Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
1.
Immun Inflamm Dis ; 12(4): e1252, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652015

RESUMO

We developed pulmonary emphysema and a type 2 airway inflammation overlap mouse model. The bronchoalveolar lavage (BAL) interleukin 13 (IL-13), IL-4, and IL-5 levels in the overlap model were higher than in the pulmonary emphysema model and lower than in the type 2 airway inflammation model, but IL-33 level in the lung was higher than in other models. IL-33 and interferon-γ (IFNγ) in lungs may control the severity of a type 2 airway inflammation in lung.


Assuntos
Modelos Animais de Doenças , Interleucina-33 , Enfisema Pulmonar , Animais , Interleucina-33/metabolismo , Camundongos , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Pulmão/patologia , Pulmão/imunologia , Pulmão/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Interferon gama/metabolismo , Interferon gama/imunologia , Camundongos Endogâmicos C57BL
2.
Proc Natl Acad Sci U S A ; 119(36): e2201494119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037355

RESUMO

Pulmonary emphysema is associated with dysregulated innate immune responses that promote chronic pulmonary inflammation and alveolar apoptosis, culminating in lung destruction. However, the molecular regulators of innate immunity that promote emphysema are ill-defined. Here, we investigated whether innate immune inflammasome complexes, comprising the adaptor ASC, Caspase-1 and specific pattern recognition receptors (PRRs), promote the pathogenesis of emphysema. In the lungs of emphysematous patients, as well as spontaneous gp130F/F and cigarette smoke (CS)-induced mouse models of emphysema, the expression (messenger RNA and protein) and activation of ASC, Caspase-1, and the inflammasome-associated PRR and DNA sensor AIM2 were up-regulated. AIM2 up-regulation in emphysema coincided with the biased production of the mature downstream inflammasome effector cytokine IL-1ß but not IL-18. These observations were supported by the genetic blockade of ASC, AIM2, and the IL-1 receptor and therapy with AIM2 antagonistic suppressor oligonucleotides, which ameliorated emphysema in gp130F/F mice by preventing elevated alveolar cell apoptosis. The functional requirement for AIM2 in driving apoptosis in the lung epithelium was independent of its expression in hematopoietic-derived immune cells and the recruitment of infiltrating immune cells in the lung. Genetic and inhibitor-based blockade of AIM2 also protected CS-exposed mice from pulmonary alveolar cell apoptosis. Intriguingly, IL-6 trans-signaling via the soluble IL-6 receptor, facilitated by elevated levels of IL-6, acted upstream of the AIM2 inflammasome to augment AIM2 expression in emphysema. Collectively, we reveal cross-talk between the AIM2 inflammasome/IL-1ß and IL-6 trans-signaling axes for potential exploitation as a therapeutic strategy for emphysema.


Assuntos
Proteínas de Ligação a DNA , Imunidade Inata , Interleucina-1beta , Interleucina-6 , Enfisema Pulmonar , Animais , Apoptose , Caspase 1/metabolismo , Receptor gp130 de Citocina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Enfisema Pulmonar/imunologia
3.
Eur J Immunol ; 52(2): 222-236, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34559883

RESUMO

Chronic airway inflammation mediated by CD8+ T lymphocytes contributes to the pathogenesis of Chronic obstructive pulmonary disease (COPD). Deciphering the fingerprint of the chronic inflammation orchestrated by CD8+ T cells may allow the development of novel approaches to COPD management. Here, the expression of IL-27 and IFN-γ+ CD8+ Tc1 cells were evaluated in patients with COPD and in cigarette smoke-exposed mice. The production of IL-27 by marrow-derived dendritic cells (mDCs) in response to cigarette smoke extract (CSE) was assessed. The role of IL-27 in IFN-γ+ CD8+ Tc1 cells was explored. We demonstrated that elevated IL-27 was accompanied by an exaggerated IFN-γ+ CD8+ Tc1 response in a smoking mouse model of emphysema. We noted that lung dendritic cells were one of the main sources of IL-27 during chronic cigarette smoke exposure. Moreover, CSE directly induced the production of IL-27 by mDCs in vitro. IL-27 negatively regulated the differentiation of IFN-γ+ CD8+ Tc1 cells isolated from cigarette smoke-exposed mice in a STAT1- and STAT3-independent manner. Systemic administration of recombinant IL-27 attenuated IFN-γ+ CD8+ Tc1 response in the late phase of cigarette smoke exposure. Our results uncovered that IL-27 negatively regulates IFN-γ+ CD8+ Tc1 response in the late stage of chronic cigarette smoke exposure, which may provide a new strategy for the anti-inflammatory treatment of smoking-related COPD/emphysema.


