Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.602
Filtrar
1.
J Nucl Med ; 65(Suppl 1): 4S-11S, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38719234

RESUMO

Quinoline-based fibroblast activation protein (FAP) inhibitors (FAPIs) have recently emerged as a focal point in global nuclear medicine, underscored by their promising applications in cancer theranostics and the diagnosis of various nononcological conditions. This review offers an in-depth summary of the existing literature on the evolution and use of FAPI tracers in China, tracing their journey from preclinical to clinical research. Moreover, this review also assesses the diagnostic accuracy of FAPI PET for the most common cancers in China, analyzes its impact on oncologic management paradigms, and investigates the potential of FAP-targeted radionuclide therapy in patients with advanced or metastatic cancer. This review also summarizes studies using FAPI PET for nononcologic disorders in China. Thus, this qualitative overview presents a snapshot of China's engagement with FAPI tracers, aiming to guide future research endeavors.


Assuntos
Endopeptidases , Gelatinases , Proteínas de Membrana , Serina Endopeptidases , Pesquisa Translacional Biomédica , Humanos , China , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Gelatinases/antagonistas & inibidores , Gelatinases/metabolismo , Serina Endopeptidases/metabolismo , Traçadores Radioativos , Animais , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Tomografia por Emissão de Pósitrons
2.
Arch Microbiol ; 206(6): 272, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38772980

RESUMO

Phage-encoded endolysins have emerged as a potential substitute to conventional antibiotics due to their exceptional benefits including host specificity, rapid host killing, least risk of resistance. In addition to their antibacterial potency and biofilm eradication properties, endolysins are reported to exhibit synergism with other antimicrobial agents. In this study, the synergistic potency of endolysins was dissected with antimicrobial peptides to enhance their therapeutic effectiveness. Recombinantly expressed and purified bacteriophage endolysin [T7 endolysin (T7L); and T4 endolysin (T4L)] proteins have been used to evaluate the broad-spectrum antibacterial efficacy using different bacterial strains. Antibacterial/biofilm eradication studies were performed in combination with different antimicrobial peptides (AMPs) such as colistin, nisin, and polymyxin B (PMB) to assess the endolysin's antimicrobial efficacy and their synergy with AMPs. In combination with T7L, polymyxin B and colistin effectively eradicated the biofilm of Pseudomonas aeruginosa and exhibited a synergistic effect. Further, a combination of T4L and nisin displayed a synergistic effect against Staphylococcus aureus biofilms. In summary, the obtained results endorse the theme of combinational therapy consisting of endolysins and AMPs as an effective remedy against the drug-resistant bacterial biofilms that are a serious concern in healthcare settings.


Assuntos
Antibacterianos , Peptídeos Antimicrobianos , Biofilmes , Sinergismo Farmacológico , Endopeptidases , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Staphylococcus aureus , Biofilmes/efeitos dos fármacos , Endopeptidases/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Nisina/farmacologia , Nisina/química , Polimixina B/farmacologia , Bacteriófagos , Colistina/farmacologia , Bacteriófago T4/efeitos dos fármacos , Bacteriófago T4/fisiologia , Bacteriófago T7/efeitos dos fármacos , Bacteriófago T7/genética
3.
Acta Vet Scand ; 66(1): 20, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769566

RESUMO

Bacteriophage-encoded endolysins, peptidoglycan hydrolases breaking down the Gram-positive bacterial cell wall, represent a groundbreaking class of novel antimicrobials to revolutionize the veterinary medicine field. Wild-type endolysins exhibit a modular structure, consisting of enzymatically active and cell wall-binding domains, that enable genetic engineering strategies for the creation of chimeric fusion proteins or so-called 'engineered endolysins'. This biotechnological approach has yielded variants with modified lytic spectrums, introducing new possibilities in antimicrobial development. However, the discovery of highly similar endolysins by different groups has occasionally resulted in the assignment of different names that complicate a straightforward comparison. The aim of this review was to perform a homology-based comparison of the wild-type and engineered endolysins that have been characterized in the context of bovine mastitis-causing streptococci and staphylococci, grouping homologous endolysins with ≥ 95.0% protein sequence similarity. Literature is explored by homologous groups for the wild-type endolysins, followed by a chronological examination of engineered endolysins according to their year of publication. This review concludes that the wild-type endolysins encountered persistent challenges in raw milk and in vivo settings, causing a notable shift in the field towards the engineering of endolysins. Lead candidates that display robust lytic activity are nowadays selected from screening assays that are performed under these challenging conditions, often utilizing advanced high-throughput protein engineering methods. Overall, these recent advancements suggest that endolysins will integrate into the antibiotic arsenal over the next decade, thereby innovating antimicrobial treatment against bovine mastitis-causing streptococci and staphylococci.


