Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 593
Filtrar
1.
Parasit Vectors ; 17(1): 220, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741172

RESUMO

BACKGROUND: Japanese encephalitis virus (JEV) is an emerging mosquito-borne Orthoflavivirus that poses a significant public health risk in many temperate and tropical regions in Asia. Since the climate in some endemic countries is similar to temperate climates observed in Europe, understanding the role of specific mosquito species in the transmission of JEV is essential for predicting and effectively controlling the potential for the introduction and establishment of JEV in Europe. METHODS: This study aimed to investigate the vector competence of colonized Culex pipiens biotype molestus mosquitoes for JEV. The mosquitoes were initially collected from the field in southern Sweden. The mosquitoes were offered a blood meal containing the Nakayama strain of JEV (genotype III), and infection rates, dissemination rates, and transmission rates were evaluated at 14, 21, and 28 days post-feeding. RESULTS: The study revealed that colonized Swedish Cx. pipiens are susceptible to JEV infection, with a stable infection rate of around 10% at all timepoints. However, the virus was only detected in the legs of one mosquito at 21 days post-feeding, and no mosquito saliva contained JEV. CONCLUSIONS: Overall, this research shows that Swedish Cx. pipiens can become infected with JEV, and emphasizes the importance of further understanding of the thresholds and barriers for JEV dissemination in mosquitoes.


Assuntos
Culex , Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Mosquitos Vetores , Animais , Culex/virologia , Culex/fisiologia , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Suécia , Mosquitos Vetores/virologia , Encefalite Japonesa/transmissão , Encefalite Japonesa/virologia , Feminino , Saliva/virologia , Humanos
2.
ACS Chem Neurosci ; 15(8): 1712-1727, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38581382

RESUMO

Short-chain fatty acids (SCFAs) are gut microbial metabolic derivatives produced during the fermentation of ingested complex carbohydrates. SCFAs have been widely regarded to have a potent anti-inflammatory and neuro-protective role and have implications in several disease conditions, such as, inflammatory bowel disease, type-2 diabetes, and neurodegenerative disorders. Japanese encephalitis virus (JEV), a neurotropic flavivirus, is associated with life threatening neuro-inflammation and neurological sequelae in infected hosts. In this study, we hypothesize that SCFAs have potential in mitigating JEV pathogenesis. Postnatal day 10 BALB/c mice were intraperitoneally injected with either a SCFA mixture (acetate, propionate, and butyrate) or PBS for a period of 7 days, followed by JEV infection. All mice were observed for onset and progression of symptoms. The brain tissue was collected upon reaching terminal illness for further analysis. SCFA-supplemented JEV-infected mice (SCFA + JEV) showed a delayed onset of symptoms, lower hindlimb clasping score, and decreased weight loss and increased survival by 3 days (p < 0.0001) upon infection as opposed to the PBS-treated JEV-infected animals (JEV). Significant downregulation of inflammatory cytokines TNF-α, MCP-1, IL-6, and IFN-Υ in the SCFA + JEV group relative to the JEV-infected control group was observed. Inflammatory mediators, phospho-NF-kB (P-NF-kB) and iba1, showed 2.08 ± 0.1 and 3.132 ± 0.43-fold upregulation in JEV versus 1.19 ± 0.11 and 1.31 ± 0.11-fold in the SCFA + JEV group, respectively. Tissue section analysis exhibited reduced glial activation (JEV group─42 ± 2.15 microglia/ROI; SCFA + JEV group─27.07 ± 1.8 microglia/ROI) in animals that received SCFA supplementation prior to infection as seen from the astrocytic and microglial morphometric analysis. Caspase-3 immunoblotting showed 4.08 ± 1.3-fold upregulation in JEV as compared to 1.03 ± 0.14-fold in the SCFA + JEV group and TUNEL assay showed a reduced cellular death post-JEV infection (JEV-6.4 ± 1.5 cells/ROI and SCFA + JEV-3.7 ± 0.73 cells/ROI). Our study critically contributes to the increasing evidence in support of SCFAs as an anti-inflammatory and neuro-protective agent, we further expand its scope as a potential supplementary intervention in JEV-mediated neuroinflammation.


Assuntos
Encefalite Japonesa , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Doenças Neuroinflamatórias , Microbioma Gastrointestinal/fisiologia , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/microbiologia , Microglia/efeitos dos fármacos , Microglia/imunologia , Encefalite Japonesa/tratamento farmacológico , Encefalite Japonesa/imunologia , Encefalite Japonesa/microbiologia , Encefalite Japonesa/prevenção & controle , Encefalite Japonesa/virologia , Ácidos Graxos Voláteis/farmacologia , Ácidos Graxos Voláteis/uso terapêutico , Vírus da Encefalite Japonesa (Subgrupo)/efeitos dos fármacos , Vírus da Encefalite Japonesa (Subgrupo)/imunologia , Vírus da Encefalite Japonesa (Subgrupo)/patogenicidade , Análise de Sobrevida , Quimiocinas/imunologia , Quimiocinas/metabolismo , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/metabolismo , Síndrome da Liberação de Citocina/prevenção & controle , Humanos , Feminino , Animais , Camundongos , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/virologia , Carga Viral/efeitos dos fármacos , Fatores de Tempo
3.
J Virol ; 98(5): e0011624, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38591880

