Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Pharmacol Res ; 175: 106025, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34883211

RESUMO

Originating from Eastern Asia, the plant Cannabis sativa has been used for centuries as a medicinal treatment. The unwanted psychotropic effects of one of its major components, Δ9-tetrahydrocannabinol, discouraged its therapeutic employment until, recently, the discovery of cannabinoids receptors and their endogenous ligands endocannabinoids reignited the interest. The endocannabinoid system has lately been found to play an important role in the maintenance of human health, both centrally and peripherally. However, the initial idea of the endocannabinoid system structure has been quickly understood to be too simplistic and, as new receptors, mediators, and enzymes have been discovered to participate in a complex relationship, the new, more comprehensive term "expanded endocannabinoid system" or "endocannabinoidome", has taken over. The discovery of other endocannabinoid-like receptors, such as the G protein-coupled receptor 119 and G protein-coupled receptor 55, has opened the way to the development of potential therapeutic targets for the treatment of various metabolic disorders. In addition, recent findings have also provided evidence suggesting the potential therapeutic link between the endocannabinoidome and various inflammatory-based gut diseases, such as inflammatory bowel disease and cancer. This review will provide an introduction to the endocannabinoidome, focusing on its modulatory role in the gastrointestinal tract and on the interest generated by the link between gut microbiota, the endocannabinoid system and metabolic diseases such as inflammatory bowel disease, type-2 diabetes and obesity. In addition, we will look at the potential novel aspects and benefits of drugs targeting the endocannabinoid system.


Assuntos
Endocanabinoides/metabolismo , Trato Gastrointestinal/metabolismo , Tecido Adiposo/metabolismo , Animais , Eixo Encéfalo-Intestino , Diabetes Mellitus Tipo 2/metabolismo , Endocanabinoides/imunologia , Neoplasias Gastrointestinais/metabolismo , Trato Gastrointestinal/imunologia , Homeostase , Humanos , Imunidade nas Mucosas , Doenças Inflamatórias Intestinais/metabolismo , Obesidade/metabolismo , Receptores de Canabinoides/metabolismo , Termogênese
2.
Gut Microbes ; 13(1): 1997559, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34787065

RESUMO

The endocannabinoid (EC) system has pleiotropic functions in the body. It plays a key role in energy homeostasis and the development of metabolic disorders being a mediator in the relationship between the gut microbiota and host metabolism. In the current study we explore the functional interactions between the endocannabinoid system and the gut microbiome in modulating inflammatory markers. Using data from a 6 week exercise intervention (treatment n = 38 control n = 40) and a cross sectional validation cohort (n = 35), we measured the associations of 2-arachidonoylglycerol (2-AG), anandamide (AEA), N-oleoylethanolamine (OEA) and N-palmitoylethanolamine (PEA) with gut microbiome composition, gut derived metabolites (SCFAs) and inflammatory markers both cross-sectionally and longitudinally. At baseline AEA and OEA were positively associated with alpha diversity (ß(SE) = .32 (.06), P = .002; .44 (.04), P < .001) and with SCFA producing bacteria such as Bifidobacterium (2-AG ß(SE) = .21 (.10), P < .01; PEA ß(SE) = .23 (.08), P < .01), Coprococcus 3 and Faecalibacterium (PEA ß(SE) = .29 (.11), P = .01; .25 (.09), P < .01) and negatively associated with Collinsella (AEA ß(SE) = -.31 (.12), P = .004). Additionally, we found AEA to be positively associated with SCFA Butyrate (ß(SE) = .34 (.15), P = .01). AEA, OEA and PEA all increased significantly with the exercise intervention but remained constant in the control group. Changes in AEA correlated with SCFA butyrate and increases in AEA and PEA correlated with decreases in TNF-ɑ and IL-6 statistically mediating one third of the effect of SCFAs on these cytokines. Our data show that the anti-inflammatory effects of SCFAs are partly mediated by the EC system suggesting that there may be other pathways involved in the modulation of the immune system via the gut microbiome.