Assuntos
Bacteriófagos , Endopeptidases , Mastite Bovina , Staphylococcus , Animais , Mastite Bovina/microbiologia , Mastite Bovina/tratamento farmacológico , Bovinos , Endopeptidases/farmacologia , Endopeptidases/metabolismo , Endopeptidases/química , Endopeptidases/genética , Staphylococcus/efeitos dos fármacos , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/tratamento farmacológico , Streptococcus/efeitos dos fármacos , Feminino , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/tratamento farmacológico , Antibacterianos/farmacologia
4.
Front Immunol ; 15: 1371564, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774872

RESUMO

OTULIN deficiency is a complex disease characterized by a wide range of clinical manifestations, including skin rash, joint welling, lipodystrophy to pulmonary abscess, and sepsis shock. This disease is mechanistically linked to mutations in the OTULIN gene, resulting in an immune disorder that compromises the body's ability to effectively combat pathogens and foreign stimuli. The OTULIN gene is responsible for encoding a deubiquitinating enzyme crucial for hydrolyzing Met1-poly Ub chains, and its dysfunction leads to dysregulated immune responses. Patients with OTULIN deficiency often exhibit an increase in monocytes, including neutrophils and macrophages, along with inflammatory clinical features. The onset of symptoms typically occurs at an early age. However, individuals with OTULIN haploinsufficiency are particularly susceptible to life-threatening staphylococcal infections. Currently, the most effective treatment for patients with OTULIN biallelic mutations involves the use of TNF-blocking agents, which target the dysregulated immune response. In conclusion, OTULIN deficiency presents a complex clinical picture with diverse manifestations, attributed to mutations in the OTULIN gene. Understanding the underlying mechanisms is crucial for developing targeted therapeutic interventions to address this challenging condition. Further research into the pathophysiology of OTULIN deficiency is essential for improving clinical management and outcomes for affected individuals.


Assuntos
Imunidade Inata , Mutação , Humanos , Imunidade Inata/genética , Animais , Endopeptidases
5.
Microbiology (Reading) ; 170(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739436

RESUMO

Endolysins are bacteriophage (or phage)-encoded enzymes that catalyse the peptidoglycan breakdown in the bacterial cell wall. The exogenous action of recombinant phage endolysins against Gram-positive organisms has been extensively studied. However, the outer membrane acts as a physical barrier when considering the use of recombinant endolysins to combat Gram-negative bacteria. This study aimed to evaluate the antimicrobial activity of the SAR-endolysin LysKpV475 against Gram-negative bacteria as single or combined therapies, using an outer membrane permeabilizer (polymyxin B) and a phage, free or immobilized in a pullulan matrix. In the first step, the endolysin LysKpV475 in solution, alone and combined with polymyxin B, was tested in vitro and in vivo against ten Gram-negative bacteria, including highly virulent strains and multidrug-resistant isolates. In the second step, the lyophilized LysKpV475 endolysin was combined with the phage phSE-5 and investigated, free or immobilized in a pullulan matrix, against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311. The bacteriostatic action of purified LysKpV475 varied between 8.125 µg ml-1 against Pseudomonas aeruginosa ATCC 27853, 16.25 µg ml-1 against S. enterica Typhimurium ATCC 13311, and 32.50 µg ml-1 against Klebsiella pneumoniae ATCC BAA-2146 and Enterobacter cloacae P2224. LysKpV475 showed bactericidal activity only for P. aeruginosa ATCC 27853 (32.50 µg ml-1) and P. aeruginosa P2307 (65.00 µg ml-1) at the tested concentrations. The effect of the LysKpV475 combined with polymyxin B increased against K. pneumoniae ATCC BAA-2146 [fractional inhibitory concentration index (FICI) 0.34; a value lower than 1.0 indicates an additive/combined effect] and S. enterica Typhimurium ATCC 13311 (FICI 0.93). A synergistic effect against S. enterica Typhimurium was also observed when the lyophilized LysKpV475 at ⅔ MIC was combined with the phage phSE-5 (m.o.i. of 100). The lyophilized LysKpV475 immobilized in a pullulan matrix maintained a significant Salmonella reduction of 2 logs after 6 h of treatment. These results demonstrate the potential of SAR-endolysins, alone or in combination with other treatments, in the free form or immobilized in solid matrices, which paves the way for their application in different areas, such as in biocontrol at the food processing stage, biosanitation of food contact surfaces and biopreservation of processed food in active food packing.