RESUMO

Flaviviruses in the Japanese encephalitis virus (JEV) serogroup, such as JEV, West Nile virus, and St. Louis encephalitis virus, can cause severe neurological diseases. The nonstructural protein 1 (NS1) is a multifunctional protein of flavivirus that can be secreted by infected cells and circulate in the host bloodstream. NS1' is an additional form of NS1 protein with 52 amino acids extension at its carboxy-terminal and is produced exclusively by flaviviruses in the JEV serogroup. In this study, we demonstrated that the secreted form of both NS1 and NS1' can disrupt the blood-brain barrier (BBB) of mice, with NS1' exhibiting a stronger effect. Using the in vitro BBB model, we found that treatment of soluble recombinant JEV NS1 or NS1' protein increases the permeability of human brain microvascular endothelial cells (hBMECs) and leads to the degradation of tight junction proteins through the autophagy-lysosomal pathway. Consistently, NS1' protein exhibited a more pronounced effect compared to NS1 in these cellular processes. Further research revealed that the increased expression of macrophage migration inhibitory factor (MIF) is responsible for triggering autophagy after NS1 or NS1' treatment in hBMECs. In addition, TLR4 and NF-κB signaling was found to be involved in the activation of MIF transcription. Moreover, administering the MIF inhibitor has been shown to decrease viral loads and mitigate inflammation in the brains of mice infected with JEV. This research offers a novel perspective on the pathogenesis of JEV. In addition, the stronger effect of NS1' on disrupting the BBB compared to NS1 enhances our understanding of the mechanism by which flaviviruses in the JEV serogroup exhibit neurotropism.IMPORTANCEJapanese encephalitis (JE) is a significant viral encephalitis worldwide, caused by the JE virus (JEV). In some patients, the virus cannot be cleared in time, leading to the breach of the blood-brain barrier (BBB) and invasion of the central nervous system. This invasion may result in cognitive impairment, behavioral disturbances, and even death in both humans and animals. However, the mechanism by which JEV crosses the BBB remains unclear. Previous studies have shown that the flavivirus NS1 protein plays an important role in causing endothelial dysfunction. The NS1' protein is an elongated form of NS1 protein that is particularly produced by flaviviruses in the JEV serogroup. This study revealed that both the secreted NS1 and NS1' of JEV can disrupt the BBB by breaking down tight junction proteins through the autophagy-lysosomal pathway, and NS1' is found to have a stronger effect compared to NS1 in this process. In addition, JEV NS1 and NS1' can stimulate the expression of MIF, which triggers autophagy via the ERK signaling pathway, leading to damage to BBB. Our findings reveal a new function of JEV NS1 and NS1' in the disruption of BBB, thereby providing the potential therapeutic target for JE.


Assuntos
Autofagia , Barreira Hematoencefálica , Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Células Endoteliais , Fatores Inibidores da Migração de Macrófagos , Proteínas não Estruturais Virais , Barreira Hematoencefálica/virologia , Barreira Hematoencefálica/metabolismo , Proteínas não Estruturais Virais/metabolismo , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Animais , Camundongos , Humanos , Encefalite Japonesa/virologia , Encefalite Japonesa/metabolismo , Células Endoteliais/virologia , Células Endoteliais/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Encéfalo/virologia , Encéfalo/metabolismo , NF-kappa B/metabolismo
4.
J Virol ; 98(5): e0195923, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38634598

RESUMO

The role of Culex mosquitoes in the transmission of Japanese encephalitis virus (JEV) is crucial, yet the mechanisms of JEV infection in these vectors remain unclear. Previous research has indicated that various host factors participate in JEV infection. Herein, we present evidence that mosquito sialic acids enhance JEV infection both in vivo and in vitro. By treating mosquitoes and C6/36 cells with neuraminidase or lectin, the function of sialic acids is effectively blocked, resulting in significant inhibition of JEV infection. Furthermore, knockdown of the sialic acid biosynthesis genes in Culex mosquitoes also leads to a reduction in JEV infection. Moreover, our research revealed that sialic acids play a role in the attachment of JEV to mosquito cells, but not in its internalization. To further explore the mechanisms underlying the promotion of JEV attachment by sialic acids, we conducted immunoprecipitation experiments to confirm the direct binding of sialic acids to the last α-helix in JEV envelope protein domain III. Overall, our study contributes to a molecular comprehension of the interaction between mosquitoes and JEV and offers potential strategies for preventing the dissemination of flavivirus in natural environments.IMPORTANCEIn this study, we aimed to investigate the impact of glycoconjugate sialic acids on mosquito infection with Japanese encephalitis virus (JEV). Our findings demonstrate that sialic acids play a crucial role in enhancing JEV infection by facilitating the attachment of the virus to the cell membrane. Furthermore, our investigation revealed that sialic acids directly bind to the final α-helix in the JEV envelope protein domain III, thereby accelerating virus adsorption. Collectively, our results highlight the significance of mosquito sialic acids in JEV infection within vectors, contributing to a better understanding of the interaction between mosquitoes and JEV.