Assuntos
Anti-Inflamatórios/farmacologia , Bactérias/metabolismo , Endocanabinoides/imunologia , Ácidos Graxos Voláteis/farmacologia , Anti-Inflamatórios/metabolismo , Bactérias/química , Bactérias/classificação , Bactérias/genética , Estudos de Coortes , Estudos Transversais , Ácidos Graxos Voláteis/metabolismo , Feminino , Microbioma Gastrointestinal , Humanos , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade
3.
Cells ; 10(6)2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064197

RESUMO

The therapeutic potential of Cannabis sativa has been recognized since ancient times. Phytocannabinoids, endocannabinoids and synthetic cannabinoids activate two major G protein-coupled receptors, subtype 1 and 2 (CB1 and CB2). Cannabinoids (CBs) modulate several aspects of cancer cells, such as apoptosis, autophagy, proliferation, migration, epithelial-to-mesenchymal transition and stemness. Moreover, agonists of CB1 and CB2 receptors inhibit angiogenesis and lymphangiogenesis in vitro and in vivo. Low-grade inflammation is a hallmark of cancer in the tumor microenvironment (TME), which contains a plethora of innate and adaptive immune cells. These cells play a central role in tumor initiation and growth and the formation of metastasis. CB2 and, to a lesser extent, CB1 receptors are expressed on a variety of immune cells present in TME (e.g., T cells, macrophages, mast cells, neutrophils, NK cells, dendritic cells, monocytes, eosinophils). The activation of CB receptors modulates a variety of biological effects on cells of the adaptive and innate immune system. The expression of CB2 and CB1 on different subsets of immune cells in TME and hence in tumor development is incompletely characterized. The recent characterization of the human cannabinoid receptor CB2-Gi signaling complex will likely aid to design potent and specific CB2/CB1 ligands with therapeutic potential in cancer.


Assuntos
Endocanabinoides/imunologia , Neoplasias , Receptor CB1 de Canabinoide/imunologia , Receptor CB2 de Canabinoide/imunologia , Microambiente Tumoral/imunologia , Autofagia , Proliferação de Células , Transição Epitelial-Mesenquimal , Humanos , Neoplasias/imunologia , Neoplasias/patologia
4.
Cannabis Cannabinoid Res ; 6(3): 242-252, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33998896

RESUMO

Introduction: Over 1 billion humans carry infectious helminth parasites that can lead to chronic comorbidities such as anemia and growth retardation in children. Helminths induce a T-helper type 2 (Th2) immune response in the host and can cause severe tissue damage and fibrosis if chronic. We recently reported that mice infected with the soil-transmitted helminth, Nippostrongylus brasiliensis, displayed elevated levels of endocannabinoids (eCBs) in the lung and intestine. eCBs are lipid-signaling molecules that control inflammation; however, their function in infection is not well defined. Materials and Methods: A combination of pharmacological approaches and genetic mouse models was used to investigate roles for the eCB system in inflammatory responses and lung injury in mice during parasitic infection with N. brasiliensis. Results: Hemorrhaging of lung tissue in mice infected with N. brasiliensis was exacerbated by inhibiting peripheral cannabinoid receptor subtype-1 (CB1Rs) with the peripherally restricted CB1R antagonist, AM6545. In addition, these mice exhibited an increase in nonfunctional alveolar space and prolonged airway eosinophilia compared to vehicle-treated infected mice. In contrast to mice treated with AM6545, infected cannabinoid receptor subtype-2-null mice (Cnr2-/-) did not display any changes in these parameters compared to wild-type mice. Conclusions: Roles for the eCB system in Th2 immune responses are not well understood; however, increases in its activity in response to infection suggest an immunomodulatory role. Moreover, these findings suggest a role for eCB signaling at CB1Rs but not cannabinoid receptor subtypes-2 in the resolution of Th2 inflammatory responses, which become host destructive over time.


Assuntos
Endocanabinoides/imunologia , Pulmão/patologia , Nippostrongylus/imunologia , Receptor CB1 de Canabinoide/imunologia , Infecções por Strongylida/imunologia , Animais , Eosinofilia , Hemorragia , Pulmão/imunologia , Pulmão/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfolinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/deficiência , Células Th2/imunologia
5.
Immunology ; 164(2): 242-252, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34053085

RESUMO

Endocannabinoids are key bioactive components of the endocannabinoid system, and the profound influence of endocannabinoids on the modulation of the immune system is being increasingly appreciated. The knowledge of endocannabinoid-immune cell crosstalk will pave the way to therapeutic implications of modulators of this pathway in autoimmune and chronic inflammatory disorders. Endocannabinoids seem to exert both anti-inflammatory and pro-inflammatory effects in specific contexts, based on specific receptor engagement and the downstream signalling pathways involved. In this review, we summarized the biosynthesis, signalling and degradation of two well-studied endocannabinoids-anandamide and 2-arachidonylglycerol in immune cells. Then, we discussed the effects of these two endocannabinoids on the functioning of major innate and adaptive immune cells, along with the choice of receptors employed in such interactions. Finally, we outline our current knowledge on the involvement of anandamide and 2-arachidonylglycerol in context of inflammation, allergies, autoimmunity and metabolic disorders.