Assuntos
Antibacterianos , Endopeptidases , Glucanos , Polimixina B , Fagos de Salmonella , Endopeptidases/farmacologia , Endopeptidases/química , Endopeptidases/metabolismo , Polimixina B/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Fagos de Salmonella/genética , Fagos de Salmonella/fisiologia , Fagos de Salmonella/química , Glucanos/química , Glucanos/farmacologia , Animais , Testes de Sensibilidade Microbiana , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/virologia , Camundongos , Salmonella typhimurium/virologia , Salmonella typhimurium/efeitos dos fármacos , Bacteriófagos/fisiologia , Bacteriófagos/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais/farmacologia , Proteínas Virais/química
6.
Protein Eng Des Sel ; 372024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38696722

RESUMO

The yeast endoplasmic reticulum sequestration and screening (YESS) system is a broadly applicable platform to perform high-throughput biochemical studies of post-translational modification enzymes (PTM-enzymes). This system enables researchers to profile and engineer the activity and substrate specificity of PTM-enzymes and to discover inhibitor-resistant enzyme mutants. In this study, we expand the capabilities of YESS by transferring its functional components to integrative plasmids. The YESS integrative system yields uniform protein expression and protease activities in various configurations, allows one to integrate activity reporters at two independent loci and to split the system between integrative and centromeric plasmids. We characterize these integrative reporters with two viral proteases, Tobacco etch virus (TEVp) and 3-chymotrypsin like protease (3CLpro), in terms of coefficient of variance, signal-to-noise ratio and fold-activation. Overall, we provide a framework for chromosomal-based studies that is modular, enabling rigorous high-throughput assays of PTM-enzymes in yeast.


Assuntos
Retículo Endoplasmático , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/genética , Processamento de Proteína Pós-Traducional , Genes Reporter , Endopeptidases/genética , Endopeptidases/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo
7.
Food Funct ; 15(10): 5539-5553, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38712538

RESUMO

A novel processing method combining short-time ozone pretreatment with hydrolysis has been developed to reduce whey protein allergenicity. The results showed that ozone treatment altered the whey protein spatial structure, initially increasing the surface hydrophobicity index, and then decreasing due to polymer formation as the time increased. Under the optimized conditions of alkaline protease-mediated hydrolysis, a 10-second pre-exposure to ozone significantly promoted the reduction in the IgE binding capacity of whey protein without compromising the hydrolysis efficiency. Compared with whey protein, the degranulation of KU812 cells stimulated by this hydrolysate decreased by 20.54%, 17.99%, and 22.80% for IL-6, ß-hexosaminidase, and histamine, respectively. In vitro simulated gastrointestinal digestion confirmed increased digestibility and reduced allergenicity. Peptidomics identification revealed that short-time ozonation exposed allergen epitopes, allowing alkaline protease to target these epitopes more effectively, particularly those associated with α-lactalbumin. These findings suggest the promising application of this processing method in mitigating the allergenicity of whey protein.


Assuntos
Alérgenos , Epitopos , Ozônio , Proteínas do Soro do Leite , Proteínas do Soro do Leite/química , Proteínas do Soro do Leite/farmacologia , Ozônio/química , Ozônio/farmacologia , Alérgenos/química , Alérgenos/imunologia , Humanos , Epitopos/química , Epitopos/imunologia , Imunoglobulina E/imunologia , Hidrólise , Endopeptidases/metabolismo , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia
8.
Cancer J ; 30(3): 210-217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753756

