Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 203(1)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33020222

RESUMO

Protein degradation is an essential process in all organisms. This process is irreversible and energetically costly; therefore, protein destruction must be tightly controlled. While environmental stresses often lead to upregulation of proteases at the transcriptional level, little is known about posttranslational control of these critical machines. In this study, we show that in Caulobacter crescentus levels of the Lon protease are controlled through proteolysis. Lon turnover requires active Lon and ClpAP proteases. We show that specific determinants dictate Lon stability with a key carboxy-terminal histidine residue driving recognition. Expression of stabilized Lon variants results in toxic levels of protease that deplete normal Lon substrates, such as the replication initiator DnaA, to lethally low levels. Taken together, results of this work demonstrate a feedback mechanism in which ClpAP and Lon collaborate to tune Lon proteolytic capacity for the cell.IMPORTANCE Proteases are essential, but unrestrained activity can also kill cells by degrading essential proteins. The quality-control protease Lon must degrade many misfolded and native substrates. We show that Lon is itself controlled through proteolysis and that bypassing this control results in toxic consequences for the cell.


Assuntos
Caulobacter crescentus/metabolismo , Protease La/metabolismo , Sequência de Aminoácidos , Western Blotting , Caulobacter crescentus/genética , Endopeptidase Clp/genética , Endopeptidase Clp/isolamento & purificação , Endopeptidase Clp/metabolismo , Citometria de Fluxo , Microscopia de Contraste de Fase , Plasmídeos , Protease La/química , Protease La/genética , Protease La/isolamento & purificação , Proteólise
2.
Methods Mol Biol ; 1486: 317-341, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27844434

RESUMO

Energy-dependent protein degradation is studied through the dual bead ClpXP motility assay. Processing of folded proteins involves recognition, unfolding, translocation, and degradation stages. A dual optical trap, in a passive force-clamp geometry, exhibits bead-to-bead displacements that directly follow subprocesses underlying protein degradation. Discrete nanometer-scale displacements of the bead position reveal steps, dwells and pauses during the unfolding and translocation substeps. With a few structural modifications to the protease machinery and an engineered substrate, the assay represents a "chassis" for the measurement of a wide range of substrates and related machinery. The methods described faithfully record our assay as implemented, including substrate design, wet assay preparation, and the motility assay experiment protocol. The strategies herein permit adaptation of the ClpXP mechanical assay to a wide range of protein degradation systems.


Assuntos
Endopeptidase Clp/química , Pinças Ópticas , Trifosfato de Adenosina/metabolismo , Cromatografia em Gel , Endopeptidase Clp/isolamento & purificação , Endopeptidase Clp/metabolismo , Domínios Proteicos , Dobramento de Proteína , Multimerização Proteica , Desdobramento de Proteína , Proteólise , Proteínas Recombinantes , Coloração e Rotulagem , Especificidade por Substrato
3.
Methods Enzymol ; 562: 161-86, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26412651

RESUMO

The ATPases associated with diverse cellular activities (AAA+) is a large superfamily of proteins involved in a broad array of biological processes. Many members of this family require nucleotide binding to assemble into their final active hexameric form. We have been studying two example members, Escherichia coli ClpA and ClpB. These two enzymes are active as hexameric rings that both require nucleotide binding for assembly. Our studies have shown that they both reside in a monomer, dimer, tetramer, and hexamer equilibrium, and this equilibrium is thermodynamically linked to nucleotide binding. Moreover, we are finding that the kinetics of the assembly reaction are very different for the two enzymes. Here, we present our strategy for determining the self-association constants in the absence of nucleotide to set the stage for the analysis of nucleotide binding from other experimental approaches including analytical ultracentrifugation.