Assuntos
Imunidade Adaptativa/imunologia , Endocanabinoides/imunologia , Imunidade Inata/imunologia , Animais , Ácidos Araquidônicos/imunologia , Glicerídeos/imunologia , Humanos , Inflamação/imunologia , Alcamidas Poli-Insaturadas/imunologia , Transdução de Sinais/imunologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-34000290

RESUMO

Type 2 Diabetes Mellitus (T2DM) is a chronic metabolic disease with symptoms that go beyond the domain of glucose metabolism. In fact, research has shown that T2DM is accompanied by neurodegeneration and neuroinflammation. Interestingly, Major Depressive Disorder (MDD), a mood disorder characterized mainly by depressed mood and anhedonia is a key feature of T2DM. A body of evidence demonstrates that there are many shared neuroimmune mechanisms underlying the pathophysiology of T2DM and MDD. Therefore, here we review the state-of-art regarding the underlying factors common to both T2DM and MDD. Furthermore, we briefly discuss how depressive symptoms in diabetic patients could be tackled by using novel therapeutic approaches uncovered by these shared mechanisms. Understanding the comorbidity of depression in diabetic patients is essential to fully address T2DM pathophysiology and treatment.


Assuntos
Comorbidade , Transtorno Depressivo Maior , Diabetes Mellitus Tipo 2 , Inflamação/imunologia , Neuroimunomodulação , Anedonia/fisiologia , Barreira Hematoencefálica/fisiopatologia , Transtorno Depressivo Maior/imunologia , Transtorno Depressivo Maior/fisiopatologia , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/fisiopatologia , Endocanabinoides/imunologia , Microbioma Gastrointestinal/imunologia , Humanos , Doenças Metabólicas/fisiopatologia
7.
Int J Mol Sci ; 22(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915889

RESUMO

The endocannabinoid system (ECS) employs a huge network of molecules (receptors, ligands, and enzymatic machinery molecules) whose interactions with other cellular networks have still not been fully elucidated. Endogenous cannabinoids are molecules with the primary function of control of multiple metabolic pathways. Maintenance of tissue and cellular homeostasis by functional fine-tuning of essential metabolic pathways is one of the key characteristics of the ECS. It is implicated in a variety of physiological and pathological states and an attractive pharmacological target yet to reach its full potential. This review will focus on the involvement of ECS in glucose and lipid metabolism, food intake regulation, immune homeostasis, respiratory health, inflammation, cancer and other physiological and pathological states will be substantiated using freely available data from open-access databases, experimental data and literature review. Future directions should envision capturing its diversity and exploiting pharmacological options beyond the classical ECS suspects (exogenous cannabinoids and cannabinoid receptor monomers) as signaling through cannabinoid receptor heteromers offers new possibilities for different biochemical outcomes in the cell.


Assuntos
Endocanabinoides/metabolismo , Redes e Vias Metabólicas , Receptores de Canabinoides/metabolismo , Animais , Regulação do Apetite , Metabolismo dos Carboidratos , Endocanabinoides/imunologia , Humanos , Metabolismo dos Lipídeos , Neoplasias/etiologia , Neoplasias/metabolismo , Transtornos Respiratórios/imunologia , Transtornos Respiratórios/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-33157277

RESUMO

Inflammatory bowel diseases (IBDs), such as Crohn's disease and ulcerative colitis, are lifelong diseases that remain challenging to treat. IBDs are characterized by alterations in intestinal barrier function and dysregulation of the innate and adaptive immunity. An increasing number of lipids are found to be important regulators of inflammation and immunity as well as gut physiology. Therefore, the study of lipid mediators in IBDs is expected to improve our understanding of disease pathogenesis and lead to novel therapeutic opportunities. Here, through selected examples - such as fatty acids, specialized proresolving mediators, lysophospholipids, endocannabinoids, and oxysterols - we discuss how lipid signaling is involved in IBD physiopathology and how modulating lipid signaling pathways could affect IBDs.


