Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 736
Filtrar
1.
Physiol Plant ; 176(3): e14352, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38764037

RESUMO

Climate change is responsible for mild winters and warm springs that can induce premature plant development, increasing the risk of exposure to cold stress with a severe reduction in plant growth. Tomato plants are sensitive to cold stress and beneficial microorganisms can increase their tolerance. However, scarce information is available on mechanisms stimulated by bacterial endophytes in tomato plants against cold stress. This study aimed to clarify metabolic changes stimulated by psychrotolerant endophytic bacteria in tomato plants exposed to cold stress and annotate compounds possibly associated with cold stress mitigation. Tomato seeds were inoculated with two bacterial endophytes isolated from Antarctic Colobanthus quitensis plants (Ewingella sp. S1.OA.A_B6 and Pseudomonas sp. S2.OTC.A_B10) or with Paraburkholderia phytofirmans PsJN, while mock-inoculated seeds were used as control. The metabolic composition of tomato plants was analyzed immediately after cold stress exposure (4°C for seven days) or after two and four days of recovery at 25°C. Under cold stress, the content of malondialdehyde, phenylalanine, ferulic acid, and p-coumaric acid was lower in bacterium-inoculated compared to mock-inoculated plants, indicating a reduction of lipid peroxidation and the stimulation of phenolic compound metabolism. The content of two phenolic compounds, five putative phenylalanine-derived dipeptides, and three further phenylalanine-derived compounds was higher in bacterium-inoculated compared to mock-inoculated samples under cold stress. Thus, psychrotolerant endophytic bacteria can reprogram polyphenol metabolism and stimulate the accumulation of secondary metabolites, like 4-hydroxybenzoic and salicylic acid, which are presumably involved in cold stress mitigation, and phenylalanine-derived dipeptides possibly involved in plant stress responses.


Assuntos
Temperatura Baixa , Resposta ao Choque Frio , Endófitos , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/fisiologia , Solanum lycopersicum/metabolismo , Endófitos/fisiologia , Regiões Antárticas , Resposta ao Choque Frio/fisiologia , Sementes/microbiologia , Sementes/fisiologia , Sementes/metabolismo
2.
J Agric Food Chem ; 72(19): 10781-10793, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709780

RESUMO

In this study, 20-day-old soybean plants were watered with 100 mL of 100 mM NaCl solution and sprayed with silica nanoparticles (SiO2 NPs) or potassium silicate every 3 days over 15 days, with a final dosage of 12 mg of SiO2 per plant. We assessed the alterations in the plant's growth and physiological traits, and the responses of bacterial microbiome within the leaf endosphere, rhizosphere, and root endosphere. The result showed that the type of silicon did not significantly impact most of the plant parameters. However, the bacterial communities within the leaf and root endospheres had a stronger response to SiO2 NPs treatment, showing enrichment of 24 and 13 microbial taxa, respectively, compared with the silicate treatment, which led to the enrichment of 9 and 8 taxonomic taxa, respectively. The rhizosphere bacterial communities were less sensitive to SiO2 NPs, enriching only 2 microbial clades, compared to the 8 clades enriched by silicate treatment. Furthermore, SiO2 NPs treatment enriched beneficial genera, such as Pseudomonas, Bacillus, and Variovorax in the leaf and root endosphere, likely enhancing plant growth and salinity stress resistance. These findings highlight the potential of SiO2 NPs for foliar application in sustainable farming by enhancing plant-microbe interactions to improve salinity tolerance.


Assuntos
Bactérias , Glycine max , Nanopartículas , Rizosfera , Silício , Glycine max/microbiologia , Glycine max/crescimento & desenvolvimento , Glycine max/efeitos dos fármacos , Glycine max/química , Nanopartículas/química , Bactérias/classificação , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/crescimento & desenvolvimento , Silício/farmacologia , Silício/química , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Microbiologia do Solo , Microbiota/efeitos dos fármacos , Folhas de Planta/química , Folhas de Planta/microbiologia , Folhas de Planta/crescimento & desenvolvimento , Endófitos/fisiologia , Endófitos/efeitos dos fármacos , Dióxido de Silício/química , Estresse Salino
3.
BMC Ecol Evol ; 24(1): 62, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735962