Assuntos
Diferenciação Celular , Fumar Cigarros , Interferon gama , Interleucinas , Enfisema Pulmonar , Linfócitos T Citotóxicos , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Diferenciação Celular/imunologia , Fumar Cigarros/efeitos adversos , Fumar Cigarros/imunologia , Modelos Animais de Doenças , Inflamação/etiologia , Inflamação/imunologia , Interferon gama/imunologia , Interleucinas/imunologia , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/imunologia , Linfócitos T Citotóxicos/imunologia
4.
Front Immunol ; 12: 684076, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367144

RESUMO

Cholesterol-ester transfer protein (CETP) plays a role in atherosclerosis, the inflammatory response to endotoxemia and in experimental and human sepsis. Functional alterations in lipoprotein (LP) metabolism and immune cell populations, including macrophages, occur during sepsis and may be related to comorbidities such as chronic obstructive pulmonary disease (COPD). Macrophages are significantly associated with pulmonary emphysema, and depending on the microenvironment, might exhibit an M1 or M2 phenotype. Macrophages derived from the peritoneum and bone marrow reveal CETP that contributes to its plasma concentration. Here, we evaluated the role of CETP in macrophage polarization and elastase-induced pulmonary emphysema (ELA) in human CETP-expressing transgenic (huCETP) (line 5203, C57BL6/J background) male mice and compared it to their wild type littermates. We showed that bone marrow-derived macrophages from huCETP mice reduce polarization toward the M1 phenotype, but with increased IL-10. Compared to WT, huCETP mice exposed to elastase showed worsened lung function with an increased mean linear intercept (Lm), reflecting airspace enlargement resulting from parenchymal destruction with increased expression of arginase-1 and IL-10, which are M2 markers. The cytokine profile revealed increased IL-6 in plasma and TNF, and IL-10 in bronchoalveolar lavage (BAL), corroborating with the lung immunohistochemistry in the huCETP-ELA group compared to WT-ELA. Elastase treatment in the huCETP group increased VLDL-C and reduced HDL-C. Elastase-induced pulmonary emphysema in huCETP mice promotes lung M2-like phenotype with a deleterious effect in experimental COPD, corroborating the in vitro result in which CETP promoted M2 macrophage polarization. Our results suggest that CETP is associated with inflammatory response and influences the role of macrophages in COPD.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/fisiologia , Macrófagos/metabolismo , Enfisema Pulmonar/imunologia , Animais , Arginase/metabolismo , Líquido da Lavagem Broncoalveolar/citologia , Proteínas de Transferência de Ésteres de Colesterol/deficiência , Proteínas de Transferência de Ésteres de Colesterol/genética , Interleucina-10/metabolismo , Contagem de Leucócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Elastase Pancreática/efeitos adversos , Fenótipo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/genética
5.
Respir Res ; 22(1): 232, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34425800

RESUMO

BACKGROUND: Leukocyte immunoglobulin-like receptor B4 (LILRB4) is one of the inhibitory receptors in various types of immune cells including macrophages. Previous reports suggested that LILRB4 could be involved in a negative feedback system to prevent excessive inflammatory responses. However, its role has been unclear in chronic obstructive pulmonary disease (COPD), in which macrophages play a crucial role in the pathogenesis. In this study, we aimed to examine the changes of LILRB4 on macrophages both in the lung specimens of COPD patients and the lungs of a mouse emphysema model. We then tried to compare the differences in both inflammation and emphysematous changes of the model between wild-type and LILRB4-deficient mice in order to elucidate the role of LILRB4 in the pathogenesis of COPD. METHODS: We prepared single-cell suspensions of resected lung specimens of never-smokers (n = 21), non-COPD smokers (n = 16), and COPD patients (n = 14). The identification of LILRB4-expressing cells and the level of LILRB4 expression were evaluated by flow cytometry. We analyzed the relationships between the LILRB4 expression and clinical characteristics including respiratory function. In the experiments using an elastase-induced mouse model of emphysema, we also analyzed the LILRB4 expression on lung macrophages. We compared inflammatory cell accumulation and emphysematous changes induced by elastase instillation between wild-type and LILRB4-deficient mice. RESULTS: The levels of surface expression of LILRB4 are relatively high on monocyte linage cells including macrophages in the human lungs. The percentage of LILRB4+ cells in lung interstitial macrophages was increased in COPD patients compared to non-COPD smokers (p = 0.018) and correlated with the severity of emphysematous lesions detected by CT scan (rs = 0.559, p < 0.001), whereas the amount of smoking showed no correlation with LILRB4 expression. Increased LILRB4 on interstitial macrophages was also observed in elastase-treated mice (p = 0.008). LILRB4-deficient mice showed severer emphysematous lesions with increased MMP-12 expression in the model. CONCLUSIONS: LILRB4 on interstitial macrophages was upregulated both in human COPD lungs and in a mouse model of emphysema. This upregulated LILRB4 may have a protective effect against emphysema formation, possibly through decreasing MMP-12 expression in the lungs.