Assuntos
Colite Ulcerativa/imunologia , Doença de Crohn/imunologia , Fármacos Gastrointestinais/farmacologia , Mucosa Intestinal/patologia , Metabolismo dos Lipídeos/imunologia , Imunidade Adaptativa/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Doença de Crohn/tratamento farmacológico , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Modelos Animais de Doenças , Quimioterapia Combinada/métodos , Endocanabinoides/imunologia , Endocanabinoides/metabolismo , Ácidos Graxos/imunologia , Ácidos Graxos/metabolismo , Fármacos Gastrointestinais/uso terapêutico , Humanos , Imunidade Inata/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Mucosa Intestinal/imunologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lisofosfolipídeos/imunologia , Lisofosfolipídeos/metabolismo , Oxisteróis/imunologia , Oxisteróis/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
9.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255584

RESUMO

Leukocytes are part of the tumor microenvironment (TME) and are critical determinants of tumor progression. Because of the immunoregulatory properties of cannabinoids, the endocannabinoid system (ECS) may have an important role in shaping the TME. Members of the ECS, an entity that consists of cannabinoid receptors, endocannabinoids and their synthesizing/degrading enzymes, have been associated with both tumor growth and rejection. Immune cells express cannabinoid receptors and produce endocannabinoids, thereby forming an "immune endocannabinoid system". Although in vitro effects of exogenous cannabinoids on immune cells are well described, the role of the ECS in the TME, and hence in tumor development and immunotherapy, is still elusive. This review/opinion discusses the possibility that the "immune endocannabinoid system" can fundamentally influence tumor progression. The widespread influence of cannabinoids on immune cell functions makes the members of the ECS an interesting target that could support immunotherapy.


Assuntos
Endocanabinoides/imunologia , Sistema Imunitário/efeitos dos fármacos , Neoplasias/terapia , Receptores de Canabinoides/imunologia , Moduladores de Receptores de Canabinoides/imunologia , Moduladores de Receptores de Canabinoides/uso terapêutico , Endocanabinoides/metabolismo , Humanos , Sistema Imunitário/imunologia , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Receptores de Canabinoides/genética , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
10.
Curr Opin Pharmacol ; 52: 52-60, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32619926

RESUMO

Exercise is a valuable tool in the prevention and treatment of cardiometabolic diseases like obesity and type 2 diabetes. Interestingly, endocannabinoids (eCBs), involved in a large range of physiological processes, are elevated with both obesity and acute exercise. In this review we outline this paradox overlap in the context of metabolic health and delineate the transcriptomic response of skeletal muscle to acute and chronic aerobic and resistance exercise in relation to the endocannabinoid system by utilizing a meta-analyses tool. We show that exercise modulates the expression of receptors and enzymes involved in the synthesis and breakdown of eCBs and discuss that eCBs possibly interfere with the anti-inflammatory effect of exercise. The endocannabinoid system (ECS), consisting of certain endogenous lipids (i.e. endocannabinoids), their receptors and associated metabolic enzymes, is involved in the modulation of a plethora of cognitive and physiological processes. Besides its role in the control of, for example, mood formation and immune responses, the ECS takes part in the regulation of appetite and energy metabolism [1,2]. In this current opinion review we will focus on the increased activity of the ECS that is associated with cardiometabolic diseases like obesity and type 2 diabetes (T2D), which paradoxically overlaps with the acute physiological response to exercise. After 1) outlining the role of the ECS in metabolic health, we will 2) discuss the link between endocannabinoid (eCB) action in skeletal muscle and cardiometabolic disease, 3) investigate how exercise modulates the gene expression of ECS components in skeletal muscle and 4) delineate the impact of the ECS on the immune response by skeletal muscle.