RESUMO

The epiphytic and endophytic bacteria play an important role in the healthy growth of plants. Both plant species and growth environmental influence the bacterial population diversity, yet it is inconclusive whether it is the former or the latter that has a greater impact. To explore the communities of the epiphytic and endophytic microbes in Camellia oleifera, this study assessed three representative C. oleifera cultivars from three areas in Hunan, China by Illumina high-throughput sequencing. The results showed that the diversity and species richness of endophytic microbial community in leaves were significantly higher than those of microbial community in the epiphytic. The diversity and species richness of epiphytic and endophytic microbes are complex when the same cultivar was grown in different areas. The C. oleifera cultivars grown in Youxian had the highest diversity of epiphytic microbial community, but the lowest abundance, while the cultivars grown in Changsha had the highest diversity and species richness of endophytic microbes in leaves. It was concluded that the dominant phylum mainly included Proteobacteria, Actinobacteriota and Firmicutes through the analysis of the epiphytic and endophytic microbial communities of C. oleifera. The species and relative abundances of epiphytic and endophytic microbial community were extremely different at the genus level. The analysis of NMDS map and PERMANOVA shows that the species richness and diversity of microbial communities in epiphytes are greatly influenced by region. However, the community structure of endophytic microorganisms in leaves is influenced by region and cultivated varieties, but the influence of cultivars is more significant. Molecular ecological network analysis showed that the symbiotic interaction of epiphytic microbial community was more complex.


Assuntos
Bactérias , Camellia , Endófitos , Microbiota , Folhas de Planta , Camellia/microbiologia , Endófitos/fisiologia , Endófitos/genética , Endófitos/isolamento & purificação , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , China , Folhas de Planta/microbiologia , Biodiversidade
4.
Curr Microbiol ; 81(7): 184, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771325

RESUMO

Agriculture and livestock management practices known as organic farming rely more on internal processes than external inputs. Natural environments depend heavily on diversity, and organic farming incorporates both the stated purpose of fostering diversity as well as the use of diversity as a management tool. A more complete understanding of agriculture in terms of agro-ecology has begun to be questioned by the traditional reductionist approach to the study of agriculture. Therefore it is necessary to be aware more about the significance of microbes in processes including soil growth, plant nourishment, and the eradication of plant disease, pest, and weeds. In this study, fluorescent Pseudomonas strain (EFP56) and Trichoderma harzianum were studied for antifungal and antibacterial activity against four common root rot fungi and four common laboratory bacteria in vitro experiments. Furthermore, soil-borne disease surveillance and nutritional quality of Lagenaria siceraria, fluorescent Pseudomonas strain (EFP56) and Trichoderma harzianum were combined with neem cake and cotton cake to check their efficacy. Through the application of organic soil amendments in combination with biocontrol agents improved the quality of vegetables and their nutritional value by raising their polyphenol, carbohydrate, and protein content as well as enhancing antioxidant scavenging status. The experiments were conducted in pots and in fields to confirm their efficacy rate. The final outcomes also revealed greater induction of defense system, disease lessening and enriched fruit quality. Consortium of neem cake and cotton cake with bio-stimulants can regulate biotic as well as abiotic stress.


Assuntos
Endófitos , Pseudomonas , Microbiologia do Solo , Endófitos/fisiologia , Pseudomonas/fisiologia , Cucurbitaceae/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Hypocreales/fisiologia , Fungos/fisiologia , Fungos/efeitos dos fármacos , Bactérias/classificação , Bactérias/efeitos dos fármacos , Agentes de Controle Biológico , Raízes de Plantas/microbiologia , Antifúngicos/farmacologia , Antifúngicos/metabolismo
5.
Microb Ecol ; 87(1): 73, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758374

RESUMO

Endophytes generally increase antioxidant contents of plants subjected to environmental stresses. However, the mechanisms by which endophytes alter the accumulation of antioxidants in plant tissues are not entirely clear. We hypothesized that, in stress situations, endophytes would simultaneously reduce oxidative damage and increase antioxidant contents of plants and that the accumulation of antioxidants would be a consequence of the endophyte ability to regulate the expression of plant antioxidant genes. We investigated the effects of the fungal endophyte Epichloë gansuensis (C.J. Li & Nan) on oxidative damage, antioxidant contents, and expression of representative genes associated with antioxidant pathways in Achnatherum inebrians (Hance) Keng plants subjected to low (15%) and high (60%) soil moisture conditions. Gene expression levels were measured using RNA-seq. As expected, the endophyte reduced the oxidative damage by 17.55% and increased the antioxidant contents by 53.14% (on average) in plants subjected to low soil moisture. In line with the accumulation of antioxidants in plant tissues, the endophyte increased the expression of most plant genes associated with the biosynthesis of antioxidants (e.g., MIOX, crtB, gpx) while it reduced the expression of plant genes related to the metabolization of antioxidants (e.g., GST, PRODH, ALDH). Our findings suggest that endophyte ability of increasing antioxidant contents in plants may reduce the oxidative damage caused by stresses and that the fungal regulation of plant antioxidants would partly explain the accumulation of these compounds in plant tissues.