RESUMO

ABSTRACT: Fibroblast activation protein inhibitor positron emission tomography (PET) has gained interest for its ability to demonstrate uptake in a diverse range of tumors. Its molecular target, fibroblast activation protein, is expressed in cancer-associated fibroblasts, a major cell type in tumor microenvironment that surrounds various types of cancers. Although existing literature on FAPI PET is largely from single-center studies and case reports, initial findings show promise for some cancer types demonstrating improved imaging when compared with the widely used 18F-fludeoxyglucose PET for oncologic imaging. As we expand our knowledge of the utility of FAPI PET, accurate understanding of noncancerous uptake seen on FAPI PET is crucial for accurate evaluation. In this review, we summarize potential diagnostic and therapeutic applications of radiolabeled FAP inhibitors in oncological and nononcological disease processes.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico , Neoplasias/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Endopeptidases , Gelatinases/antagonistas & inibidores , Gelatinases/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Compostos Radiofarmacêuticos , Serina Endopeptidases/metabolismo , Animais , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/efeitos dos fármacos
9.
J Med Chem ; 67(10): 8460-8472, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38717104

RESUMO

Recognizing the significance of SPECT in nuclear medicine and the pivotal role of fibroblast activation protein (FAP) in cancer diagnosis and therapy, this study focuses on the development of 99mTc-labeled dimeric HF2 with high tumor uptake and image contrast. The dimeric HF2 was synthesized and radiolabeled with 99mTc in one pot using various coligands (tricine, TPPTS, EDDA, and TPPMS) to yield [99mTc]Tc-TPPTS-HF2, [99mTc]Tc-EDDA-HF2, and [99mTc]Tc-TPPMS-HF2 dimers. SPECT imaging results indicated that [99mTc]Tc-TPPTS-HF2 exhibited higher tumor uptake and tumor-to-normal tissue (T/NT) ratio than [99mTc]Tc-EDDA-HF2 and [99mTc]Tc-TPPMS-HF2. Notably, [99mTc]Tc-TPPTS-HF2 exhibited remarkable tumor accumulation and retention in HT-1080-FAP and U87-MG tumor-bearing mice, thereby surpassing the monomeric [99mTc]Tc-TPPTS-HF. Moreover, [99mTc]Tc-TPPTS-HF2 achieved acceptable T/NT ratios in the hepatocellular carcinoma patient-derived xenograft (HCC-PDX) model, which provided identifiable contrast and imaging quality. In conclusion, this study presents proof-of-concept research on 99mTc-labeled FAP inhibitor dimers for the visualization of multiple tumor types. Among these candidate compounds, [99mTc]Tc-TPPTS-HF2 showed excellent clinical potential, thereby enriching the SPECT tracer toolbox.


Assuntos
Compostos de Organotecnécio , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Humanos , Camundongos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Compostos de Organotecnécio/química , Compostos de Organotecnécio/farmacocinética , Compostos de Organotecnécio/síntese química , Linhagem Celular Tumoral , Desenho de Fármacos , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Tecnécio/química , Distribuição Tecidual , Dimerização , Camundongos Nus , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química , Endopeptidases/metabolismo , Serina Endopeptidases/metabolismo , Serina Endopeptidases/química
10.
Ceska Gynekol ; 89(2): 95-101, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38704220

RESUMO

OBJECTIVE: To compare cervical stroma in advanced cervical cancer with the control group; to compare, in the pre-treatment period, hemogram parameters in patients with advanced cervical cancer with the same parameters as the control group; and to verify if there is an association of stromal markers with prognostic factors in cervical cancer. MATERIALS AND METHODS: We prospectively evaluated 16 patients diagnosed with advanced invasive cervical cancer. A control group of 22 patients was used (uterine leiomyoma). Immunohistochemistry was performed to verify the stromal immunostaining of alpha-smooth muscle actin (SMA) and fibroblast activation protein alpha (FAP). Immunostainings and hemogram parameters were compared using Fisher's exact and Mann-Whitney Test, respectively. RESULTS: Strong FAP immunostaining was more frequent in patients with cervical cancer when compared with patients with leiomyoma (P = 0.0002). Regarding SMA, strong immunostaining was also found more in the group of cancer patients compared to the control group (P < 0.00001). The neutrophil-lymphocyte ratio (NLR) values were higher in the cancer patient group compared to the control group (P = 0.0019). There was no association of the parameters studied with prognostic factors. CONCLUSIONS: Strong FAP and SMA immunostaining was found more in patients with cervical cancer when compared to the control group. NLR values were also higher in cervical cancer.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/patologia , Pessoa de Meia-Idade , Adulto , Endopeptidases , Actinas/análise , Actinas/metabolismo , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Gelatinases/análise , Gelatinases/metabolismo , Serina Endopeptidases/análise , Serina Endopeptidases/metabolismo , Leiomioma/patologia
11.
Nat Commun ; 15(1): 4479, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802343