Assuntos
Culex , Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Mosquitos Vetores , Ácidos Siálicos , Ligação Viral , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Vírus da Encefalite Japonesa (Espécie)/metabolismo , Animais , Culex/virologia , Culex/metabolismo , Encefalite Japonesa/virologia , Encefalite Japonesa/metabolismo , Mosquitos Vetores/virologia , Ácidos Siálicos/metabolismo , Linhagem Celular , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Internalização do Vírus , Camundongos , Neuraminidase/metabolismo , Neuraminidase/genética
5.
J Virol ; 98(5): e0019524, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38656209

RESUMO

The host cytoskeleton plays crucial roles in various stages of virus infection, including viral entry, transport, replication, and release. However, the specific mechanisms by which intermediate filaments are involved in orthoflavivirus infection have not been well understood. In this study, we demonstrate that the Japanese encephalitis virus (JEV) remodels the vimentin network, resulting in the formation of cage-like structures that support viral replication. Mechanistically, JEV NS1 and NS1' proteins induce the translocation of CDK1 from the nucleus to the cytoplasm and interact with it, leading to the phosphorylation of vimentin at Ser56. This phosphorylation event recruits PLK1, which further phosphorylates vimentin at Ser83. Consequently, these phosphorylation modifications convert the typically filamentous vimentin into non-filamentous "particles" or "squiggles." These vimentin "particles" or "squiggles" are then transported retrogradely along microtubules to the endoplasmic reticulum, where they form cage-like structures. Notably, NS1' is more effective than NS1 in triggering the CDK1-PLK1 cascade response. Overall, our study provides new insights into how JEV NS1 and NS1' proteins manipulate the vimentin network to facilitate efficient viral replication. IMPORTANCE: Japanese encephalitis virus (JEV) is a mosquito-borne orthoflavivirus that causes severe encephalitis in humans, particularly in Asia. Despite the availability of a safe and effective vaccine, JEV infection remains a significant public health threat due to limited vaccination coverage. Understanding the interactions between JEV and host proteins is essential for developing more effective antiviral strategies. In this study, we investigated the role of vimentin, an intermediate filament protein, in JEV replication. Our findings reveal that JEV NS1 and NS1' proteins induce vimentin rearrangement, resulting in the formation of cage-like structures that envelop the viral replication factories (RFs), thus facilitating efficient viral replication. Our research highlights the importance of the interplay between the cytoskeleton and orthoflavivirus, suggesting that targeting vimentin could be a promising approach for the development of antiviral strategies to inhibit JEV propagation.


Assuntos
Proteína Quinase CDC2 , Proteínas de Ciclo Celular , Vírus da Encefalite Japonesa (Espécie) , Quinase 1 Polo-Like , Proteínas Serina-Treonina Quinases , Vimentina , Proteínas não Estruturais Virais , Replicação Viral , Proteína Quinase CDC2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Vírus da Encefalite Japonesa (Espécie)/metabolismo , Humanos , Vimentina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Fosforilação , Animais , Encefalite Japonesa/virologia , Encefalite Japonesa/metabolismo , Células HEK293 , Linhagem Celular , Interações Hospedeiro-Patógeno
6.
Emerg Microbes Infect ; 13(1): 2343910, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38618740

RESUMO

Japanese encephalitis (JE), caused by the Japanese encephalitis virus (JEV), is a highly threatening disease with no specific treatment. Fortunately, the development of vaccines has enabled effective defense against JE. However, re-emerging genotype V (GV) JEV poses a challenge as current vaccines are genotype III (GIII)-based and provide suboptimal protection. Given the isolation of GV JEVs from Malaysia, China, and the Republic of Korea, there is a concern about the potential for a broader outbreak. Under the hypothesis that a GV-based vaccine is necessary for effective defense against GV JEV, we developed a pentameric recombinant antigen using cholera toxin B as a scaffold and mucosal adjuvant, which was conjugated with the E protein domain III of GV by genetic fusion. This GV-based vaccine antigen induced a more effective immune response in mice against GV JEV isolates compared to GIII-based antigen and efficiently protected animals from lethal challenges. Furthermore, a bivalent vaccine approach, inoculating simultaneously with GIII- and GV-based antigens, showed protective efficacy against both GIII and GV JEVs. This strategy presents a promising avenue for comprehensive protection in regions facing the threat of diverse JEV genotypes, including both prevalent GIII and GI as well as emerging GV strains.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Genótipo , Vacinas contra Encefalite Japonesa , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/imunologia , Vírus da Encefalite Japonesa (Espécie)/classificação , Animais , Encefalite Japonesa/prevenção & controle , Encefalite Japonesa/imunologia , Encefalite Japonesa/virologia , Vacinas contra Encefalite Japonesa/imunologia , Vacinas contra Encefalite Japonesa/administração & dosagem , Vacinas contra Encefalite Japonesa/genética , Camundongos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Humanos , Camundongos Endogâmicos BALB C , Feminino , Antígenos Virais/imunologia , Antígenos Virais/genética , Eficácia de Vacinas , Toxina da Cólera/genética , Toxina da Cólera/imunologia
7.
Vet Microbiol ; 293: 110099, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677125