Assuntos
Antioxidantes , Secas , Endófitos , Epichloe , Estresse Oxidativo , Endófitos/metabolismo , Endófitos/fisiologia , Antioxidantes/metabolismo , Epichloe/fisiologia , Epichloe/genética , Epichloe/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico
6.
Sci Total Environ ; 932: 173109, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729361

RESUMO

The influence of endophytic microbial community on plant growth and disease resistance is of considerable importance. Prior research indicates that pre-treatment of kiwifruit with the biocontrol yeast Debaryomyces hansenii suppresses gray mold disease induced by Botrytis cinerea. However, the specific underlying mechanisms remain unclear. In this study, Metagenomic sequencing was utilized to analyze the composition of the endophytic microbiome of kiwifruit under three distinct conditions: the healthy state, kiwifruit inoculated with B. cinerea, and kiwifruit treated with D. hansenii prior to inoculation with B. cinerea. Results revealed a dominance of Proteobacteria in all treatment groups, accompanied by a notable increase in the relative abundance of Actinobacteria and Firmicutes. Ascomycota emerged as the major dominant group within the fungal community. Treatment with D. hansenii induced significant alterations in microbial community diversity, specifically enhancing the relative abundance of yeast and exerting an inhibitory effect on B. cinerea. The introduction of D. hansenii also enriched genes associated with energy metabolism and signal transduction, positively influencing the overall structure and function of the microbial community. Our findings highlight the potential of D. hansenii to modulate microbial dynamics, inhibit pathogenic organisms, and positively influence functional attributes of the microbial community.


Assuntos
Actinidia , Botrytis , Endófitos , Microbiota , Doenças das Plantas , Endófitos/fisiologia , Botrytis/fisiologia , Actinidia/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Frutas/microbiologia , Resistência à Doença , Debaryomyces/fisiologia , Ascomicetos/fisiologia
7.
Sci Total Environ ; 927: 172231, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608902

RESUMO

Endophytic microorganisms are indispensable symbionts during plant growth and development and often serve functions such as growth promotion and stress resistance in plants. Therefore, an increasing number of researchers have applied endophytes for multifaceted phytoremediation (e.g., organic pollutants and heavy metals) in recent years. With the availability of next-generation sequencing technologies, an increasing number of studies have shifted the focus from culturable bacteria to total communities. However, information on the composition, structure, and function of bacterial endophytic communities is still not widely synthesized. To explore the general patterns of variation in bacterial communities between plant niches, we reanalyzed data from 1499 samples in 30 individual studies from different continents and provided comprehensive insights. A group of bacterial genera were commonly found in most plant roots and shoots. Our analysis revealed distinct variations in the diversity, composition, structure, and function of endophytic bacterial communities between plant roots and shoots. These variations underscore the sophisticated mechanisms by which plants engage with their endophytic microbiota, optimizing these interactions to bolster growth, health, and resilience against stress. Highlighting the strategic role of endophytic bacteria in promoting sustainable agricultural practices and environmental stewardship, our study not only offers global insights into the endophytic bacterial communities of terrestrial plants but also underscores the untapped potential of these communities as invaluable resources for future research.


Assuntos
Agricultura , Bactérias , Endófitos , Microbiota , Plantas , Endófitos/fisiologia , Agricultura/métodos , Plantas/microbiologia , Biodegradação Ambiental , Raízes de Plantas/microbiologia
8.
BMC Plant Biol ; 24(1): 337, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664617

RESUMO

BACKGROUND: Endophytes mediate the interactions between plants and other microorganisms, and the functional aspects of interactions between endophytes and their host that support plant-growth promotion and tolerance to stresses signify the ecological relevance of the endosphere microbiome. In this work, we studied the bacterial and fungal endophytic communities of olive tree (Olea europaea L.) asymptomatic or low symptomatic genotypes sampled in groves heavily compromised by Xylella fastidiosa subsp. pauca, aiming to characterize microbiota in genotypes displaying differential response to the pathogen. RESULTS: The relationships between bacterial and fungal genera were analyzed both separately and together, in order to investigate the intricate correlations between the identified Operational Taxonomic Units (OTUs). Results suggested a dominant role of the fungal endophytic community compared to the bacterial one, and highlighted specific microbial taxa only associated with asymptomatic or low symptomatic genotypes. In addition, they indicated the occurrence of well-adapted genetic resources surviving after years of pathogen pressure in association with microorganisms such as Burkholderia, Quambalaria, Phaffia and Rhodotorula. CONCLUSIONS: This is the first study to overview endophytic communities associated with several putatively resistant olive genotypes in areas under high X. fastidiosa inoculum pressure. Identifying these negatively correlated genera can offer valuable insights into the potential antagonistic microbial resources and their possible development as biocontrol agents.


