy RBE, previous in-field radiation, and diabetes mellitus were identified as significant risk factors for RICE development. Previous radiation was the only factor influencing the risk of symptomatic RICE. After PBT, general HRQoL parameters were not compromised. In a matched cohort analysis of 54/50 patients with and without RICE, no differences in global health score or functional and symptom scales were seen. CONCLUSIONS: The overall incidence of clinically relevant RICE after PBT is very low and has no significant negative effect on long-term patient QoL.


Assuntos
Terapia com Prótons , Lesões por Radiação , Neoplasias da Base do Crânio , Humanos , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Neoplasias da Base do Crânio/diagnóstico por imagem , Neoplasias da Base do Crânio/radioterapia , Qualidade de Vida , Lesões por Radiação/patologia , Dosagem Radioterapêutica , Encéfalo/efeitos da radiação
19.
Int J Radiat Oncol Biol Phys ; 118(4): 1081-1093, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37866760

RESUMO

PURPOSE: Radiation therapy for brain tumors increases patient survival. Nonetheless, side effects are increasingly reported such as cognitive deficits and fatigue. The etiology of fatigue remains poorly described. Our hypothesis is that the abscopal effects of radiation therapy on skeletal muscle may be involved in fatigue. The present study aims to assess the effect of brain irradiation on skeletal muscles and its relationship with fatigue and to analyze whether physical activity could counteract brain radiation-induced side effects. METHODS AND MATERIALS: Adult Wistar rats were randomly distributed between 4 groups: control (CTL), irradiated (IR), nonirradiated with physical activity (PA), and irradiated with physical activity (IR+PA). IR rats were exposed to a whole-brain irradiation (WBI) of 30 Gy (3 × 10 Gy). Rats subjected to PA underwent sessions of running on a treadmill, 3 times/week for 6 months. The effects of WBI on muscles were evaluated by complementary approaches: behavioral tests (fatigue, locomotion activity), magnetic resonance imaging, and histologic analyses. RESULTS: IR rats displayed a significant fatigue and a reduced locomotor activity at short term compared with the CTL group, which were attenuated with PA at 6 months after WBI. The IR rat's gastrocnemius mass decreased compared with CTL rats, which was reversed by physical activity at 14 days after WBI. Multiparametric magnetic resonance imaging of the skeletal muscle highlighted an alteration of the fiber organization in IR rats as demonstrated by a significant decrease of the mean diffusivity in the gastrocnemius at short term. Alteration of fibers was confirmed by histologic analyses: the number of type I fibers was decreased, whereas that of type IIa fibers was increased in IR animals but not in the IR+PA group. CONCLUSIONS: The data show that WBI induces skeletal muscle damage, which is attenuated by PA. This muscle damage may explain, at least in part, the fatigue of patients treated with radiation therapy.


Assuntos
Lesões por Radiação , Corrida , Humanos , Ratos , Animais , Ratos Wistar , Encéfalo/efeitos da radiação , Lesões por Radiação/etiologia , Músculo Esquelético
20.
Int J Radiat Oncol Biol Phys ; 119(1): 200-207, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040059

RESUMO

PURPOSE: Emerging evidence suggests proton radiation therapy may offer cognitive sparing advantages over photon radiation therapy, yet dosimetry has not been compared previously. The purpose of this study was to examine dosimetric correlates of cognitive outcomes in children with medulloblastoma treated with proton versus photon radiation therapy. METHODS AND MATERIALS: In this retrospective, bi-institutional study, dosimetric and cognitive data from 75 patients (39 photon and 36 proton) were analyzed. Doses to brain structures were compared between treatment modalities. Linear mixed-effects models were used to create models of global IQ and cognitive domain scores. RESULTS: The mean dose and dose to 40% of the brain (D40) were 2.7 and 4.1 Gy less among proton-treated patients compared with photon-treated patients (P = .03 and .007, respectively). Mean doses to the left and right hippocampi were 11.2 Gy lower among proton-treated patients (P < .001 for both). Mean doses to the left and right temporal lobes were 6.9 and 7.1 Gy lower with proton treatment, respectively (P < .001 for both). Models of cognition found statistically significant associations between higher mean brain dose and reduced verbal comprehension, increased right temporal lobe D40 with reduced perceptual reasoning, and greater left temporal mean dose with reduced working memory. Higher brain D40 was associated with reduced processing speed and global IQ scores. CONCLUSIONS: Proton therapy reduces doses to normal brain structures compared with photon treatment. This leads to reduced cognitive decline after radiation therapy across multiple intellectual endpoints. Proton therapy should be offered to children receiving radiation for medulloblastoma.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Terapia com Prótons , Criança , Humanos , Meduloblastoma/radioterapia , Terapia com Prótons/efeitos adversos , Prótons , Estudos Retrospectivos , Redução da Medicação , Encéfalo/efeitos da radiação , Cognição/efeitos da radiação , Neoplasias Cerebelares/radioterapia , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...