Assuntos
Macrófagos Alveolares/metabolismo , Glicoproteínas de Membrana/biossíntese , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/metabolismo , Receptores Imunológicos/biossíntese , Regulação para Cima/fisiologia , Animais , Células Cultivadas , Humanos , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/imunologia , Enfisema Pulmonar/patologia
6.
Int Immunopharmacol ; 98: 107913, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34218218

RESUMO

The objective of this work was to study the effects and mechanisms of S-allylmercapto-N-acetylcysteine (ASSNAC) in the treatment of pulmonary emphysema based on network pharmacology analysis and other techniques. Firstly, the potential targets associated with ASSNAC and COPD were integrated using public databases. Then, a protein-protein interaction network was constructed using String database and Cytoscape software. The Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis were performed on DAVID platform. The molecular docking of ASSNAC with some key disease targets was implemented on the SwissDock platform. To verify the results of the network pharmacology, a pulmonary emphysema mice model was established and treated with ASSNAC. Besides, the expressions of the predicted targets were detected by immunohistochemistry, Western blot analysis or enzyme-linked immunosorbent assay. Results showed that 33 overlapping targets are achieved, including CXCL8, ICAM1, MAP2K1, PTGS2, ACE and so on. The critical pathways of ASSNAC against COPD involved arachidonic acid metabolism, chemokine pathway, MAPK pathway, renin-angiotensin system, and others. Pharmacodynamic experiments demonstrated that ASSNAC decreased the pulmonary emphysema and inflammation in the pulmonary emphysema mice. Therefore, these results confirm the perspective of network pharmacology in the target verification, and indicate the treatment potential of ASSNAC against COPD.


Assuntos
Acetilcisteína/análogos & derivados , Compostos Alílicos/farmacologia , Anti-Inflamatórios/farmacologia , Enfisema Pulmonar/tratamento farmacológico , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Compostos Alílicos/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Quimiocinas/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Masculino , Camundongos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas/imunologia , Enfisema Pulmonar/diagnóstico , Enfisema Pulmonar/imunologia , Enfisema Pulmonar/patologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
7.
Respir Res ; 22(1): 207, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34271910

RESUMO

BACKGROUND: Alpha-1 antitrypsin (AAT) is a major serine protease inhibitor. AAT deficiency (AATD) is a genetic disorder characterized by early-onset severe emphysema. In well-selected AATD patients, therapy with plasma-derived AAT (pAAT), "augmentation therapy", provides modest clinical improvement but is perceived as cumbersome with weekly intravenous infusions. Using mouse models of emphysema, we compared the effects of a recombinant AAT-IgG1 Fc-fusion protein (AAT-Fc), which is expected to have a longer half-life following infusion, to those of pAAT. METHODS: In an elastase model of emphysema, mice received a single intratracheal instillation of porcine pancreatic elastase (PPE) or human leucocyte elastase (hLE). AAT-Fc, pAAT, or vehicle was administered intraperitoneally 1 day prior to or 3 weeks following elastase instillation. Lung function and histology assessments were performed at 7 and 32 days after elastase instillation. In a cigarette smoke (CS) model of emphysema, mice were exposed to CS daily, 5 days a week, for 6 months and AAT-Fc, pAAT, or vehicle were administered every 10 days during the last 3 months of CS exposure. Assessments were performed 3 days after the last CS exposure. Immune responses to lung elastin peptide (EP) and the effects of AAT-Fc or pAAT treatment on dendritic cell (DC) function were determined ex vivo. RESULTS: Both elastase instillation and CS exposure triggered emphysema-like alveolar enlargement, increased lung compliance, and increased markers of inflammation compared to controls. Administration of AAT-Fc either prior to or following elastase instillation or during CS exposure provided greater protection than pAAT against alveolar enlargement, lung dysfunction, and airway inflammation. When challenged ex vivo with EP, spleen mononuclear cells from elastase-exposed mice exhibited dose-dependent production of IFNγ and IL-17, suggesting immune reactivity. In co-culture experiments with splenic CD4+ T cells isolated from elastase-exposed mice, AAT-Fc treatment prior to EP-priming of bone marrow-derived dendritic cells inhibited the production of IFNγ and IL-17. CONCLUSIONS: Compared to pAAT, AAT-Fc more effectively prevented or attenuated elastase- and CS-induced models of emphysema. These effects were associated with immunomodulatory effects on DC activity. AAT-Fc may provide a therapeutic option to individuals with AATD- and CS-induced emphysema.


Assuntos
Fragmentos Fc das Imunoglobulinas/administração & dosagem , Exposição por Inalação/efeitos adversos , Elastase Pancreática/toxicidade , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/tratamento farmacológico , Proteínas Recombinantes de Fusão/administração & dosagem , Fumaça/efeitos adversos , alfa 1-Antitripsina/administração & dosagem , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Elastase Pancreática/administração & dosagem , Enfisema Pulmonar/imunologia , Suínos , Nicotiana
8.
Int Immunopharmacol ; 97: 107809, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34182323