Assuntos
Endófitos , Genótipo , Olea , Doenças das Plantas , Xylella , Olea/microbiologia , Xylella/fisiologia , Xylella/genética , Endófitos/fisiologia , Endófitos/genética , Doenças das Plantas/microbiologia , Microbiota , Bactérias/genética , Bactérias/classificação , Fungos/fisiologia , Fungos/genética
9.
Plant Dis ; 108(4): 996-1004, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613135

RESUMO

Bacterial wilt caused by Ralstonia solanacearum (RS) is one of the most devastating diseases in patchouli (Pogostemon cablin [Blanco] Benth.), which results in low yield and quality of patchouli. However, no stable and effective control methods have been developed yet. To evaluate the potential of dominant bacterial endophytes in biocontrol, the endophytic bacterial diversity of patchouli was investigated based on Illumina sequencing analysis, and the ability of isolates belonging to the dominant bacterial genera to control RS wilt of patchouli was explored in pot experiments. A total of 245 bacterial genera were detected in patchouli plants, with the highest relative abundance of operational taxonomic units belonging to the genus Pseudomonas detected in roots, leaves, and stems. The Pseudomonas isolates S02, S09, and S26 showed antagonistic activity against RS in vitro and displayed many plant growth-promoting characteristics, including production of indole-3-acetic acid, siderophores, and 1-aminocyclopropane-1-carboxylic acid deaminase and phosphate- and potassium-solubilizing capability. Inoculation of patchouli plants with the isolates S02, S09, and S26 significantly improved shoot growth and decreased the incidence of bacterial wilt caused by RS. The results suggest that screening of dominant bacterial endophytes for effective biocontrol agents based on Illumina sequencing analysis is more efficient than random isolation and screening procedures.


Assuntos
Endófitos , Doenças das Plantas , Ralstonia solanacearum , Ralstonia solanacearum/fisiologia , Ralstonia solanacearum/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Endófitos/genética , Endófitos/fisiologia , Endófitos/isolamento & purificação , Pseudomonas/genética , Pseudomonas/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Agentes de Controle Biológico
10.
J Agric Food Chem ; 72(18): 10257-10270, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38661009

RESUMO

Drought stress has become the primary severe threat to global agriculture production, including medicinal plants. Plant growth-promoting bacteria (PGPB) and environmentally friendly element silicon (Si) have emerged as effective methods in alleviating drought stress in various plants. Here, the effects of the plant endophytic G5 interaction with Si on regulating nitrogen absorption, assimilation, and metabolism pathways were investigated in the morphophysiological and gene attributes of Glycyrrhiza uralensis exposed to drought. Results showed that G5+Si application improved nitrogen absorption and assimilation by increasing the available nitrogen content in the soil, further improving the nitrogen utilization efficiency. Then, G5+Si triggered the accumulation of the major adjustment substances proline, γ-aminobutyric acid, putrescine, and chlorophyll, which played an important role in contributing to maintaining balance and energy supply in G. uralensis exposed to drought. These findings will provide new ideas for the combined application of PGPR and Si on both soil and plant systems in a drought habitat.


Assuntos
Secas , Endófitos , Glycyrrhiza uralensis , Nitrogênio , Silício , Nitrogênio/metabolismo , Silício/metabolismo , Endófitos/metabolismo , Endófitos/fisiologia , Glycyrrhiza uralensis/microbiologia , Glycyrrhiza uralensis/metabolismo , Glycyrrhiza uralensis/química , Glycyrrhiza uralensis/genética , Bacillus/metabolismo , Estresse Fisiológico , Clorofila/metabolismo , Solo/química , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo
11.
Plant Physiol Biochem ; 210: 108610, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615447