RESUMO

Deposition of amyloid-ß (Aß) peptides in the brain is a hallmark of Alzheimer's disease. Aßs are generated through sequential proteolysis of the amyloid precursor protein by the γ-secretase complexes (GSECs). Aß peptide length, modulated by the Presenilin (PSEN) and APH-1 subunits of GSEC, is critical for Alzheimer's pathogenesis. Despite high relevance, mechanistic understanding of the proteolysis of Aß, and its modulation by APH-1, remain incomplete. Here, we report cryo-EM structures of human GSEC (PSEN1/APH-1B) reconstituted into lipid nanodiscs in apo form and in complex with the intermediate Aß46 substrate without cross-linking. We find that three non-conserved and structurally divergent APH-1 regions establish contacts with PSEN1, and that substrate-binding induces concerted rearrangements in one of the identified PSEN1/APH-1 interfaces, providing structural basis for APH-1 allosteric-like effects. In addition, the GSEC-Aß46 structure reveals an interaction between Aß46 and loop 1PSEN1, and identifies three other H-bonding interactions that, according to functional validation, are required for substrate recognition and efficient sequential catalysis.


Assuntos
Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides , Microscopia Crioeletrônica , Proteínas de Membrana , Presenilina-1 , Humanos , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/química , Presenilina-1/metabolismo , Presenilina-1/química , Presenilina-1/genética , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química , Endopeptidases/metabolismo , Endopeptidases/química , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Ligação Proteica , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/química , Doença de Alzheimer/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/química , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/química , Modelos Moleculares , Proteólise
12.
Viruses ; 16(5)2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38793641

RESUMO

Acinetobacter baumannii has developed multiple drug resistances, posing a significant threat to antibiotic efficacy. LysECD7, an endolysin derived from phages, could be a promising therapeutic agent against multi-drug resistance A. baumannii. In this study, in order to further enhance the antibacterial efficiency of the engineered LysECD7, a few lipopolysaccharide-interacting peptides (Li5, MSI594 and Li5-MSI) were genetically fused with LysECD7. Based on in vitro antibacterial activity, the fusion protein Lys-Li5-MSI was selected for further modifications aimed at extending its half-life. A cysteine residue was introduced into Lys-Li5-MSI through mutation (Lys-Li5-MSIV12C), followed by conjugation with a C16 fatty acid chain via a protonation substitution reaction(V12C-C16). The pharmacokinetic profile of V12C-C16 exhibited a more favorable characteristic in comparison to Lys-Li5-MSI, thereby resulting in enhanced therapeutic efficacy against lethal A. baumannii infection in mice. The study provides valuable insights for the development of novel endolysin therapeutics and proposes an alternative therapeutic strategy for combating A. baumannii infections.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Endopeptidases , Lipopolissacarídeos , Acinetobacter baumannii/efeitos dos fármacos , Animais , Endopeptidases/farmacologia , Endopeptidases/metabolismo , Endopeptidases/química , Endopeptidases/genética , Camundongos , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Antibacterianos/farmacologia , Antibacterianos/química , Lipopolissacarídeos/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia , Peptídeos/química , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/química , Feminino , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
13.
Int J Biol Macromol ; 269(Pt 2): 132166, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723822

RESUMO

Improving the ability of bacteria to secrete protein is essential for large-scale production of food enzymes. However, due to the lack of effective tracking technology for target proteins, the optimization of the secretory system is facing many problems. In this study, we utilized the split-GFP system to achieve self-assembly into mature GFP in Bacillus amyloliquefaciens and successfully tracked the alkaline protease AprE. The split-GFP system was employed to assess the signal peptidases, a crucial component in the secretory system, and signal peptidase sipA was identified as playing a role in the secretion of AprE. Deletion of sipA resulted in a higher accumulation of the precursor protein of AprE compared to other signal peptidase deletion strains. To explore the mechanism of signal peptidase on signal peptide, molecular docking and calculation of free energy were performed. The action strength of the signal peptidase is determined by its binding affinity with the tripeptides at the C-terminal of the signal peptide. The functions of signal peptides YdbK and NucB rely on sipA, and overexpression of sipA by integrating it into genome of B. amyloliquefaciens increased the activity of extracellular AprE by 19.9 %. These findings provide insights into enhancing the secretion efficiency of chassis strains.