Assuntos
Endocanabinoides/metabolismo , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Receptores de Canabinoides/metabolismo , Animais , Endocanabinoides/imunologia , Perfilação da Expressão Gênica/métodos , Humanos , Músculo Esquelético/imunologia , Receptores de Canabinoides/imunologia
11.
J Immunol ; 202(6): 1674-1679, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30728209

RESUMO

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease, characterized by loss of tolerance toward self nuclear Ags. Systemic induction of type I IFNs plays a pivotal role in SLE, a major source of type I IFNs being the plasmacytoid dendritic cells (pDCs). Several genes have been linked with susceptibility to SLE in genome-wide association studies. We aimed at exploring the role of one such gene, α/ß-hydrolase domain-containing 6 (ABHD6), in regulation of IFN-α induction in SLE patients. We discovered a regulatory role of ABHD6 in human pDCs through modulating the local abundance of its substrate, the endocannabinoid 2-arachidonyl glycerol (2-AG), and elucidated a hitherto unknown cannabinoid receptor 2 (CB2)-mediated regulatory role of 2-AG on IFN-α induction by pDCs. We also identified an ABHD6High SLE endophenotype wherein reduced local abundance of 2-AG relieves the CB2-mediated steady-state resistive tuning on IFN-α induction by pDCs, thereby contributing to SLE pathogenesis.


Assuntos
Células Dendríticas/imunologia , Endocanabinoides/metabolismo , Interferon gama/biossíntese , Lúpus Eritematoso Sistêmico/imunologia , Monoacilglicerol Lipases/imunologia , Adulto , Ácidos Araquidônicos/imunologia , Ácidos Araquidônicos/metabolismo , Células Dendríticas/metabolismo , Endocanabinoides/imunologia , Endofenótipos , Feminino , Regulação da Expressão Gênica/imunologia , Glicerídeos/imunologia , Glicerídeos/metabolismo , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Masculino , Pessoa de Meia-Idade , Monoacilglicerol Lipases/genética , Receptor CB2 de Canabinoide/imunologia , Receptor CB2 de Canabinoide/metabolismo
12.
FASEB J ; 32(10): 5716-5723, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29879374

RESUMO

Autacoid local injury antagonist amides (ALIAmides) are a family of endogenous bioactive acyl ethanolamides that include the renowned palmitoyl ethanolamide (PEA), oleoyl ethanolamide (OEA), and stearoyl ethanolamide (SEA), and that are involved in several biologic processes such as nociception, lipid metabolism, and inflammation. The role of ALIAmides in the control of inflammatory processes has recently gained much attention and prompted the use of these molecules or their analogs, and the pharmacologic manipulation of their endogenous levels, as plausible therapeutic strategies in the treatment of several chronic inflammatory conditions. Since chronic inflammation is mainly driven by cells of adaptive immunity, particularly T lymphocytes, we aimed at investigating whether such bioactive lipids could directly modulate T-cell responses. We found that OEA, PEA, and eicosatrienoyl ethanolamide (ETEA) could directly inhibit both T-cell responses by reducing their production of TNF-α and IFN-γ from CD8 T cells and TNF-α, IFN-γ and IL-17 from CD4 T cells. Furthermore, neither SEA nor docosatrienoyl ethanolamide (DTEA) could affect cytokine production from both T cell subsets. Interestingly, unlike OEA and ETEA, PEA was also able to enhance de novo generation of forkhead box P3 (FoxP3)-expressing regulatory T cells from CD4-naive T cells. Our findings show for the first time that specific ALIAmides can directly affect different T-cell subsets, and provide proof of their anti-inflammatory role in chronic inflammation, ultimately suggesting that these bioactive lipids could offer novel tools for the management of T-cell dependent chronic inflammatory diseases.-Chiurchiù, V., Leuti, A., Smoum, R., Mechoulam, R., Maccarrone, M. Bioactive lipids ALIAmides differentially modulate inflammatory responses of distinct subsets of primary human T lymphocytes.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Endocanabinoides/farmacologia , Etanolaminas/farmacologia , Ácidos Oleicos/farmacologia , Ácidos Palmíticos/farmacologia , Ácidos Esteáricos/farmacologia , Amidas , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Citocinas/imunologia , Endocanabinoides/imunologia , Etanolaminas/imunologia , Humanos , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/patologia , Ácidos Oleicos/imunologia , Ácidos Palmíticos/imunologia , Ácidos Esteáricos/imunologia
13.
Front Immunol ; 9: 38, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29434586