RESUMO

In the face of the formidable environmental challenges precipitated by the ongoing climate change, Plant Growth-Promoting Bacteria (PGPB) are gaining widespread acknowledgement for their potential as biofertilizers, biocontrol agents, and microbial inoculants. However, a knowledge gap pertains to the ability of PGPB to improve stress tolerance in forestry species via cross-inoculation. To address this gap, the current investigation centres on PGPBs, namely, Acinetobacter johnsonii, Cronobacter muytjensii, and Priestia endophytica, selected from the phyllosphere of robust and healthy plants thriving in the face of stress-inducing conditions. These strains were selected based on their demonstrated adaptability to saline, arid, and nitrogen-deficient environments. The utilization of PGPB treatment resulted in an improvement of stomatal conductance (gs) and transpiration rate (E) in poplar plants exposed to both salt and drought stress. It also induced an increase in essential biochemical components such as proline (PRO), catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD). These reactions were accompanied by a decrease in leaf malonaldehyde (MDA) content and electrolyte leakage (EL). Furthermore, the PGPB treatment demonstrated a notable enhancement in nutrient absorption, particularly nitrogen and carbon, achieved through the solubilization of nutrients. The estimation of canopy temperature via thermal imaging proved to be an efficient method for distinguishing stress reactions in poplar than conventional temperature recording techniques. In summation, the utilization of PGPB especially Cronobacter muytjensii in this study, yielded profound improvements in the stress tolerance of poplar plants, manifesting in reduced membrane lipid peroxidation, enhanced photosynthesis, and bolstered antioxidant capacity within the leaves.


Assuntos
Populus , Estresse Fisiológico , Populus/microbiologia , Populus/fisiologia , Endófitos/fisiologia , Folhas de Planta/metabolismo , Secas , Prolina/metabolismo , Adaptação Fisiológica , Acinetobacter/fisiologia
12.
Microbiol Spectr ; 12(4): e0257423, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488391

RESUMO

The clavicipitaceous fungus Epichloë gansuensis forms symbiotic associations with drunken horse grass (Achnatherum inebrians), providing biotic and abiotic stress protection to its host. However, it is unclear how E. gansuensis affects the assembly of host plant-associated bacterial communities after ammonium nitrogen (NH4+-N) treatment. We examined the shoot- and root-associated bacterial microbiota and root metabolites of A. inebrians when infected (I) or uninfected (F) with E. gansuensis endophyte. The results showed more pronounced NH4+-N-induced microbial and metabolic changes in the endophyte-infected plants compared to the endophyte-free plants. E. gansuensis significantly altered bacterial community composition and ß-diversity in shoots and roots and increased bacterial α-diversity under NH4+-N treatment. The relative abundance of 117 and 157 root metabolites significantly changed with E. gansuensis infection under water and NH4+-N treatment compared to endophyte-free plants. Root bacterial community composition was significantly related to the abundance of the top 30 metabolites [variable importance in the projection (VIP) > 2 and VIP > 3] contributing to differences between I and F plants, especially alkaloids. The correlation network between root microbiome and metabolites was complex. Microorganisms in the Proteobacteria and Firmicutes phyla were significantly associated with the R00693 metabolic reaction of cysteine and methionine metabolism. Co-metabolism network analysis revealed common metabolites between host plants and microorganisms.IMPORTANCEOur results suggest that the effect of endophyte infection is sensitive to nitrogen availability. Endophyte symbiosis altered the composition of shoot and root bacterial communities, increasing bacterial diversity. There was also a change in the class and relative abundance of metabolites. We found a complex co-occurrence network between root microorganisms and metabolites, with some metabolites shared between the host plant and its microbiome. The precise ecological function of the metabolites produced in response to endophyte infection remains unknown. However, some of these compounds may facilitate plant-microbe symbiosis by increasing the uptake of beneficial soil bacteria into plant tissues. Overall, these findings advance our understanding of the interactions between the microbiome, metabolome, and endophyte symbiosis in grasses. The results provide critical insight into the mechanisms by which the plant microbiome responds to nutrient stress in the presence of fungal endophytes.


Assuntos
Endófitos , Epichloe , Endófitos/fisiologia , Epichloe/metabolismo , Nitrogênio/metabolismo , Poaceae/metabolismo , Poaceae/microbiologia , Simbiose , Bactérias
13.
Curr Biol ; 34(5): 1148-1156.e7, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38367618

RESUMO

Understanding how symbiotic associations differ across environmental gradients is key to predicting the fate of symbioses as environments change, and it is vital for detecting global reservoirs of symbiont biodiversity in a changing world.1,2,3 However, sampling of symbiotic partners at the full-biome scale is difficult and rare. As Earth's largest terrestrial biome, boreal forests influence carbon dynamics and climate regulation at a planetary scale. Plants and lichens in this biome host the highest known phylogenetic diversity of fungal endophytes, which occur within healthy photosynthetic tissues and can influence hosts' resilience to stress.4,5 We examined how communities of endophytes are structured across the climate gradient of the boreal biome, focusing on the dominant plant and lichen species occurring across the entire south-to-north span of the boreal zone in eastern North America. Although often invoked for understanding the distribution of biodiversity, neither a latitudinal gradient nor mid-domain effect5,6,7 can explain variation in endophyte diversity at this trans-biome scale. Instead, analyses considering shifts in forest characteristics, Picea biomass and age, and nutrients in host tissues from 46° to 58° N reveal strong and distinctive signatures of climate in defining endophyte assemblages in each host lineage. Host breadth of endophytes varies with climate factors, and biodiversity hotspots can be identified at plant-community transitions across the boreal zone at a global scale. Placed against a backdrop of global circumboreal sampling,4 our study reveals the sensitivity of endophytic fungi, their reservoirs of biodiversity, and their important symbiotic associations, to climate.