Assuntos
Bacillus amyloliquefaciens , Proteínas de Bactérias , Endopeptidases , Proteínas de Fluorescência Verde , Bacillus amyloliquefaciens/enzimologia , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Endopeptidases/metabolismo , Endopeptidases/genética , Endopeptidases/química , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Simulação de Acoplamento Molecular , Sinais Direcionadores de Proteínas , Proteínas de Membrana , Serina Endopeptidases , Proteínas de Membrana Transportadoras
14.
Life Sci ; 348: 122674, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692507

RESUMO

AIMS: Ubiquitin specific peptidase 5 (USP5), a member of deubiquitinating enzymes, has garnered significant attention for its crucial role in cancer progression. This study aims to explore the role of USP5 and its potential molecular mechanisms in cholangiocarcinoma (CCA). MAIN METHODS: To explore the effect of USP5 on CCA, gain-of-function and loss-of-function assays were conducted in human CCA cell lines RBE and HCCC9810. The CCK8, colony-forming assay, EDU, flow cytometry, transwell assay and xenografts were used to assess cell proliferation, migration and tumorigenesis. Western blot and immunohistochemistry were performed to measure the expression of related proteins. Immunoprecipitation and immunofluorescence were applied to identify the interaction between USP5 and Y box-binding protein 1 (YBX1). Ubiquitination assays and cycloheximide chase assays were carried out to confirm the effect of USP5 on YBX1. KEY FINDINGS: We found USP5 is highly expressed in CCA tissues, and upregulated USP5 is required for the cancer progression. Knockdown of USP5 inhibited cell proliferation, migration and epithelial-mesenchymal transition (EMT) in vitro, along with suppressed xenograft tumor growth and metastasis in vivo. Mechanistically, USP5 could interact with YBX1 and stabilize YBX1 by deubiquitination in CCA cells. Additionally, silencing of USP5 hindered the phosphorylation of YBX1 at serine 102 and its subsequent translocation to the nucleus. Notably, the effect induced by USP5 overexpression in CCA cells was reversed by YBX1 silencing. SIGNIFICANCE: Our findings reveal that USP5 is required for cell proliferation, migration and EMT in CCA by stabilizing YBX1, suggesting USP5-YBX1 axis as a promising therapeutic target for CCA.


Assuntos
Neoplasias dos Ductos Biliares , Movimento Celular , Proliferação de Células , Colangiocarcinoma , Progressão da Doença , Transição Epitelial-Mesenquimal , Camundongos Nus , Proteína 1 de Ligação a Y-Box , Humanos , Colangiocarcinoma/patologia , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/genética , Animais , Camundongos , Linhagem Celular Tumoral , Proteína 1 de Ligação a Y-Box/metabolismo , Proteína 1 de Ligação a Y-Box/genética , Ubiquitinação , Camundongos Endogâmicos BALB C , Masculino , Endopeptidases/metabolismo , Endopeptidases/genética , Regulação Neoplásica da Expressão Gênica , Feminino
15.
Elife ; 122024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619391

RESUMO

Rapid recovery of proteasome activity may contribute to intrinsic and acquired resistance to FDA-approved proteasome inhibitors. Previous studies have demonstrated that the expression of proteasome genes in cells treated with sub-lethal concentrations of proteasome inhibitors is upregulated by the transcription factor Nrf1 (NFE2L1), which is activated by a DDI2 protease. Here, we demonstrate that the recovery of proteasome activity is DDI2-independent and occurs before transcription of proteasomal genes is upregulated but requires protein translation. Thus, mammalian cells possess an additional DDI2 and transcription-independent pathway for the rapid recovery of proteasome activity after proteasome inhibition.