RESUMO

Inflammation is an immune response that works as a contained fire that is pre-emptively sparked as a defensive process during infections or upon any kind of tissue insult, and that is spontaneously extinguished after elimination or termination of the damage. However, persistent and uncontrolled immune reactions act as a wildfire that promote chronic inflammation, unresolved tissue damage and, eventually, chronic diseases. A wide network of soluble mediators, among which endogenous bioactive lipids, governs all immune processes. They are secreted by basically all cells involved in inflammatory processes and constitute the crucial infrastructure that triggers, coordinates and confines inflammatory mechanisms. However, these molecules are also deeply involved in the detrimental transition from acute to chronic inflammation, be it for persistent or excessive action of pro-inflammatory lipids or for the impairment of the functions carried out by resolving ones. As a matter of fact, bioactive lipids have been linked, to date, to several chronic diseases, including rheumatoid arthritis, atherosclerosis, diabetes, cancer, inflammatory bowel disease, systemic lupus erythematosus, and multiple sclerosis. This review summarizes current knowledge on the involvement of the main classes of endogenous bioactive lipids-namely classical eicosanoids, pro-resolving lipid mediators, lysoglycerophospholipids/sphingolipids, and endocannabinoids-in the cellular and molecular mechanisms that lead to the pathogenesis of chronic disorders.


Assuntos
Eicosanoides/imunologia , Endocanabinoides/imunologia , Glicerofosfolipídeos/imunologia , Mediadores da Inflamação/imunologia , Inflamação/imunologia , Esfingolipídeos/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Humanos , Inflamação/patologia
14.
Proc Natl Acad Sci U S A ; 114(19): 5005-5010, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28439004

RESUMO

Endogenous cannabinoids (endocannabinoids) are small molecules biosynthesized from membrane glycerophospholipid. Anandamide (AEA) is an endogenous intestinal cannabinoid that controls appetite and energy balance by engagement of the enteric nervous system through cannabinoid receptors. Here, we uncover a role for AEA and its receptor, cannabinoid receptor 2 (CB2), in the regulation of immune tolerance in the gut and the pancreas. This work demonstrates a major immunological role for an endocannabinoid. The pungent molecule capsaicin (CP) has a similar effect as AEA; however, CP acts by engagement of the vanilloid receptor TRPV1, causing local production of AEA, which acts through CB2. We show that the engagement of the cannabinoid/vanilloid receptors augments the number and immune suppressive function of the regulatory CX3CR1hi macrophages (Mϕ), which express the highest levels of such receptors among the gut immune cells. Additionally, TRPV1-/- or CB2-/- mice have fewer CX3CR1hi Mϕ in the gut. Treatment of mice with CP also leads to differentiation of a regulatory subset of CD4+ cells, the Tr1 cells, in an IL-27-dependent manner in vitro and in vivo. In a functional demonstration, tolerance elicited by engagement of TRPV1 can be transferred to naïve nonobese diabetic (NOD) mice [model of type 1 diabetes (T1D)] by transfer of CD4+ T cells. Further, oral administration of AEA to NOD mice provides protection from T1D. Our study unveils a role for the endocannabinoid system in maintaining immune homeostasis in the gut/pancreas and reveals a conversation between the nervous and immune systems using distinct receptors.


Assuntos
Ácidos Araquidônicos/imunologia , Receptor 1 de Quimiocina CX3C/imunologia , Endocanabinoides/imunologia , Homeostase , Imunidade nas Mucosas , Intestinos/imunologia , Macrófagos/imunologia , Alcamidas Poli-Insaturadas/imunologia , Animais , Cannabis/efeitos adversos , Homeostase/efeitos dos fármacos , Homeostase/imunologia , Tolerância Imunológica/efeitos dos fármacos , Camundongos , Camundongos Knockout
15.
J Immunol ; 198(8): 3255-3263, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28258202

RESUMO

The endocannabinoids 2-arachidonoyl-glycerol and N-arachidonoyl-ethanolamine mediate an array of pro- and anti-inflammatory effects. These effects are related, in part, to their metabolism by eicosanoid biosynthetic enzymes. For example, N-arachidonoyl-ethanolamine and 2-arachidonoyl-glycerol can be metabolized by cyclooxygenase-2 into PG-ethanolamide (PG-EA) and PG-glycerol (PG-G), respectively. Although PGE2 is a recognized suppressor of neutrophil functions, the impact of cyclooxygenase-derived endocannabinoids such as PGE2-EA or PGE2-G on neutrophils is unknown. This study's aim was to define the effects of these mediators on neutrophil functions and the underlying cellular mechanisms involved. We show that PGE2-G, but not PGE2-EA, inhibits leukotriene B4 biosynthesis, superoxide production, migration, and antimicrobial peptide release. The effects of PGE2-G were prevented by EP1/EP2 receptor antagonist AH-6809 but not the EP4 antagonist ONO-AE2-227. The effects of PGE2-G required its hydrolysis into PGE2, were not observed with the non-hydrolyzable PGE2-serinol amide, and were completely prevented by methyl-arachidonoyl-fluorophosphate and palmostatin B, and partially prevented by JZL184 and WWL113. Although we could detect six of the documented PG-G hydrolases in neutrophils by quantitative PCR, only ABHD12 and ABHD16A were detected by immunoblot. Our pharmacological data, combined with our protein expression data, did not allow us to pinpoint one PGE2-G lipase, and rather support the involvement of an uncharacterized lipase and/or of multiple hydrolases. In conclusion, we show that PGE2-G inhibits human neutrophil functions through its hydrolysis into PGE2, and by activating the EP2 receptor. This also indicates that neutrophils could regulate inflammation by altering the balance between PG-G and PG levels in vivo.