Assuntos
Endopeptidase Clp/química , Proteínas de Escherichia coli/química , Proteínas de Choque Térmico/química , Endopeptidase Clp/isolamento & purificação , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Choque Térmico/isolamento & purificação , Cinética , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Termodinâmica , Ultracentrifugação
4.
FEBS Lett ; 587(1): 88-93, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23187170

RESUMO

FixK2 is a CRP-like transcription factor that controls the endosymbiotic lifestyle of Bradyrhizobium japonicum. The reason for its noticeable protease sensitivity was explored here. The repertoire of Clp chaperone-proteases in B. japonicum was examined, and specifically ClpAP1 and ClpXP1 were purified and tested. FixK2 was found to be degraded by ClpAP1 but not by ClpXP1. Degradation was inhibited by the ClpS1 adaptor protein, indicating that FixK2 is a direct substrate for ClpAP1. The last 12 amino acids of FixK2 appeared to be recognized by ClpA. The results suggest that the ClpAP system is involved in the cellular turnover of FixK2.


Assuntos
Proteínas de Bactérias/metabolismo , Bradyrhizobium/metabolismo , Endopeptidase Clp/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Sítios de Ligação , Bradyrhizobium/enzimologia , Bradyrhizobium/genética , Endopeptidase Clp/genética , Endopeptidase Clp/isolamento & purificação , Genes Bacterianos , Isoenzimas/genética , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Cinética , Chaperonas Moleculares/genética , Chaperonas Moleculares/isolamento & purificação , Filogenia , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteólise , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
5.
Curr Protoc Microbiol ; Chapter 1: Unit1C.1, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22045583

RESUMO

Quorum sensing is a cell-cell signaling process that many bacteria use to regulate gene expression as a function of the density of the population. This phenomenon involves the production, release, and response to small chemical molecules termed autoinducers. Most autoinducers are species-specific; however, one autoinducer called autoinducer-2 (AI-2) is produced and detected by many species of bacteria and thus can foster inter-species communication. This unit describes two assays to detect and quantify AI-2 from biological samples. The first uses a bacterial reporter strain, which produces bioluminescence in response to AI-2. The second is an in vitro assay based on a modified version of an AI-2 receptor fused to a cyan fluorescent protein and a yellow fluorescent protein. Binding of AI-2 to this fusion protein induces a dose-dependent decrease in fluorescence resonance energy transfer (FRET), enabling quantification of the AI-2 concentration in the samples.


Assuntos
Bactérias/metabolismo , Bioensaio/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Homosserina/análogos & derivados , Lactonas/análise , Bactérias/química , Endopeptidase Clp/genética , Endopeptidase Clp/isolamento & purificação , Endopeptidase Clp/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Genes Reporter , Homosserina/análise , Homosserina/metabolismo , Lactonas/metabolismo , Ligação Proteica , Percepção de Quorum
6.
Biochemistry ; 49(45): 9820-9, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-20964444

RESUMO

Protein quality control pathways rely upon ATP-dependent proteases, such as Escherichia coli ClpAP, to perform maintenance roles in the cytoplasm of the cell. ATP-dependent proteases remove misfolded and partially synthesized proteins. This action is particularly important in situations where an unregulated accumulation of such proteins will have a deleterious effect on the cell. ClpAP is composed of a tetradecameric serine protease, ClpP (21.6 kDa monomer), and the ATPase/protein unfoldase ClpA (84.2 kDa monomer). ClpA also uses its protein unfolding activity to remodel proteins and protein complexes; thus, in the absence of the proteolytic component, ClpA is considered a molecular chaperone. Previous reports, by others, suggested that ClpA exists in a monomer-dimer equilibrium at 4 °C. In contrast, using a combination of sedimentation velocity, sedimentation equilibrium, and dynamic light scattering, we recently reported that ClpA exists in a monomer-tetramer equilibrium at 25 °C. Here we report an investigation of the effect of temperature on the self-association of the E. coli ClpA protein unfoldase using analytical ultracentrifugation techniques. The results of sedimentation velocity and sedimentation equilibrium experiments performed at multiple loading concentrations of ClpA over a range of temperatures from 3.9 to 38.2 °C are discussed. Sedimentation velocity experiments show a decrease in weight average s(20,w) at the extremes of temperature. This result, along with extensive sedimentation equilibrium data and analysis, suggests the presence of a dimeric intermediate of ClpA that is differentially populated as a function of temperature. Further, analysis of sedimentation equilibrium data as a function of temperature led us to propose a monomer-dimer-tetramer equilibrium to describe the temperature dependence of ClpA self-assembly in the absence of nucleotide.