RESUMO

Japanese encephalitis virus (JEV) is a pathogen with a substantial impact on both livestock and human health. However, the critical host factors in the virus life cycle remain poorly understood. Using a library comprising 123411 small guide RNAs (sgRNAs) targeting 19050 human genes, we conducted a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based screen to identify essential genes for JEV replication. By employing knockout or knockdown techniques on genes, we identified eleven human genes crucial for JEV replication, such as prolactin releasing hormone receptor (PRLHR), activating signal cointegrator 1 complex subunit 3 (ASCC3), acyl-CoA synthetase long chain family member 3 (ACSL3), and others. Notably, we found that PRLHR knockdown blocked the autophagic flux, thereby inhibiting JEV infection. Taken together, these findings provide effective data for studying important host factors of JEV replication and scientific data for selecting antiviral drug targets.


Assuntos
Sistemas CRISPR-Cas , Vírus da Encefalite Japonesa (Espécie) , RNA Guia de Sistemas CRISPR-Cas , Replicação Viral , Replicação Viral/genética , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Humanos , RNA Guia de Sistemas CRISPR-Cas/genética , Biblioteca Gênica , Animais , Interações Hospedeiro-Patógeno/genética , Encefalite Japonesa/virologia , Linhagem Celular , Células HEK293 , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
8.
Zoonoses Public Health ; 71(4): 429-441, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38484761

RESUMO

AIMS: Japanese encephalitis (JE) is endemic in India. Although pigs are considered important hosts and sentinels for JE outbreaks in people, limited information is available on JE virus (JEV) surveillance in pigs. METHODS AND RESULTS: We investigated the spatio-temporal distribution of JEV seroprevalence and its association with climate variables in 4451 samples from pigs in 10 districts of eastern Uttar Pradesh, India, over 10 years from 2013 to 2022. The mean seroprevalence of IgG (2013-2022) and IgM (2017-2022) was 14% (95% CI 12.8-15.2) and 10.98% (95% CI 9.8-12.2), respectively. Throughout the region, higher seroprevalence from 2013 to 2017 was observed and was highly variable with no predictable spatio-temporal pattern between districts. Seroprevalence of up to 60.8% in Sant Kabir Nagar in 2016 and 69.5% in Gorakhpur district in 2017 for IgG and IgM was observed, respectively. IgG seroprevalence did not increase with age. Monthly time-series decomposition of IgG and IgM seroprevalence demonstrated annual cyclicity (3-4 peaks) with seasonality (higher, broader peaks in the summer and monsoon periods). However, most variance was due to the overall trend and the random components of the time series. Autoregressive time-series modelling of pigs sampled from Gorakhpur was insufficiently predictive for forecasting; however, an inverse association between humidity (but not rainfall or temperature) was observed. CONCLUSIONS: Detection patterns confirm seasonal epidemic periods within year-round endemicity in pigs in eastern Uttar Pradesh. Lack of increasing age-associated seroprevalence indicates that JEV might not be immunizing in pigs which needs further investigation because models that inform public health interventions for JEV could be inaccurate if assuming long-term immunity in pigs. Although pigs are considered sentinels for human outbreaks, sufficient timeliness using sero-surveillance in pigs to inform public health interventions to prevent JEV in people will require more nuanced modelling than seroprevalence and broad climate variables alone.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Doenças dos Suínos , Animais , Encefalite Japonesa/epidemiologia , Encefalite Japonesa/veterinária , Encefalite Japonesa/virologia , Suínos , Índia/epidemiologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia , Vírus da Encefalite Japonesa (Espécie)/imunologia , Estudos Soroepidemiológicos , Imunoglobulina M/sangue , Estações do Ano , Anticorpos Antivirais/sangue , Imunoglobulina G/sangue , Análise Espaço-Temporal
9.
J Virol ; 98(3): e0185923, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38411948