RESUMO

BACKGROUND: Rosiglitazone, an exogenous ligand of PPARγ, plays an important anti-inflammatory role during the inflammation caused by cigarette smoke (CS). CS exposure induces pulmonary inflammation via activating macrophage polarization. However, the effects of rosiglitazone on macrophage polarization induced by CS are unclear. METHODS: 36 male Wistar rats were randomly divided into 3 groups: control, CS and ROSI. In the CS group, rats were passively exposed to cigarette smoke for consecutive 3 months. In the ROSI group, rats were treated with rosiglitazone (3 mg/kg/day, ip) during CS exposure period. Alveolar macrophages of rats were isolated and cultured with CSE. The slices of lung tissues were stained with hematoxylin and eosin. The histomorphology was observed to evaluate emphysema and the pulmonary function was detected. Cells in bronchoalveolar lavage fluid (BALF) were examined and the expression of cytokines TNF-α and IL-1ß was detected by ELISA and qPCR. The alveolar macrophage polarization was evaluated by immunohistochemistry and flow cytometry assay in vivo and by qPCR in vitro. The protein level of PPARγ and RXRα was measured by Western blot. RESULTS: CS exposure induced significant emphysema, diminished FEV0.2/FVC, elevated PEF, and higher level of total cells, neutrophils and cytokines (TNF-α and IL-1ß) in BALF compared with control group, whereas rosiglitazone partly ameliorated above disorders. CS exposure activated M1 and M2 macrophage polarization in vivo and in vitro, whereas rosiglitazone inhibited CS induced M1 macrophage polarization and decreased the ratio of M1/M2. The effects of rosiglitazone on macrophage polarization were partly blocked after AMs treated with the antagonists of PPARγ and RXRα, and were synergistically enhanced by the agonist of RXRα. CS exposure decreased the expression of PPARγ and RXRα in lung tissues and AMs, and rosiglitazone partly reversed CS-mediated suppression of PPARγ and RXRα. CONCLUSION: Rosiglitazone ameliorated the emphysema and inflammation in lung tissues induced by CS exposure via inhibiting the M1 macrophage polarization through activating PPARγ and RXRα.


Assuntos
Ativação de Macrófagos/efeitos dos fármacos , Pneumonia/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Enfisema Pulmonar/tratamento farmacológico , Rosiglitazona/farmacologia , Animais , Fumar Cigarros/efeitos adversos , Fumar Cigarros/imunologia , Modelos Animais de Doenças , Humanos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Masculino , Pneumonia/imunologia , Pneumonia/patologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/imunologia , Enfisema Pulmonar/patologia , Ratos , Rosiglitazona/uso terapêutico , Fumaça/efeitos adversos , Nicotiana/efeitos adversos
9.
Toxicol Lett ; 348: 28-39, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34058311

RESUMO

Almost three billion people in developing countries are exposed to biomass smoke (BS), which predisposes them to developing chronic obstructive pulmonary disease (COPD). COPD is associated with abnormal innate and adaptive immune responses in the lungs and systemic circulation, but the mechanisms underlying BS-COPD development are uncertain. We investigated the role of dendritic cells (DCs) and interleukin (IL)-17A in BS-COPD. We investigated T helper cell responses in the BS-exposed COPD rat model by flow cytometry, quantitative PCR, and enzyme-linked immunosorbent assays. We conducted ex vivo experiments to determine which antigen-presenting cells induce Th17 cell responses. We evaluated the in vitro effects of BS-related particulate matter (BRPM) (2.5 µm) on the function of bone marrow-derived dendritic cells (BMDCs). We found that BS exposure enhanced Th17 responses in the lungs of the COPD-modelled rats, and the stimulated DCs (but not the macrophages) were sufficient to induce naïve CD4 + T cells to produce IL-17A in ex vivo experiments. BRPM significantly enhanced the maturation and activation of DCs through Toll-like receptor 2 (TLR2), but not TLR4, and induced Th17 responses. Therefore, BS activated lung DCs through TLR2, which led to Th17 responses and emphysema in the rats. This process is possibly therapeutically targetable.


Assuntos
Células Dendríticas/imunologia , Pulmão/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Fumaça/efeitos adversos , Células Th17/citologia , Receptor 2 Toll-Like/fisiologia , Animais , Diferenciação Celular , Modelos Animais de Doenças , Interleucina-17/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Material Particulado/toxicidade , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/imunologia , Ratos , Ratos Sprague-Dawley
10.
Biochem Biophys Res Commun ; 558: 94-101, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33906112

RESUMO

Testosterone deficiency is commonly observed in male patients with chronic obstructive pulmonary disease (COPD), which is characterized by chronic inflammation of the airways and pulmonary emphysema. Although clinical trials have indicated that testosterone replacement therapy can improve respiratory function in patients with COPD, the role of testosterone in the pathogenesis of COPD remains unclear. The aim of this study was to explore the effect of testosterone deficiency on the development of pulmonary emphysema in orchiectomized (ORX) mice exposed to porcine pancreatic elastase (PPE). ORX mice developed more severe emphysematous changes 21 d after PPE inhalation than non-ORX mice. Testosterone propionate supplementation significantly reduced PPE-induced emphysematous changes in ORX mice. PPE exposure also increased the number of neutrophils and T cells in bronchoalveolar lavage fluid (BALF) of mice that had undergone ORX and sham surgery. T cell counts were significantly higher in the BALF of ORX mice than of sham mice. Testosterone supplementation reduced the infiltration of T cells into BALF and alleviated emphysematous changes in the lungs of ORX mice. Our findings suggest that testosterone, a male-specific hormone, may suppress the development of pulmonary emphysema through the regulation of T cell-mediated immunity.