Assuntos
Endopeptidase Clp/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Dimerização , Endopeptidase Clp/biossíntese , Endopeptidase Clp/isolamento & purificação , Endopeptidase Clp/metabolismo , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Fracionamento por Campo e Fluxo/métodos , Concentração de Íons de Hidrogênio , Peso Molecular , Termodinâmica , Ultracentrifugação
7.
Microbiology (Reading) ; 156(Pt 2): 561-569, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19850615

RESUMO

Clostridium perfringens produces a homologue of clostripain (Clo), the arginine-specific endopeptidase of Clostridium histolyticum. To determine the biochemical and biological properties of the C. perfringens homologue (Clp), it was purified from the culture supernatant of a recombinant C. perfringens strain by cation-exchange chromatography and ultrafiltration. Analysis by SDS-PAGE, N-terminal amino acid sequencing and TOF mass spectrometry revealed that Clp consists of two polypeptides comprising heavy (38 kDa) and light (16 kDa or 15 kDa) chains, and that the two light chains differ in the N-terminal cleavage site. This difference in the light chain did not affect the enzymic activity toward N-benzoyl-l-arginine p-nitroanilide (Bz-l-arginine pNA), as demonstrated by assaying culture supernatants differing in the relative ratio of the two light chains. Although the purified Clp preferentially degraded Bz-dl-arginine pNA rather than Bz-dl-lysine pNA, it degraded the latter more efficiently than did Clo. Clp showed 2.3-fold higher caseinolytic activity than Clo, as expected from the difference in substrate specificity. Clp caused an increase in vascular permeability when injected intradermally into mice, implying a possible role of Clp in the pathogenesis of clostridial myonecrosis.


Assuntos
Clostridium perfringens/enzimologia , Endopeptidase Clp/isolamento & purificação , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Permeabilidade Capilar/efeitos dos fármacos , Clonagem Molecular , Clostridium perfringens/genética , Clostridium perfringens/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/isolamento & purificação , Cisteína Endopeptidases/metabolismo , Eletroforese em Gel de Poliacrilamida , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Masculino , Camundongos , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
8.
Structure ; 17(4): 508-16, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19368884

RESUMO

A common feature of chaperone-proteases is architectural two-fold symmetry across the proteolytic cylinder. Here we investigate the role of symmetry for the function of ClpAP and ClpXP assemblies. We generated asymmetric ClpP particles in which the two rings differ in ClpA and ClpX binding capability and/or in proteolytic activity. Rapid-kinetic fluorescence measurements and steady-state experiments indicate that single 2:1 ClpAP or ClpXP complexes are as efficient in substrate degradation as two 1:1 ClpAP or ClpXP assemblies. This implies that the two chaperone components work independently. However, an asymmetric ClpP particle composed of one active and one inactive ring can stimulate ATPase activity of ClpA regardless of whether ClpA binds to the active ring or to the opposite side of ClpP, across the ring of inactivated protease. Thus, we propose that conformational transitions in ClpP are concerted and allosteric effects are transferred simultaneously to both associated chaperones, leading to synchronized activation.


Assuntos
Adenosina Trifosfatases/metabolismo , Endopeptidase Clp/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Chaperonas Moleculares/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/isolamento & purificação , Adenosina Trifosfatases/ultraestrutura , Sítios de Ligação/genética , Catálise , Endopeptidase Clp/química , Endopeptidase Clp/genética , Endopeptidase Clp/isolamento & purificação , Endopeptidase Clp/ultraestrutura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/ultraestrutura , Transferência Ressonante de Energia de Fluorescência , Cinética , Luz , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/isolamento & purificação , Chaperonas Moleculares/ultraestrutura , Ligação Proteica/genética , Espalhamento de Radiação , Espectrofotometria Ultravioleta , Especificidade por Substrato
9.
PLoS Pathog ; 4(4): e1000048, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18421378