Assuntos
Complexo de Endopeptidases do Proteassoma , Inibidores de Proteassoma , Animais , Endopeptidases , Mamíferos , Inibidores de Proteassoma/farmacologia
16.
J Biomed Sci ; 31(1): 36, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622637

RESUMO

BACKGROUND: This study addresses the urgent need for infection control agents driven by the rise of drug-resistant pathogens such as Acinetobacter baumannii. Our primary aim was to develop and assess a novel endolysin, Tha-PA90, designed to combat these challenges. METHODS: Tha-PA90 incorporates an antimicrobial peptide (AMP) called thanatin at its N-terminus, enhancing bacterial outer membrane permeability and reducing host immune responses. PA90 was selected as the endolysin component. The antibacterial activity of the purified Tha-PA90 was evaluated using an in vitro colony-forming unit (CFU) reduction assay and a membrane permeability test. A549 cells were utilized to measure the penetration into the cytosol and the cytotoxicity of Tha-PA90. Finally, infection control was monitored in A. baumannii infected mice following the intraperitoneal administration of Tha-PA90. RESULTS: Tha-PA90 demonstrated remarkable in vitro efficacy, completely eradicating A. baumannii strains, even drug-resistant variants, at a low concentration of 0.5 µM. Notably, it outperformed thanatin, achieving only a < 3-log reduction at 4 µM. Tha-PA90 exhibited 2-3 times higher membrane permeability than a PA90 and thanatin mixture or PA90 alone. Tha-PA90 was found within A549 cells' cytosol with no discernible cytotoxic effects. Furthermore, Tha-PA90 administration extended the lifespan of A. baumannii-infected mice, reducing bacterial loads in major organs by up to 3 logs. Additionally, it decreased proinflammatory cytokine levels (TNF-α and IL-6), reducing the risk of sepsis from rapid bacterial lysis. Our findings indicate that Tha-PA90 is a promising solution for combating drug-resistant A. baumannii. Its enhanced efficacy, low cytotoxicity, and reduction of proinflammatory responses render it a potential candidate for infection control. CONCLUSIONS: This study underscores the significance of engineered endolysins in addressing the pressing challenge of drug-resistant pathogens and offers insights into improved infection management strategies.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Endopeptidases , Animais , Camundongos , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos , Antibacterianos/farmacologia , Infecções por Acinetobacter/tratamento farmacológico , Testes de Sensibilidade Microbiana
17.
J Med Chem ; 67(9): 7068-7087, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38656144

RESUMO

Fibroblast activation protein (FAP) is a very reliable biomarker for tissue remodeling. FAP has so far mainly been studied in oncology, but there is growing interest in the enzyme in other diseases like fibrosis. Recently, FAP-targeting diagnostics and therapeutics have emerged, of which the so-called FAPIs are among the most promising representatives. FAPIs typically have a relatively high molecular weight and contain very polar, multicharged chelator moieties. While this is not limiting the application of FAPIs in oncology, more druglike FAPIs could be required to optimally study diseases characterized by denser, less permeable tissue. In response, we designed the first druglike 18F-labeled FAPIs. We report target potencies, biodistribution, and pharmacokinetics and demonstrate FAP-dependent uptake in murine tumor xenografts. Finally, this paper puts forward compound 10 as a highly promising, druglike FAPI for 18F-PET imaging. This molecule is fit for additional studies in fibrosis and its preclinical profile warrants clinical investigation.


Assuntos
Endopeptidases , Radioisótopos de Flúor , Gelatinases , Proteínas de Membrana , Tomografia por Emissão de Pósitrons , Serina Endopeptidases , Animais , Tomografia por Emissão de Pósitrons/métodos , Endopeptidases/metabolismo , Radioisótopos de Flúor/química , Gelatinases/metabolismo , Gelatinases/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Humanos , Camundongos , Distribuição Tecidual , Serina Endopeptidases/metabolismo , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacologia , Linhagem Celular Tumoral , Feminino
18.
Emerg Microbes Infect ; 13(1): 2348526, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38683015

RESUMO

The foot-and-mouth disease virus (FMDV) Leader proteinase Lpro inhibits host mRNA translation and blocks the interferon response which promotes viral survival. Lpro is not required for viral replication in vitro but serotype A FMDV lacking Lpro has been shown to be attenuated in cattle and pigs. However, it is not known, whether leaderless viruses can cause persistent infection in vivo after simulated natural infection and whether the attenuated phenotype is the same in other serotypes. We have generated an FMDV O/FRA/1/2001 variant lacking most of the Lpro coding region (ΔLb). Cattle were inoculated intranasopharyngeally and observed for 35 days to determine if O FRA/1/2001 ΔLb is attenuated during the acute phase of infection and whether it can maintain a persistent infection in the upper respiratory tract. We found that although this leaderless virus can replicate in vitro in different cell lines, it is unable to establish an acute infection with vesicular lesions and viral shedding nor is it able to persistently infect bovine pharyngeal tissues.