Assuntos
Dinoprostona/metabolismo , Endocanabinoides/metabolismo , Neutrófilos/metabolismo , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Cromatografia Líquida , Dinoprostona/imunologia , Endocanabinoides/imunologia , Glicerol , Humanos , Immunoblotting , Espectrometria de Massas , Neutrófilos/imunologia , Reação em Cadeia da Polimerase , Receptores de Prostaglandina E Subtipo EP2/imunologia
16.
Vitam Horm ; 103: 193-279, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28061971

RESUMO

The medical properties of Cannabis sativa is known for centuries. Since the discovery and characterization of the endogenous cannabinoid system, several studies have evaluated how cannabinoid compounds and, particularly, how the modulation of the endocannabinoid (eCB) system influences a wide range of functions, from metabolic to mental disorders. Cannabinoids and eCB system often exert opposite effects on several functions, such as anxiety. Although the mechanisms are not completely understood, evidence points to different factors influencing those effects. In this chapter, the recent advances in research about the relationship between eCB system and anxiety disorders in humans, as well as in animal models, will be discussed. The recent data addressing modulation of the eCBs in specific brain areas, such as the medial prefrontal cortex, amygdaloid complex, bed nucleus of stria terminalis, hippocampus, and dorsal periaqueductal gray, will be summarized. Finally, data from animal models addressing the mechanisms through which the eCB system modulates anxiety-related behavior dependent on stressful situations, such as the involvement of different receptors, distinct eCBs, modulation of neurotransmitters release, HPA axis and immune system activation, and plastic mechanisms, will also be discussed.


Assuntos
Transtornos de Ansiedade/metabolismo , Ansiedade/metabolismo , Encéfalo/metabolismo , Endocanabinoides/metabolismo , Neurônios/metabolismo , Neuroproteção , Receptores de Canabinoides/metabolismo , Animais , Ansiedade/genética , Ansiedade/imunologia , Transtornos de Ansiedade/genética , Transtornos de Ansiedade/imunologia , Encéfalo/imunologia , Endocanabinoides/imunologia , Medo , Predisposição Genética para Doença , Humanos , Sistema Hipotálamo-Hipofisário/imunologia , Sistema Hipotálamo-Hipofisário/metabolismo , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal , Neurônios/imunologia , Especificidade de Órgãos , Sistema Hipófise-Suprarrenal/imunologia , Sistema Hipófise-Suprarrenal/metabolismo , Polimorfismo de Nucleotídeo Único , Receptores de Canabinoides/química , Receptores de Canabinoides/genética
17.
Pharmacol Ther ; 166: 40-55, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27373505

RESUMO

Microglial cells are recognized as the brain's intrinsic immune cells, mediating actions that range from the protection against harmful conditions that modify CNS homeostasis, to the control of proliferation and differentiation of neurons and their synaptic pruning. To perform these functions, microglia adopts different activation states, the so-called phenotypes that depending on the local environment involve them in neuroinflammation, tissue repair and even the resolution of the inflammatory process. There is accumulating evidence indicating that cannabinoids (CBs) might serve as a promising tool to modify the outcome of inflammation, especially by influencing microglial activity. Microglia has a functional endocannabinoid (eCB) signaling system, composed of cannabinoid receptors and the complete machinery for the synthesis and degradation of eCBs. The expression of cannabinoid receptors - mainly CB2 - and the production of eCBs have been related to the activation profile of these cells and therefore, the microglial phenotype, emerging as one of the mechanisms by which microglia becomes alternatively activated. Here, we will discuss recent studies that provide new insights into the role of CBs and their endogenous counterparts in defining the profile of microglia activation. These actions make CBs a promising therapeutic tool to avoid the detrimental effects of inflammation and possibly paving the way to target microglia in order to generate a reparative milieu in neurodegenerative diseases.