RESUMO

ATP-dependent protease complexes are present in all living organisms, including the 26S proteasome in eukaryotes, Archaea, and Actinomycetales, and the HslVU protease in eubacteria. The structure of HslVU protease resembles that of the 26S proteasome, and the simultaneous presence of both proteases in one organism was deemed unlikely. However, HslVU homologs have been identified recently in some primordial eukaryotes, though their potential function remains elusive. We characterized the HslVU homolog from Trypanosoma brucei, a eukaryotic protozoan parasite and the causative agent of human sleeping sickness. TbHslVU has ATP-dependent peptidase activity and, like its bacterial counterpart, has essential lysine and N-terminal threonines in the catalytic subunit. By epitope tagging, TbHslVU localizes to mitochondria and is associated with the mitochondrial genome, kinetoplast DNA (kDNA). RNAi of TbHslVU dramatically affects the kDNA by causing over-replication of the minicircle DNA. This leads to defects in kDNA segregation and, subsequently, to continuous network growth to an enormous size. Multiple discrete foci of nicked/gapped minicircles are formed on the periphery of kDNA disc, suggesting a failure in repairing the gaps in the minicircles for kDNA segregation. TbHslVU is a eubacterial protease identified in the mitochondria of a eukaryote. It has a novel function in regulating mitochondrial DNA replication that has never been observed in other organisms.


Assuntos
DNA Mitocondrial/biossíntese , Endopeptidase Clp/isolamento & purificação , Endopeptidase Clp/metabolismo , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Mitocôndrias/enzimologia , Trypanosoma brucei brucei/metabolismo , Animais , Replicação do DNA , DNA de Cinetoplasto/genética , Endopeptidase Clp/genética , Proteínas de Escherichia coli/genética , Inativação Gênica , Hibridização in Situ Fluorescente , Mitocôndrias/química , Técnicas de Sonda Molecular , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Trypanosoma brucei brucei/genética
10.
J Bacteriol ; 190(1): 321-31, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17981983

RESUMO

Entry into stationary phase in Bacillus subtilis is linked not only to a redirection of the gene expression program but also to posttranslational events such as protein degradation. Using 35S-labeled methionine pulse-chase labeling and two-dimensional polyacrylamide gel electrophoresis we monitored the intracellular proteolysis pattern during glucose starvation. Approximately 200 protein spots diminished in the wild-type cells during an 8-h time course. The degradation rate of at least 80 proteins was significantly reduced in clpP, clpC, and clpX mutant strains. Enzymes of amino acid and nucleotide metabolism were overrepresented among these Clp substrate candidates. Notably, several first-committed-step enzymes for biosynthesis of aromatic and branched-chain amino acids, cell wall precursors, purines, and pyrimidines appeared as putative Clp substrates. Radioimmunoprecipitation demonstrated GlmS, IlvB, PurF, and PyrB to be novel ClpCP targets. Our data imply that Clp proteases down-regulate central metabolic pathways upon entry into a nongrowing state and thus contribute to the adaptation to nutrient starvation. Proteins that are obviously nonfunctional, unprotected, or even "unemployed" seem to be recognized and proteolyzed by Clp proteases when the resources for growth become limited.


Assuntos
Bacillus subtilis/enzimologia , Endopeptidase Clp/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos , Primers do DNA , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Eletroforese em Gel Bidimensional , Endopeptidase Clp/genética , Endopeptidase Clp/isolamento & purificação , Glucose/metabolismo , Cinética
11.
J Struct Biol ; 156(1): 165-74, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16682229