Assuntos
Enfisema Pulmonar/etiologia , Testosterona/deficiência , Administração por Inalação , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Modelos Animais de Doenças , Humanos , Imunidade Celular/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/patologia , Orquiectomia , Elastase Pancreática/administração & dosagem , Elastase Pancreática/toxicidade , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/imunologia , Enfisema Pulmonar/patologia , Suínos , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/patologia , Testosterona/administração & dosagem
11.
Biol Pharm Bull ; 44(1): 39-45, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390548

RESUMO

Chronic obstructive pulmonary disease (COPD) is a systemic inflammatory disorder. It often causes weight loss, which is considered a poor prognostic factor. A Japanese herbal Kampo medicine, Hochuekkito (TJ-41), has been reported to prevent systemic inflammation and weight loss in COPD patients, but the underlying biological mechanisms remain unknown. In the present study, we investigated the role of TJ-41 in vivo using a mouse model of lung emphysema. We used lung epithelium-specific Taz conditional knockout mice (Taz CKO mice) as the lung emphysema model mimicking the chronic pulmonary inflammation in COPD. Acute inflammation was induced by intratracheal lipopolysaccharide administration, simulating COPD exacerbation. Mice were fed a diet containing 2% TJ-41 or a control diet. Taz CKO mice showed increased numbers of inflammatory cells in the bronchoalveolar lavage fluid compared to control mice. This effect was reduced by TJ-41 treatment. In the acute exacerbation model, TJ-41 mitigated the increased numbers of inflammatory cells in the bronchoalveolar lavage fluid and attenuated lung inflammation in histopathological studies. Additional in vitro experiments using the human macrophage cell line U-937 demonstrated that lipopolysaccharide-induced tumor necrosis factor-alpha expression was significantly downregulated by TJ-41. These results suggest that TJ-41 has anti-inflammatory effects in lung emphysema both in the chronic phase and during an acute exacerbation. In conclusion, our study sheds light on the anti-inflammatory effects of TJ-41 in lung emphysema. This establishes its potential as a new anti-inflammatory therapy and a preventive medicine for exacerbations during the long-time maintenance of COPD patients.


Assuntos
Anti-Inflamatórios/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Kampo , Pneumonia/tratamento farmacológico , Enfisema Pulmonar/tratamento farmacológico , Animais , Humanos , Masculino , Camundongos , Camundongos Knockout , Pneumonia/imunologia , Pneumonia/patologia , Enfisema Pulmonar/imunologia , Enfisema Pulmonar/patologia , Células U937
12.
Inflammation ; 44(3): 985-998, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33415536

RESUMO

Chronic obstructive pulmonary disease (COPD)/pulmonary emphysema is driven by the dysregulated airway inflammation and primarily influenced by the interaction between cigarette smoking (CS) and the individual's susceptibility. The inflammation in COPD involves both innate and adaptive immunity. By binding to its specific ligands, chemokine receptor CXCR3 plays an important role in regulating tissue inflammation and damage. In acute animal model challenged with either CS or pathogens, CXCR3 knockout (KO) attenuated lung inflammation and pathology. However, the role of CXCR3 in CS-induced chronic airway inflammation and pulmonary emphysema remains unknown. In this present study, we investigated the effect of CXCR3 in CS-induced pulmonary emphysema in an animal model, and the association between CXCR3 single nucleotide polymorphisms (SNPs) and COPD susceptibility in human subjects. We found that after chronic exposure to side stream CS (SSCS) for 24 weeks, CXCR3 KO mice demonstrated significant airspace enlargement expressed by mean linear intercept (Lm) compared with the wild-type (WT) mice. Consistently, CXCR3 KO mice had significantly higher BAL fluid macrophages and neutrophils, TNFα, and lung homogenate MMP-9 and MMP-12. Through genetic analysis of CXCR3 polymorphisms in a cohort of COPD patients with Han Chinese ethnicity, one CXCR3 SNP, rs2280964, was found to be genetically related to COPD susceptibility. Furthermore, CXCR3 SNP rs2280964 was significantly associated with the levels of serum MMP-9 in COPD patients. Our data from both animal and human studies revealed a novel role of CXCR3 possibly via influencing MMP9 production in the pathogenesis and progression of CS-associated COPD/pulmonary emphysema.