Assuntos
Canabinoides/farmacologia , Microglia/imunologia , Doenças Neurodegenerativas/imunologia , Receptores de Canabinoides/imunologia , Doença de Alzheimer/imunologia , Animais , Sistema Nervoso Central/imunologia , Endocanabinoides/imunologia , Humanos , Inflamação/imunologia , Esclerose Múltipla/imunologia , Doença de Parkinson/imunologia , Fenótipo , Receptor CB2 de Canabinoide/imunologia
19.
J Biol Chem ; 291(15): 8231-40, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-26900150

RESUMO

Recent studies provide evidence that premature maternal decidual senescence resulting from heightened mTORC1 signaling is a cause of preterm birth (PTB). We show here that mice devoid of fatty acid amide hydrolase (FAAH) with elevated levels ofN-arachidonyl ethanolamide (anandamide), a major endocannabinoid lipid mediator, were more susceptible to PTB upon lipopolysaccharide (LPS) challenge. Anandamide is degraded by FAAH and primarily works by activating two G-protein-coupled receptors CB1 and CB2, encoded by Cnr1 and Cnr2, respectively. We found thatFaah(-/-)decidual cells progressively underwent premature senescence as marked by increased senescence-associated ß-galactosidase (SA-ß-Gal) staining and γH2AX-positive decidual cells. Interestingly, increased endocannabinoid signaling activated MAPK p38, but not p42/44 or mTORC1 signaling, inFaah(-/-)deciduae, and inhibition of p38 halted premature decidual senescence. We further showed that treatment of a long-acting anandamide in wild-type mice at midgestation triggered premature decidual senescence utilizing CB1, since administration of a CB1 antagonist greatly reduced the rate of PTB inFaah(-/-)females exposed to LPS. These results provide evidence that endocannabinoid signaling is critical in regulating decidual senescence and parturition timing. This study identifies a previously unidentified pathway in decidual senescence, which is independent of mTORC1 signaling.


Assuntos
Ácidos Araquidônicos/imunologia , Endocanabinoides/imunologia , Inflamação/complicações , Alcamidas Poli-Insaturadas/imunologia , Nascimento Prematuro/etiologia , Nascimento Prematuro/imunologia , Amidoidrolases/genética , Amidoidrolases/imunologia , Animais , Células Cultivadas , Decídua/citologia , Decídua/imunologia , Feminino , Deleção de Genes , Inflamação/genética , Inflamação/imunologia , Lipopolissacarídeos/imunologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Nascimento Prematuro/genética , Transdução de Sinais
20.
Eur J Clin Invest ; 46(3): 252-63, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26573245

RESUMO

BACKGROUND: The role of neutrophils in the beginning and the progression of the atherosclerotic process did not receive much attention until the last years. On the contrary, recent data, in both the experimental animals and humans, suggest important effects of these cells with possible clinical consequences. MATERIALS AND METHODS: This narrative review was based on the papers found on PubMed and MEDLINE up to July 2015. The search terms used were 'neutrophil, atherosclerosis' in combination with 'recruitment, chemokine, plaque destabilization and pathophysiology'. RESULTS: Different models demonstrate the presence and the actions of neutrophils in the early steps of the atherogenesis confirming the fundamental role of these cells in the response of the innate immune system to different pathogens (in this context the modified lipoproteins). However, also the late phases of the atherosclerotic process, in particular the destabilization of a mature plaque, seem to be modulated by the neutrophils, possibly through the interaction with recently discovered biological systems such as the endocannabinoids. CONCLUSIONS: The understanding of the mechanisms involved in the modulation exerted by neutrophils in atherosclerosis is pivotal in terms of the complete definition of the overall picture. This approach will certainly give us new targets and new pharmacological opportunities for the anti-inflammatory strategy of the cardiovascular prevention.


Assuntos
Aterosclerose/imunologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Placa Aterosclerótica/imunologia , Animais , Aterosclerose/fisiopatologia , Quimiocinas/imunologia , Progressão da Doença , Endocanabinoides/imunologia , Humanos , Imunidade Inata/imunologia , Neutrófilos/citologia , Placa Aterosclerótica/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...