RESUMO

Superinfection exclusion (SIE) is a phenomenon in which a preexisting infection prevents a secondary infection. SIE has been described for several flaviviruses, such as West Nile virus vs Nhumirim virus and Dengue virus vs yellow fever virus. Zika virus (ZIKV) is an emerging flavivirus posing threats to human health. The SIE between ZIKV and Japanese encephalitis virus (JEV) is investigated in this study. Our results demonstrate for the first time that JEV inhibits ZIKV infection in both mammalian and mosquito cells, whether co-infects or subsequently infects after ZIKV. The exclusion effect happens at the stage of ZIKV RNA replication. Further studies show that the expression of JEV NS2B protein is sufficient to inhibit the replication of ZIKV, and the outer membrane region of NS2B (46-103 aa) is responsible for this SIE. JEV infection and NS2B expression also inhibit the infection of the vesicular stomatitis virus. In summary, our study characterized a SIE caused by JEV NS2B. This may have potential applications in the prevention and treatment of ZIKV or other RNA viruses.IMPORTANCEThe reemerged Zika virus (ZIKV) has caused severe symptoms in humans and poses a continuous threat to public health. New vaccines or antiviral agents need to be developed to cope with possible future pandemics. In this study, we found that infection of Japanese encephalitis virus (JEV) or expression of NS2B protein well inhibited the replication of ZIKV. It is worth noting that both the P3 strain and vaccine strain SA14-14-2 of JEV exhibited significant inhibitory effects on ZIKV. Additionally, the JEV NS2B protein also had an inhibitory effect on vesicular stomatitis virus infection, suggesting that it may be a broad-spectrum antiviral factor. These findings provide a new way of thinking about the prevention and treatment of ZIKV.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Superinfecção , Proteínas não Estruturais Virais , Infecção por Zika virus , Animais , Humanos , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/metabolismo , Encefalite Japonesa/virologia , Estomatite Vesicular , Zika virus , Proteínas não Estruturais Virais/metabolismo
10.
Vet Microbiol ; 287: 109913, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38006719

RESUMO

Japanese encephalitis virus (JEV) is a flavivirus that is spread through mosquito bites and is the leading cause of viral encephalitis in Asia. JEV can infect a variety of cell types; however, crucial receptor molecules remain unclear. The purpose of this study was to determine whether porcine CD4 protein is a receptor protein that impacts JEV entry into PK15 cells and subsequent viral replication. We confirmed the interaction between the JEV E protein and the CD4 protein through Co-IP, virus binding and internalization, antibody blocking, and overexpression and created a PK-15 cell line with CD4 gene knockdown by CRISPR/Cas9. The results show that CD4 interacts with JEV E and that CD4 knockdown cells altered virus adsorption and internalization, drastically reducing virus attachment. The level of viral transcription in CD4 antibody-blocked cells, vs. control cells, was decreased by 49.1%. Based on these results, we believe that CD4 is a receptor protein for JEVs. Furthermore, most viral receptors appear to be associated with lipid rafts, and colocalization studies demonstrate the presence of CD4 protein on lipid rafts. RT‒qPCR and WB results show that virus replication was suppressed in PK-15-CD4KD cells. The difference in viral titer between KD and WT PK-15 cells peaked at 24 h, and the viral titer in WT PK-15 cells was 5.6 × 106, whereas in PK-15-CD4KD cells, it was only 1.8 × 106, a 64% drop, demonstrating that CD4 deficiency has an effect on the process of viral replication. These findings suggest that JEV enters porcine kidney cells via lipid raft-colocalized CD4, and the proliferation process is positively correlated with CD4.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Receptores Virais , Doenças dos Suínos , Animais , Ásia , Linhagem Celular , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Encefalite Japonesa/metabolismo , Encefalite Japonesa/veterinária , Encefalite Japonesa/virologia , Receptores Virais/metabolismo , Suínos , Doenças dos Suínos/virologia , Ligação Viral , Replicação Viral
12.
PLoS Negl Trop Dis ; 16(2): e0010116, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35143497

RESUMO

BACKGROUND: Japanese encephalitis (JE) virus (JEV) remains a leading cause of neurological infection across Asia. The high lethality of disease and absence of effective therapies mean that standardised animal models will be crucial in developing therapeutics. However, published mouse models are heterogeneous. We performed a systematic review, meta-analysis and meta-regression of published JEV mouse experiments to investigate the variation in model parameters, assess homogeneity and test the relationship of key variables against mortality. METHODOLOGY/ PRINCIPAL FINDINGS: A PubMed search was performed up to August 2020. 1991 publications were identified, of which 127 met inclusion criteria, with data for 5026 individual mice across 487 experimental groups. Quality assessment was performed using a modified CAMARADES criteria and demonstrated incomplete reporting with a median quality score of 10/17. The pooled estimate of mortality in mice after JEV challenge was 64.7% (95% confidence interval 60.9 to 68.3) with substantial heterogeneity between experimental groups (I^2 70.1%, df 486). Using meta-regression to identify key moderators, a refined dataset was used to model outcome dependent on five variables: mouse age, mouse strain, virus strain, virus dose (in log10PFU) and route of inoculation. The final model reduced the heterogeneity substantially (I^2 38.9, df 265), explaining 54% of the variability. CONCLUSION/ SIGNIFICANCE: This is the first systematic review of mouse models of JEV infection. Better adherence to CAMARADES guidelines may reduce bias and variability of reporting. In particular, sample size calculations were notably absent. We report that mouse age, mouse strain, virus strain, virus dose and route of inoculation account for much, though not all, of the variation in mortality. This dataset is available for researchers to access and use as a guideline for JEV mouse experiments.