Assuntos
Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/metabolismo , Receptores CXCR3/metabolismo , Adulto , Idoso , Animais , Estudos de Casos e Controles , China , Modelos Animais de Doenças , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Pulmão/imunologia , Pulmão/patologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Masculino , Metaloproteinase 12 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/genética , Enfisema Pulmonar/imunologia , Enfisema Pulmonar/patologia , Receptores CXCR3/genética , Fator de Necrose Tumoral alfa/metabolismo
13.
Am J Physiol Lung Cell Mol Physiol ; 318(6): L1172-L1182, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32130031

RESUMO

Pulmonary emphysema is a major manifestation of chronic obstructive pulmonary disease and is associated with chronic pulmonary inflammation caused by cigarette smoking, with contributions from immune cells such as neutrophils, macrophages, and lymphocytes. Although matrix metalloproteinases are well known to contribute to emphysema progression, the role of a disintegrin and metalloproteinase (ADAM) family proteins, other major metalloproteinases, in disease pathogenesis is largely unknown. ADAM17 is a major sheddase that cleaves various cell surface proteins, including CD62L, an adhesion molecule that plays a critical role in promoting the migration of immune cells to the site of inflammation. In the present study, we aimed to investigate the potential role of ADAM17 and CD62L in the development of elastase-induced emphysema. Control and Adam17flox/flox/Mx1-Cre (Adam17ΔMx1) mice (8-10 wk old) were intratracheally injected with 5 units of porcine pancreas elastase and monitored for 35 days after injection. Lung alveolar destruction was evaluated by analyzing the mean linear intercepts of lung tissue specimens and by histopathological examination. Mean linear intercepts data indicated that the degree of elastase-induced emphysema was significantly more severe in Adam17ΔMx1 mice. Furthermore, flow cytometry showed that CD62L+ neutrophil, CD62L+ macrophage, and CD62L+ B lymphocyte numbers were significantly increased in Adam17ΔMx1 mice. Moreover, the pharmacological depletion of CD62L+ cells with a CD62L-neutralizing antibody ameliorated the extent of emphysema in Adam17ΔMx1 mice. Collectively, these results suggest that ADAM17 possibly suppresses the progression of emphysema by proteolytically processing CD62L in immune cells and that ADAM17 and CD62L could be novel therapeutic targets for treating pulmonary emphysema.


Assuntos
Proteína ADAM17/metabolismo , Selectina L/metabolismo , Leucócitos/metabolismo , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/imunologia , Animais , Antioxidantes/metabolismo , Apoptose , Líquido da Lavagem Broncoalveolar , Contagem de Células , Quimiocinas/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Pulmão/patologia , Macrófagos/patologia , Metaloproteinase 12 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Testes de Neutralização , Oxidantes/metabolismo , Elastase Pancreática , Enfisema Pulmonar/genética , Enfisema Pulmonar/patologia
14.
PLoS One ; 15(1): e0228393, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32004356

RESUMO

Chronic exposure to ambient levels of air pollution induces respiratory illness exacerbation by increasing inflammatory responses and apoptotic cells in pulmonary tissues. The ineffective phagocytosis of these apoptotic cells (efferocytosis) by macrophages has been considered an important factor in these pathological mechanisms. Depending on microenvironmental stimuli, macrophages can assume different phenotypes with different functional actions. M1 macrophages are recognized by their proinflammatory activity, whereas M2 macrophages play pivotal roles in responding to microorganisms and in efferocytosis to avoid the progression of inflammatory conditions. To verify how exposure to air pollutants interferes with macrophage polarization in emphysema development, we evaluated the different macrophage phenotypes in a PPE- induced model with the exposure to diesel exhaust particles. C57BL/6 mice received intranasal instillation of porcine pancreatic elastase (PPE) to induce emphysema, and the control groups received saline. Both groups were exposed to diesel exhaust particles or filtered air for 60 days according to the groups. We observed that both the diesel and PPE groups had an increase in alveolar enlargement, collagen and elastic fibers in the parenchyma and the number of macrophages, lymphocytes and epithelial cells in BAL, and these responses were exacerbated in animals that received PPE instillation prior to exposure to diesel exhaust particles. The same response pattern was found inCaspase-3 positive cell analysis, attesting to an increase in cell apoptosis, which is in agreement with the increase in M2 phenotype markers, measured by RT-PCR and flow cytometry analysis. We did not verify differences among the groups for the M1 phenotype. In conclusion, our results showed that both chronic exposure to diesel exhaust particles and PPE instillation induced inflammatory conditions, cell apoptosis and emphysema development, as well as an increase in M2 phenotype macrophages, and the combination of these two factors exacerbated these responses. The predominance of the M2-like phenotype likely occurred due to the increased demand for efferocytosis. However, M2 macrophage activity was ineffective, resulting in emphysema development and worsening of symptoms.


Assuntos
Poluentes Atmosféricos/toxicidade , Macrófagos/metabolismo , Elastase Pancreática/efeitos adversos , Enfisema Pulmonar/imunologia , Emissões de Veículos/toxicidade , Administração Intranasal , Animais , Apoptose , Líquido da Lavagem Broncoalveolar/imunologia , Estudos de Casos e Controles , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Elastase Pancreática/administração & dosagem , Enfisema Pulmonar/induzido quimicamente
15.
Int J Chron Obstruct Pulmon Dis ; 14: 2697-2709, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31819402