Assuntos
Endófitos , Líquens , Endófitos/fisiologia , Filogenia , Ecossistema , Simbiose , Biodiversidade , Plantas/microbiologia
14.
Mycologia ; 116(2): 227-250, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380970

RESUMO

Diverse communities of fungal endophytes reside in plant tissues, where they affect and are affected by plant physiology and ecology. For these intimate interactions to form and persist, endophytes and their host plants engage in intricate systems of communication. The conversation between fungal endophytes and plant hosts ultimately dictates endophyte community composition and function and has cascading effects on plant health and plant interactions. In this review, we synthesize our current knowledge on the mechanisms and strategies of communication used by endophytic fungi and their plant hosts. We discuss the molecular mechanisms of communication that lead to organ specificity of endophytic communities and distinguish endophytes, pathogens, and saprotrophs. We conclude by offering emerging perspectives on the relevance of plant-endophyte communication to microbial community ecology and plant health and function.


Assuntos
Endófitos , Microbiota , Endófitos/fisiologia , Fungos/fisiologia , Plantas/microbiologia
15.
Pest Manag Sci ; 80(6): 3010-3021, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38318950

RESUMO

BACKGROUND: Valsa canker caused by Valsa pyri is one of the most destructive diseases of pear, leading to severe yield and economic losses. Volatile organic compounds (VOCs) from endophytes have important roles in the regulation of plant disease. In this study, we investigated the biocontrol activity of the endophytic fungus Aspergillus niger strain La2 and its antagonistic VOCs against pear Valsa canker. RESULTS: Strain La2 exhibited an obvious inhibitory effect against V. pyri. A colonization assay suggested that strain La2 could complete its life cycle on pear twigs. The symptoms of pear Valsa canker were weakened on detached pear twigs after treatment with strain La2. In addition, VOCs from strain La2 also significantly suppressed mycelial growth in V. pyri. Based on the results of headspace solid-phase microextraction/gas chromatography-mass spectrometry analysis, six possible VOCs produced by strain La2 were detected, of which 2,4-di-tert-butylphenol and 4-methyl-1-pentanol were the main antagonistic VOCs in terms of their effect on pear Valsa canker in vitro and in vivo. Further results showed that 4-methyl-1-pentanol could destroy the V. pyri hyphal structure and cell membrane integrity. Importantly, the activities of pear defense-related enzymes (polyphenol oxidase, phenylalanine ammonia lyase and superoxide dismutase) were enhanced after 4-methyl-1-pentanol treatment in pear twigs, suggesting that 4-methyl-1-pentanol might induce a plant disease resistance response. CONCLUSION: Aspergillus niger strain La2 and its VOCs 2,4-di-tert-butylphenol and 4-methyl-1-pentanol have potential as novel biocontrol agents of pear Valsa canker. © 2024 Society of Chemical Industry.


Assuntos
Aspergillus niger , Doenças das Plantas , Pyrus , Compostos Orgânicos Voláteis , Pyrus/microbiologia , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Endófitos/fisiologia , Agentes de Controle Biológico/farmacologia
16.
Ann Bot ; 133(4): 509-520, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38320313