Assuntos
Modelos Animais de Doenças , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Encefalite Japonesa/virologia , Camundongos , Animais , Vírus da Encefalite Japonesa (Espécie)/genética , Humanos , Camundongos/virologia
13.
Viruses ; 14(1)2022 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-35062317

RESUMO

Expansion of genotype I (GI) Japanese encephalitis viruses (JEV) has resulted in the replacement of the dominant genotype III (GIII) viruses, raising serious public health concerns for using GIII virus-derived vaccines to effectively control JEV epidemics. Therefore, this study used swine as the model to estimate the effectiveness of GIII live-attenuated vaccine against GI virus infection by comparing the incidence of stillbirth/abortion in gilts from vaccinated and non-vaccinated pig farms during the GI-circulation period. In total, 389 and 213 litters of gilts were recorded from four vaccinated and two non-vaccinated pig farms, respectively. All viruses detected in the aborted fetuses and mosquitoes belonged to the GI genotype during the study period. We thus estimated that the vaccine effectiveness of GIII live-attenuated vaccine against GI viruses in naive gilts based on the overall incidence of stillbirth/abortion and incidence of JEV-confirmed stillbirth/abortion was 65.5% (50.8-75.7%) and 74.7% (34.5-90.2%), respectively. In contrast to previous estimates, the GIII live-attenuated vaccine had an efficacy of 95.6% (68.3-99.4%) to prevent the incidence of stillbirth/abortion during the GIII-circulating period. These results indicate that the vaccine effectiveness of GIII live-attenuated JEV vaccine to prevent stillbirth/abortion caused by GI viruses is lower than that against GIII viruses.


Assuntos
Encefalite Japonesa/virologia , Genótipo , Doenças dos Suínos/virologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Culicidae , Vírus da Encefalite Japonesa (Espécie)/genética , Feminino , Imunização , Vacinas contra Encefalite Japonesa/imunologia , Filogenia , Suínos , Taiwan , Vacinas Atenuadas/imunologia
14.
Gene ; 808: 145962, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34530082

RESUMO

Japanese encephalitis (JE), an acute encephalitis syndrome disease caused by infection with JE virus (JEV), is an important mosquito borne disease in developing countries. The clinical outcomes of JEV infection show inter individual differences. Only in a minor percent of the infected subjects, the disease progresses into acute encephalitis syndrome. Single nucleotide polymorphisms in the host immune response related genes are known to affect susceptibility to JE. In the present study, 238 JE cases and 405 healthy controls (HCs) without any known history of encephalitis were investigated for SNPs in the CD209 MX1, TLR3, MMP9, TNFA and IFNG genes which are important in the immune response against JEV by PCR based methods. The results revealed higher frequencies of heterozygous genotypes of CD209 rs4804803, MMP9 rs17576, TNFA rs1800629 and IFNG rs2430561 in JE cases compared to HCs. These SNPs were associated with JE in an over-dominant genetic model (Odds ratio with 95% CI 1.51 (1.09-2.10) for CD209 rs4804803, 1.52 (1.09-2.11) for MMP9 rs17576, and 1.55 (1.12-2.15) for IFNG rs2430561). The association of G/A genotype of TNFA rs1800629 with JE was confirmed in a larger sample size. The results suggest the association of CD209 rs4804803, MMP9 rs17576, IFNG rs2430561 and TNFA rs1800629 polymorphisms with susceptibility to JE.


Assuntos
Encefalite Japonesa/genética , Moléculas de Adesão Celular/genética , Criança , Pré-Escolar , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Encefalite Japonesa/virologia , Feminino , Predisposição Genética para Doença/genética , Genótipo , Humanos , Índia/epidemiologia , Interferon gama/genética , Lectinas Tipo C/genética , Masculino , Metaloproteinase 9 da Matriz/genética , Razão de Chances , Polimorfismo de Nucleotídeo Único/genética , Receptores de Superfície Celular/genética , Fator de Necrose Tumoral alfa/genética
15.
Emerg Microbes Infect ; 11(1): 123-135, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34877923

RESUMO

Japanese encephalitis virus (JEV), an important neurotropic pathogen, belongs to the genus Flavivirus of the family Flaviviridae and has caused huge threat to public health. It is still obscure regarding the functions of stem-loop (SL) and dumbbell (DB) domains of JEV 3' UTR in viral replication and virulence. In the current study, using the infectious clone of JEV SA14 strain as a backbone, we constructed a series of deletion mutants of 3' UTR to investigate their effects on virus replication. The results showed that partial deletions within SL or DB domain had no apparent effects on virus replication in both mammalian (BHK-21) and mosquito (C6/36) cells, suggesting that they were not involved in viral host-specific replication. However, the entire SL domain deletion (ΔVR) significantly reduced virus replication in both cell lines, indicating the important role of the complete SL domain in virus replication. The revertant of ΔVR mutant virus was obtained by serial passage in BHK-21 cells that acquired a duplication of DB domain (DB-dup) in the 3' UTR, which greatly restored virus replication as well as the capability to produce the subgenomic flavivirus RNAs (sfRNAs). Interestingly, the DB-dup mutant virus was highly attenuated in C57BL/6 mice despite replicating similar to WT JEV. These findings demonstrate the significant roles of the duplicated structures in 3' UTR in JEV replication and provide a novel strategy for the design of live-attenuated vaccines.