RESUMO

Purpose: Elastin peptides (EP) can induce lung inflammation and emphysema. Erythromycin has been shown to decrease acute exacerbation frequency and delay lung function decline in chronic obstructive pulmonary disease patients and ameliorate emphysema in murine models; however, the mechanism remains unclear. We aimed to observe the preventive and immunomodulatory effects of erythromycin in a mouse model of EP-induced emphysema. Methods: In the in vivo study, Balb/c mice were treated with EP intranasally on day 0, and then administered erythromycin (100 mg/kg) or vehicle orally on day 1, which was continued every other day. Mice exposed to cigarette smoke were used as an emphysema positive control. The severity of emphysema and inflammation in the lungs of EP-exposed mice with or without erythromycin treatment were observed on day 40 after EP administration. In the in vitro study, naïve CD4+T cells were isolated from healthy mice spleens and stimulated by EP with or without erythromycin incubation. Flow cytometry was used to measure the proportions of Th1, Th17, and Treg cells. ELISA was used to detect cytokine levels of IFN-γ, IL-17, IL-6, and TGF-ß. Transcript levels of Ifnγ, IL17a, and Foxp3 were evaluated by qRT-PCR. Results: After exposure to EP, Th1 and Th17 cell percentages and the levels of inflammatory cytokines increased in vivo and in vitro, while Treg cells decreased in vivo. Erythromycin reduced IFN-γ, IL-17, IL-6 inflammatory cytokines, MLI, and the inflammation score in the lungs of EP-exposed mice. In vitro, erythromycin also limited Th17 and Th1 cell differentiation and downregulated transcript levels of Ifnγ and IL17a in the EP-stimulated CD4+T cells. Conclusion: The Th1 and Th17 cell responses were increased in EP-induced emphysema. Prophylactic use of erythromycin effectively ameliorated emphysema and modulated CD4+T cells responses in EP-induced lung inflammation in mice.


Assuntos
Anti-Inflamatórios/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Citocinas/metabolismo , Elastina , Eritromicina/farmacologia , Mediadores da Inflamação/metabolismo , Pulmão/efeitos dos fármacos , Fragmentos de Peptídeos , Pneumonia/tratamento farmacológico , Enfisema Pulmonar/tratamento farmacológico , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Citocinas/genética , Modelos Animais de Doenças , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Pneumonia/induzido quimicamente , Pneumonia/imunologia , Pneumonia/metabolismo , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/imunologia , Enfisema Pulmonar/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Células Th17/metabolismo
16.
Front Immunol ; 10: 2169, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608051

RESUMO

Ozone exposure causes irritation, airway hyperreactivity (AHR), inflammation of the airways, and destruction of alveoli (emphysema), the gas exchange area of the lung in human and mice. This review focuses on the acute disruption of the respiratory epithelial barrier in mice. A single high dose ozone exposure (1 ppm for 1 h) causes first a break of the bronchiolar epithelium within 2 h with leak of serum proteins in the broncho-alveolar space, disruption of epithelial tight junctions and cell death, which is followed at 6 h by ROS activation, AHR, myeloid cell recruitment, and remodeling. High ROS levels activate a novel PGAM5 phosphatase dependent cell-death pathway, called oxeiptosis. Bronchiolar cell wall damage and inflammation upon a single ozone exposure are reversible. However, chronic ozone exposure leads to progressive and irreversible loss of alveolar epithelial cells and alveoli with reduced gas exchange space known as emphysema. It is further associated with chronic inflammation and fibrosis of the lung, resembling other environmental pollutants and cigarette smoke in pathogenesis of asthma, and chronic obstructive pulmonary disease (COPD). Here, we review recent data on the mechanisms of ozone induced injury on the different cell types and pathways with a focus on the role of the IL-1 family cytokines and the related IL-33. The relation of chronic ozone exposure induced lung disease with asthma and COPD and the fact that ozone exacerbates asthma and COPD is emphasized.


Assuntos
Barreira Alveolocapilar/imunologia , Ozônio/toxicidade , Mucosa Respiratória/imunologia , Doença Aguda , Animais , Asma/induzido quimicamente , Asma/imunologia , Asma/patologia , Barreira Alveolocapilar/patologia , Fumar Cigarros/efeitos adversos , Fumar Cigarros/imunologia , Humanos , Camundongos , Fosfoproteínas Fosfatases/imunologia , Pneumonia/induzido quimicamente , Pneumonia/imunologia , Pneumonia/patologia , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/imunologia , Enfisema Pulmonar/patologia , Espécies Reativas de Oxigênio/imunologia , Mucosa Respiratória/patologia , Junções Íntimas/imunologia , Junções Íntimas/patologia
17.
BMC Pulm Med ; 19(1): 185, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31651292