Assuntos
Doenças dos Bovinos , Vírus da Febre Aftosa , Febre Aftosa , Infecção Persistente , Sorogrupo , Replicação Viral , Animais , Bovinos , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/fisiologia , Vírus da Febre Aftosa/classificação , Vírus da Febre Aftosa/patogenicidade , Vírus da Febre Aftosa/isolamento & purificação , Febre Aftosa/virologia , Doenças dos Bovinos/virologia , Infecção Persistente/virologia , Linhagem Celular , Endopeptidases/genética , Endopeptidases/metabolismo , Eliminação de Partículas Virais
19.
World J Microbiol Biotechnol ; 40(6): 170, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630319

RESUMO

Biological control using edible mushrooms as natural enemies is a sustainable alternative for pest management. Despite the well-established literature on toxins and secondary metabolites produced by these fungi in the biochemical control of nematodes, the nematicidal activity of proteases from different Pleurotus species is yet to be investigated. Therefore, this study aimed to correlate protease to the nematicidal activity of different mushrooms, Pleurotus sp., P. ostreatus (SB), P. ostreatus (Pearl), and P. djamor. For such a purpose, we performed motility assays of Panagrellus sp. at different time intervals, 6, 12, and 24 h for each of the mushrooms. In addition, the protease activity was measured using different pH (5, 7, and 9) and fermentation time intervals (45 and 75 days). Furthermore, we also evaluated the effect of this cell-free extract on Panagrellus sp. In response to these experiments, all edible mushrooms showed a reduction over 82% for the nematode-feeding activity (p < 0.01). The cell-free crude extract of each of the fungi studied showed nematocidal activity (p < 0.01). For the 45-day fermentation, P. djamor exhibited statistical significance (p < 0.01) compared with the others, reaching a reduction percentage of 73%. For the 75-day fermentation, Pleurotus sp. and P. ostreatus (Pearl) showed significant differences compared with the other fungi (p < 0.01), with reduction percentages of 64 and 62%, respectively. Herein, protease activity was associated with the nematicidal action of different Pleurotus species in controlling Panagrellus sp.


Assuntos
Agaricales , Pleurotus , Proteólise , Antinematódeos/farmacologia , Peptídeo Hidrolases , Endopeptidases
20.
World J Microbiol Biotechnol ; 40(6): 186, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683213

RESUMO

The ability of most opportunistic bacteria to form biofilms, coupled with antimicrobial resistance, hinder the efforts to control widespread infections, resulting in high risks of negative outcomes and economic costs. Endolysins are promising compounds that efficiently combat bacteria, including multidrug-resistant strains and biofilms, without a low probability of subsequent emergence of stable endolysin-resistant phenotypes. However, the details of antibiofilm effects of these enzymes are poorly understood. To elucidate the interactions of bacteriophage endolysins LysAm24, LysAp22, LysECD7, and LysSi3 with bacterial films formed by Gram-negative species, we estimated their composition and assessed the endolysins' effects on the most abundant exopolymers in vitro. The obtained data suggests a pronounced efficiency of these lysins against biofilms with high (Klebsiella pneumoniae) and low (Acinetobacter baumannii) matrix contents, or dual-species biofilms, resulting in at least a twofold loss of the biomass. These peptidoglycan hydrolases interacted diversely with protective compounds of biofilms such as extracellular DNA and polyanionic carbohydrates, indicating a spectrum of biofilm-disrupting effects for bacteriolytic phage enzymes. Specifically, we detected disruption of acid exopolysaccharides by LysAp22, strong DNA-binding capacity of LysAm24, both of these interactions for LysECD7, and neither of them for LysSi3.


Assuntos
Bacteriófagos , Biofilmes , Endopeptidases , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Endopeptidases/metabolismo , Endopeptidases/farmacologia , Endopeptidases/química , Bacteriófagos/enzimologia , Acinetobacter baumannii/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Proteínas Virais/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...