Assuntos
Regiões 3' não Traduzidas , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Encefalite Japonesa/virologia , Replicação Viral/genética , Animais , Linhagem Celular , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Conformação de Ácido Nucleico , RNA Viral/química , RNA Viral/genética , Virulência/genética
16.
Cells ; 10(11)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34831405

RESUMO

Infection with flaviviruses causes mild to severe diseases, including viral hemorrhagic fever, vascular shock syndrome, and viral encephalitis. Several animal models explore the pathogenesis of viral encephalitis, as shown by neuron destruction due to neurotoxicity after viral infection. While neuronal cells are injuries caused by inflammatory cytokine production following microglial/macrophage activation, the blockade of inflammatory cytokines can reduce neurotoxicity to improve the survival rate. This study investigated the involvement of macrophage phenotypes in facilitating CNS inflammation and neurotoxicity during flavivirus infection, including the Japanese encephalitis virus, dengue virus (DENV), and Zika virus. Mice infected with different flaviviruses presented encephalitis-like symptoms, including limbic seizure and paralysis. Histology indicated that brain lesions were identified in the hippocampus and surrounded by mononuclear cells. In those regions, both the infiltrated macrophages and resident microglia were significantly increased. RNA-seq analysis showed the gene profile shifting toward type 1 macrophage (M1) polarization, while M1 markers validated this phenomenon. Pharmacologically blocking C-C chemokine receptor 2 and tumor necrosis factor-α partly retarded DENV-induced M1 polarization. In summary, flavivirus infection, such as JEV and DENV, promoted type 1 macrophage polarization in the brain associated with encephalitic severity.


Assuntos
Polaridade Celular , Vírus da Dengue/fisiologia , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Encefalite Viral/patologia , Encefalite Viral/virologia , Macrófagos/patologia , Índice de Gravidade de Doença , Animais , Animais Lactentes , Linhagem Celular , Modelos Animais de Doenças , Encefalite Japonesa/imunologia , Encefalite Japonesa/patologia , Encefalite Japonesa/virologia , Encefalite Viral/imunologia , Hipocampo/patologia , Inflamação/patologia , Camundongos Endogâmicos ICR , Neurotoxinas/toxicidade , Receptores CCR2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
Front Immunol ; 12: 739837, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721406

RESUMO

We have developed a new binary epitope-presenting CVP platform based on bamboo mosaic virus (BaMV) by using the sortase A (SrtA)-mediated ligation technology. The reconstructed BaMV genome harbors two modifications: 1) a coat protein (CP) with N-terminal extension of the tobacco etch virus (TEV) protease recognition site plus 4 extra glycine (G) residues as the SrtA acceptor; and 2) a TEV protease coding region replacing that of the triple-gene-block proteins. Inoculation of such construct, pKB5G, on Nicotiana benthamiana resulted in the efficient production of filamentous CVPs ready for SrtA-mediated ligation with desired proteins. The second part of the binary platform includes an expression vector for the bacterial production of donor proteins. We demonstrated the applicability of the platform by using the recombinant envelope protein domain III (rEDIII) of Japanese encephalitis virus (JEV) as the antigen. Up to 40% of the BaMV CP subunits in each CVP were loaded with rEDIII proteins in 1 min. The rEDIII-presenting BaMV CVPs (BJLPET5G) could be purified using affinity chromatography. Immunization assays confirmed that BJLPET5G could induce the production of neutralizing antibodies against JEV infections. The binary platform could be adapted as a useful alternative for the development and mass production of vaccine candidates.


Assuntos
Aminoaciltransferases/metabolismo , Antígenos Virais/administração & dosagem , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Vírus da Encefalite Japonesa (Espécie)/imunologia , Encefalite Japonesa/prevenção & controle , Endopeptidases/metabolismo , Vacinas contra Encefalite Japonesa/administração & dosagem , Potexvirus/enzimologia , Vírion/enzimologia , Aminoaciltransferases/genética , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Proteínas de Bactérias/genética , Linhagem Celular , Cisteína Endopeptidases/genética , Modelos Animais de Doenças , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/sangue , Encefalite Japonesa/imunologia , Encefalite Japonesa/virologia , Endopeptidases/genética , Escherichia coli/genética , Escherichia coli/imunologia , Escherichia coli/metabolismo , Feminino , Vetores Genéticos , Imunogenicidade da Vacina , Vacinas contra Encefalite Japonesa/genética , Vacinas contra Encefalite Japonesa/imunologia , Camundongos Endogâmicos BALB C , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Potexvirus/genética , Potexvirus/imunologia , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/metabolismo , Vírion/genética , Vírion/imunologia
18.
PLoS Negl Trop Dis ; 15(10): e0009385, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34644296