RESUMO

BACKGROUND AND AIMS: In the subfamily Poöideae (Poaceae), certain grass species possess anti-herbivore alkaloids synthesized by fungal endophytes that belong to the genus Epichloë (Clavicipitaceae). The protective role of these symbiotic endophytes can vary, depending on alkaloid concentrations within specific plant-endophyte associations and plant parts. METHODS: We conducted a literature review to identify articles containing alkaloid concentration data for various plant parts in six important pasture species, Lolium arundinaceum, Lolium perenne, Lolium pratense, Lolium multiflorum|Lolium rigidum and Festuca rubra, associated with their common endophytes. We considered the alkaloids lolines (1-aminopyrrolizidines), peramine (pyrrolopyrazines), ergovaline (ergot alkaloids) and lolitrem B (indole-diterpenes). While all these alkaloids have shown bioactivity against insect herbivores, ergovaline and lolitrem B are harmful for mammals. KEY RESULTS: Loline alkaloid levels were higher in the perennial grasses L. pratense and L. arundinaceum compared to the annual species L. multiflorum and L. rigidum, and higher in reproductive tissues than in vegetative structures. This is probably due to the greater biomass accumulation in perennial species that can result in higher endophyte mycelial biomass. Peramine concentrations were higher in L. perenne than in L. arundinaceum and not affected by plant part. This can be attributed to the high within-plant mobility of peramine. Ergovaline and lolitrem B, both hydrophobic compounds, were associated with plant parts where fungal mycelium is usually present, and their concentrations were higher in plant reproductive tissues. Only loline alkaloid data were sufficient for below-ground tissue analyses and concentrations were lower than in above-ground parts. CONCLUSIONS: Our study provides a comprehensive synthesis of fungal alkaloid variation across host grasses and plant parts, essential for understanding the endophyte-conferred defence extent. The patterns can be understood by considering endophyte growth within the plant and alkaloid mobility. Our study identifies research gaps, including the limited documentation of alkaloid presence in roots and the need to investigate the influence of different environmental conditions.


Assuntos
Alcaloides , Endófitos , Epichloe , Festuca , Lolium , Poliaminas , Alcaloides/metabolismo , Alcaloides/análise , Endófitos/química , Endófitos/fisiologia , Epichloe/química , Epichloe/fisiologia , Ergotaminas/metabolismo , Festuca/microbiologia , Festuca/fisiologia , Herbivoria , Compostos Heterocíclicos com 2 Anéis , Alcaloides Indólicos/metabolismo , Lolium/microbiologia , Lolium/fisiologia , Micotoxinas , Defesa das Plantas contra Herbivoria , Poaceae/microbiologia , Poaceae/metabolismo , Simbiose
17.
J Exp Bot ; 75(10): 3153-3170, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38394357

RESUMO

Endophytic symbioses between plants and fungi are a dominant feature of many terrestrial ecosystems, yet little is known about the signaling that defines these symbiotic associations. Hydrogen peroxide (H2O2) is recognized as a key signal mediating the plant adaptive response to both biotic and abiotic stresses. However, the role of H2O2 in plant-fungal symbiosis remains elusive. Using a combination of physiological analysis, plant and fungal deletion mutants, and comparative transcriptomics, we reported that various environmental conditions differentially affect the interaction between Arabidopsis and the root endophyte Phomopsis liquidambaris, and link this process to alterations in H2O2 levels and H2O2 fluxes across root tips. We found that enhanced H2O2 efflux leading to a moderate increase in H2O2 levels at the plant-fungal interface is required for maintaining plant-fungal symbiosis. Disturbance of plant H2O2 homeostasis compromises the symbiotic ability of plant roots. Moreover, the fungus-regulated H2O2 dynamics modulate the rhizosphere microbiome by selectively enriching for the phylum Cyanobacteria, with strong antioxidant defenses. Our results demonstrated that the regulation of H2O2 dynamics at the plant-fungal interface affects the symbiotic outcome in response to external conditions and highlight the importance of the root endophyte in reshaping the rhizosphere microbiota.


Assuntos
Arabidopsis , Endófitos , Homeostase , Peróxido de Hidrogênio , Microbiota , Raízes de Plantas , Rizosfera , Simbiose , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Endófitos/fisiologia , Peróxido de Hidrogênio/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Ascomicetos/fisiologia
18.
Appl Environ Microbiol ; 90(2): e0207823, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38289136