RESUMO

ClpP, the proteolytic component of the ATP-dependent ClpAP and ClpXP chaperone/protease complexes, has 14 identical subunits organized in two stacked heptameric rings. The active sites are in an interior aqueous chamber accessible through axial channels. We have determined a 1.9 A crystal structure of Escherichia coli ClpP with benzyloxycarbonyl-leucyltyrosine chloromethyl ketone (Z-LY-CMK) bound at each active site. The complex mimics a tetrahedral intermediate during peptide cleavage, with the inhibitor covalently linked to the active site residues, Ser97 and His122. Binding is further stabilized by six hydrogen bonds between backbone atoms of the peptide and ClpP as well as by hydrophobic binding of the phenolic ring of tyrosine in the S1 pocket. The peptide portion of Z-LY-CMK displaces three water molecules in the native enzyme resulting in little change in the conformation of the peptide binding groove. The heptameric rings of ClpP-CMK are slightly more compact than in native ClpP, but overall structural changes were minimal (rmsd approximately 0.5 A). The side chain of Ser97 is rotated approximately 90 degrees in forming the covalent adduct with Z-LY-CMK, indicating that rearrangement of the active site residues to a active configuration occurs upon substrate binding. The N-terminal peptide of ClpP-CMK is stabilized in a beta-hairpin conformation with the proximal N-terminal residues lining the axial channel and the loop extending beyond the apical surface of the heptameric ring. The lack of major substrate-induced conformational changes suggests that changes in ClpP structure needed to facilitate substrate entry or product release must be limited to rigid body motions affecting subunit packing or contacts between ClpP rings.


Assuntos
Cristalografia por Raios X , Endopeptidase Clp/química , Endopeptidase Clp/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Endopeptidase Clp/genética , Endopeptidase Clp/isolamento & purificação , Escherichia coli/química , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Serina/química , Streptococcus pneumoniae/enzimologia , Streptococcus pneumoniae/genética , Relação Estrutura-Atividade , Especificidade por Substrato , Água/química
12.
J Struct Biol ; 153(2): 113-28, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16406682

RESUMO

ClpP is a self-compartmentalized proteolytic assembly comprised of two, stacked, heptameric rings that, when associated with its cognate hexameric ATPase (ClpA or ClpX), form the ClpAP and ClpXP ATP-dependent protease, respectively. The symmetry mismatch is an absolute feature of this large energy-dependent protease and also of the proteasome, which shares a similar barrel-shaped architecture, but how it is accommodated within the complex has yet to be understood, despite recent structural investigations, due in part to the conformational lability of the N-termini. We present the structures of Escherichia coli ClpP to 1.9A and an inactive variant that provide some clues for how this might be achieved. In the wild type protein, the highly conserved N-terminal 20 residues can be grouped into two major structural classes. In the first, a loop formed by residues 10-15 protrudes out of the central access channel extending approximately 12-15A from the surface of the oligomer resulting in the closing of the access channel observed in one ring. Similar loops are implied to be exclusively observed in human ClpP and a variant of ClpP from Streptococcus pneumoniae. In the other ring, a second class of loop is visible in the structure of wt ClpP from E. coli that forms closer to residue 16 and faces toward the interior of the molecule creating an open conformation of the access channel. In both classes, residues 18-20 provide a conserved interaction surface. In the inactive variant, a third class of N-terminal conformation is observed, which arises from a conformational change in the position of F17. We have performed a detailed functional analysis on each of the first 20 amino acid residues of ClpP. Residues that extend beyond the plane of the molecule (10-15) have a lesser effect on ATPase interaction than those lining the pore (1-7 and 16-20). Based upon our structure-function analysis, we present a model to explain the widely disparate effects of individual residues on ClpP-ATPase complex formation and also a possible functional reason for this mismatch.


Assuntos
Adenosina Trifosfatases/metabolismo , Endopeptidase Clp/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Adenosina Trifosfatases/química , Alanina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Cromatografia em Gel , Códon , Sequência Conservada , Cristalografia por Raios X , Endopeptidase Clp/genética , Endopeptidase Clp/isolamento & purificação , Escherichia coli/química , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Variação Genética , Hidrólise , Cinética , Espectrometria de Massas , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fenilalanina/metabolismo , Conformação Proteica , Alinhamento de Sequência , Streptococcus pneumoniae/enzimologia , Streptococcus pneumoniae/genética , Relação Estrutura-Atividade , Especificidade por Substrato , Ultrafiltração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...