RESUMO

Japanese encephalitis virus (JEV) is a major cause of neurological disability in Asia and causes thousands of severe encephalitis cases and deaths each year. Although Japanese encephalitis (JE) is a WHO reportable disease, cases and deaths are significantly underreported and the true burden of the disease is not well understood in most endemic countries. Here, we first conducted a spatial analysis of the risk factors associated with JE to identify the areas suitable for sustained JEV transmission and the size of the population living in at-risk areas. We then estimated the force of infection (FOI) for JE-endemic countries from age-specific incidence data. Estimates of the susceptible population size and the current FOI were then used to estimate the JE burden from 2010 to 2019, as well as the impact of vaccination. Overall, 1,543.1 million (range: 1,292.6-2,019.9 million) people were estimated to live in areas suitable for endemic JEV transmission, which represents only 37.7% (range: 31.6-53.5%) of the over four billion people living in countries with endemic JEV transmission. Based on the baseline number of people at risk of infection, there were an estimated 56,847 (95% CI: 18,003-184,525) JE cases and 20,642 (95% CI: 2,252-77,204) deaths in 2019. Estimated incidence declined from 81,258 (95% CI: 25,437-273,640) cases and 29,520 (95% CI: 3,334-112,498) deaths in 2010, largely due to increases in vaccination coverage which have prevented an estimated 314,793 (95% CI: 94,566-1,049,645) cases and 114,946 (95% CI: 11,421-431,224) deaths over the past decade. India had the largest estimated JE burden in 2019, followed by Bangladesh and China. From 2010-2019, we estimate that vaccination had the largest absolute impact in China, with 204,734 (95% CI: 74,419-664,871) cases and 74,893 (95% CI: 8,989-286,239) deaths prevented, while Taiwan (91.2%) and Malaysia (80.1%) had the largest percent reductions in JE burden due to vaccination. Our estimates of the size of at-risk populations and current JE incidence highlight countries where increasing vaccination coverage could have the largest impact on reducing their JE burden.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/imunologia , Encefalite Japonesa/prevenção & controle , Vacinas contra Encefalite Japonesa/administração & dosagem , Zoonoses Virais/prevenção & controle , Animais , Ásia/epidemiologia , Demografia , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/epidemiologia , Encefalite Japonesa/transmissão , Encefalite Japonesa/virologia , Humanos , Vacinas contra Encefalite Japonesa/imunologia , Vacinação , Zoonoses Virais/epidemiologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologia
19.
Sci Rep ; 11(1): 18125, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518560

RESUMO

Japanese encephalitis (JE) virus is a flavivirus causing encephalitis causing neurological damage. RNA-dependent-RNA-polymerase (RdRp) is responsible for genome replication making it excellent anti-viral target. In this study, the crystal structure of JE RdRp (jRdRp) and bioflavonoids reported in Azadirachta indica were retrieved from specific databases. Structure-based virtual screening was employed using MTiOpenScreen server and top four compounds selected with the most negative docking scores. Conformations were redocked using AutoDock Vina; these complexes showed mechanistic interactions with Arg474, Gly605, Asp668, and Trp800 residues in the active site of jRdRp, i.e., guanosine-5'-triphosphate. Furthermore, 100 ns classical molecular dynamics simulation and binding free energy calculation showed stability of docked bioflavonoids in the active jRdRp pocket and significant contribution of van-der-Waals interactions for docked complex stability during simulation. Therefore, this study predicted the anti-viral activity of Gedunin, Nimbolide, Ohchinin acetate, and Kulactone against jRdRp and can be considered for further antiviral drug development.


Assuntos
Antivirais/farmacologia , Azadirachta/química , Vírus da Encefalite Japonesa (Espécie)/efeitos dos fármacos , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Encefalite Japonesa/virologia , Flavonoides/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Antivirais/química , Sítios de Ligação , Descoberta de Drogas , Encefalite Japonesa/tratamento farmacológico , Flavonoides/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Extratos Vegetais , Ligação Proteica , RNA Polimerase Dependente de RNA/química , Relação Estrutura-Atividade
20.
Vet Microbiol ; 262: 109237, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34592637

RESUMO

Japanese encephalitis virus (JEV) is a typical insect-borne flavivirus and an important zoonotic pathogen that causes human viral encephalitis and reproductive failure in pigs. Various strategies were utilized by JEV to facilitate its replication. It is important to identify key molecules that mediate JEV infection, as well as to investigate their underlying mechanism. In this study, the critical role of high-mobility group box 1 (HMGB1), a non-histone, DNA-binding protein, was assessed in JEV propagation. Upon JEV infection, the HMGB1 mRNA and protein levels were down-regulated at late infection in Huh7 cells. JEV replication was significantly enhanced with HMGB1 knock-down by siRNA and knock-out by the CRISPR/Cas9 system, whereas JEV growth was restricted in HMGB1-over-expressed Huh7 cells. Further investigation showed that HMGB1 suppressed MAPK pathway, and demonstrated that the weakening of MAPK pathway negatively regulated JEV infection. Together, these results suggested that JEV restricted HMGB1 expression to maintain MAPK pathway activation for viral replication. Our data showed that HMGB1 played a key role in JEV infection, providing the potential for the development of a novel drug to combat JEV infection.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Regulação da Expressão Gênica , Proteína HMGB1 , Interações Hospedeiro-Patógeno , Doenças dos Suínos , Replicação Viral , Animais , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/imunologia , Encefalite Japonesa/veterinária , Encefalite Japonesa/virologia , Proteína HMGB1/genética , Interações Hospedeiro-Patógeno/genética , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...