RESUMO

Engineering the plant microbiome with beneficial endophytic bacteria can improve the growth, health, and productivity of the holobiont. Here, we administered two beneficial bacterial strains, Kosakonia VR04 sp. and Rhizobium GR12 sp., to micropropagated grapevine cuttings obtained via somatic embryogenesis. While both strains colonized the plant endosphere, only Rhizobium GR12 sp. increased root biomass under nutritional-deficit conditions, as supported by the plant growth promotion traits detected in its genome. Phylogenetic and co-occurrence analyses revealed that the plant native bacterial community, originally dominated by Streptococcaceae and Micrococcaceae, dramatically changed depending on the inoculation treatments, as invading strains differently affected the relative abundance and the interactions of pre-existing taxa. After 30 days of plantlets' growth, Pantoea became a predominant taxon, and considering untreated plantlets as references, Rhizobium sp. GR12 showed a minor impact on the endophytic bacterial community. On the other hand, Kosakonia sp. VR04 caused a major change in community composition, suggesting an opportunistic colonization pattern. Overall, the results corroborate the importance of preserving the native endophytic community structure and functions during plant microbiome engineering.IMPORTANCEA better comprehension of bacterial colonization processes and outcomes could benefit the use of plant probiotics in the field. In this study, we applied two different beneficial bacteria to grapevine micropropagated plantlets and described how the inoculation of these strains impacts endophytic microbiota assembly. We showed that under nutritional deficit conditions, the response of the receiving endophytic bacterial communities to the invasion of the beneficial strains related to the manifestation of plant growth promotion effects by the inoculated invading strains. Rhizobium sp. GR12 was able to preserve the native microbiome structure despite its effective colonization, highlighting the importance of the plant-endophyte associations for the holobiont performance. Moreover, our approach showed that the use of micropropagated plantlets could be a valuable strategy to study the interplay among the plant, its native microbiota, and the invader on a wider portfolio of species besides model plants, facilitating the application of new knowledge in agriculture.


Assuntos
Inoculantes Agrícolas , Filogenia , Raízes de Plantas/microbiologia , Bactérias/genética , Enterobacteriaceae , Endófitos/fisiologia
19.
Plant Physiol Biochem ; 207: 108321, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181639

RESUMO

Endophytes can assist crops in adapting to high temperatures and drought conditions, thereby reducing agricultural losses. However, the mechanism through which endophytes regulate crop resistance to high temperatures and drought stress remains unclear, and concerns regarding safety and stability exist with active endophytes. Thus, heat-treated endophytic bacteria LSE01 (HTB) were employed as a novel microbial fertilizer to investigate their effects on plant adaptation to high temperatures and drought conditions. The results indicated that the diameter and weight of tomatoes treated with HTB under stress conditions increased by 23.04% and 71.15%, respectively, compared to the control. Tomato yield did not significantly decrease compared to non-stress conditions. Additionally, the contents of vitamin C, soluble sugars, and proteins treated with HTB increased by 18.81%, 11.54%, and 99.75%, respectively. Mechanistic research revealed that HTB treatment enhances tomato's stress resistance by elevating photosynthetic pigment and proline contents, enhancing antioxidant enzyme activities, and reducing the accumulation of MDA. Molecular biology research demonstrates that HTB treatment upregulates the expression of drought-resistant genes (GA2ox7, USP1, SlNAC3, SlNAC4), leading to modifications in stomatal conductance, plant morphology, photosynthetic intensity, and antioxidant enzyme synthesis to facilitate adaptation to dry conditions. Furthermore, the upregulation of the heat-resistant gene (SlCathB2-2) can increases the thickness of tomato cell walls, rendering them less vulnerable to heat stress. In summary, HTB endows tomatoes with the ability to adapt to high temperatures and drought conditions, providing new opportunities for sustainable agriculture.


Assuntos
Endófitos , Salicilatos , Solanum lycopersicum , Endófitos/fisiologia , Estresse Fisiológico , Antioxidantes , Secas , Temperatura
20.
Plant Physiol Biochem ; 206: 108174, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070242

RESUMO

Endophytic fungi colonize interior plant tissue and mostly form mutualistic associations with their host plant. Plant-endophyte interaction is a complex mechanism and is currently a focus of research to understand the underlying mechanism of endophyte asymptomatic colonization, the process of evading plant immune response, modulation of gene expression, and establishment of a balanced mutualistic relationship. Fungal endophytes rely on plant hosts for nutrients, shelter, and transmission and improve the host plant's tolerance against biotic stresses, including -herbivores, nematodes, bacterial, fungal, viral, nematode, and other phytopathogens. Endophytic fungi have been reported to improve plant health by reducing and eradicating the harmful effect of phytopathogens through competition for space or nutrients, mycoparasitism, and through direct or indirect defense systems by producing secondary metabolites as well as by induced systemic resistance (ISR). Additionally, for efficient crop improvement, practicing them would be a fruitful step for a sustainable approach. This review article summarizes the current research progress in plant-endophyte interaction and the fungal endophyte mechanism to overcome host defense responses, their subsequent colonization, and the establishment of a balanced mutualistic interaction with host plants. This review also highlighted the potential of fungal endophytes in the amelioration of biotic stress. We have also discussed the relevance of various bioactive compounds possessing antimicrobial potential against a variety of agricultural pathogens. Furthermore, endophyte-mediated ISR is also emphasized.


Assuntos
Endófitos , Fungos , Endófitos/fisiologia , Fungos/fisiologia , Simbiose , Plantas/microbiologia , Bactérias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...