RESUMO

BACKGROUND: Diffuse alveolar haemorrhage (DAH) is characterized by the diffuse accumulation of red blood cells within the alveoli, presence of ground glass opacities and/or consolidation on computed tomography (CT). Aside from identifiable non-immune causes, DAH is classically subdivided into idiopathic (idiopathic pulmonary haemosiderosis, IPH) and autoimmune DAH. Here we describe three cases presenting with recurrent pulmonary haemorrhage, initially classified as IPH, who, several years after first presentation, develop anti myeloperoxidase antibodies (MPO) positivity, emphysema on CT and, in one case, renal involvement. CASE PRESENTATION: Patient 1 was diagnosed with IPH aged 14. Her disease remained poorly controlled despite immunosuppression, although ANCA remained negative over the years. Nineteen years from initial presentation, she developed MPO-ANCA positive antibodies and mild renal impairment. She was treated with Rituximab with good response. From first presentation, the chest CT was consistently characterized by diffuse ground-glass opacities and interlobular septal thickening. Ten years later, cystic opacities consistent with emphysema, with a striking peribronchovascular distribution, developed. Patient 2 was diagnosed with IPH aged 32. He was treated with corticosteroids and methotrexate, with fluctuating response. At 11 years from initial presentation, MPO-ANCA positivity was identified, and emphysema with a peribronchovascular distribution was observed on CT, with subsequent significant increase in extent. Patient 3 was diagnosed with IPH at the age of seven, and had recurrent episodes of haemoptysis of varying degree of severity, treated with intermittent courses of corticosteroids until age 11, when he was intubated due to severe DAH. Eight years after the diagnosis emphysematous changes were noted on CT and MPO-ANCA positivity developed for the first time 11 years after initial diagnosis. CONCLUSIONS: We believe these three cases highlight: 1) the possibility of development of ANCA positivity several years down the line from first DAH presentation 2) the possibility that DAH may lead to cystic/emphysematous changes with peribronchovascular distribution on CT. Moreover, the need for ongoing immunosuppressive treatment and the development of emphysema, emphasize a possible role played by autoimmune phenomena, even when DAH is initially diagnosed as "idiopathic". Further studies are required to better understand the relationship between DAH, ANCA positivity and development of emphysema.


Assuntos
Anticorpos Anticitoplasma de Neutrófilos/sangue , Glucocorticoides/administração & dosagem , Hemoptise , Metotrexato/administração & dosagem , Peroxidase/imunologia , Enfisema Pulmonar , Rituximab/administração & dosagem , Adolescente , Adulto , Criança , Diagnóstico Diferencial , Feminino , Hemoptise/diagnóstico , Hemoptise/etiologia , Hemoptise/imunologia , Hemossiderose/diagnóstico , Humanos , Imunossupressores/administração & dosagem , Pulmão/diagnóstico por imagem , Pneumopatias/diagnóstico , Masculino , Administração dos Cuidados ao Paciente , Enfisema Pulmonar/complicações , Enfisema Pulmonar/diagnóstico , Enfisema Pulmonar/imunologia , Enfisema Pulmonar/fisiopatologia , Insuficiência Renal/diagnóstico , Insuficiência Renal/imunologia , Tomografia Computadorizada por Raios X/métodos , Hemossiderose Pulmonar
18.
Nutrients ; 11(9)2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31470503

RESUMO

Chronic obstructive pulmonary disease (COPD), a lung disease caused by chronic exposure to cigarette smoke, increases the number of inflammatory cells such as macrophages and neutrophils and emphysema. Isoflavone is a polyphenolic compound that exists in soybeans. Daidzein and genistein, two types of isoflavones, have been reported to have anti-inflammatory effects in various organs. We hypothesized that the daidzein-rich soy isoflavone aglycones (DRIAs) attenuate cigarette smoke-induced emphysema in mice. Mice were divided into four groups: the (i) control group, (ii) isoflavone group, (iii) smoking group, and (iv) isoflavone + smoking group. The number of inflammatory cells in the bronchoalveolar lavage fluid (BALF) and the airspace enlargement using the mean linear intercept (MLI) were determined 12 weeks after smoking exposure. Expressions of neutrophilic inflammatory cytokines and chemokines were also examined. In the isoflavone + smoking group, the number of neutrophils in BALF and MLI was significantly less than that in the smoking group. Furthermore, the gene-expressions of TNF-α and CXCL2 (MIP-2) in the isoflavone + smoking group were significantly less than those in the smoking group. Supplementation of the COPD murine model with DRIAs significantly attenuates pathological changes of COPD via suppression of neutrophilic inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Isoflavonas/farmacologia , Pulmão/efeitos dos fármacos , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Pneumonia/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Enfisema Pulmonar/tratamento farmacológico , Fumaça , Produtos do Tabaco , beta-Glucanas/farmacologia , Animais , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Neutrófilos/metabolismo , Pneumonia/etiologia , Pneumonia/imunologia , Pneumonia/metabolismo , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/imunologia , Enfisema Pulmonar/metabolismo , Transdução de Sinais
19.
BMC Pulm Med ; 19(1): 169, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481045

RESUMO

BACKGROUND: Emphysema and chronic obstructive pulmonary disease (COPD) are well known independent risk factors for lung cancer. However, the developmental mechanisms between emphysema/COPD and lung cancer remain unknown. The purpose of this study was to evaluate PD-L1, FGFR1, PIK3CA, PTEN, and p16 expression in squamous cell carcinoma (SCC) associated with emphysema/COPD. METHODS: A total of 59 patients with squamous cell lung carcinoma (SCC) resected between 2008 and 2012 were retrospectively reviewed. Emphysema was assessed according to the Goddard score. Total severity was divided into none-mild (0-7), moderate (8-15), and severe (≥ 16). Local severity around the existing tumor was divided into no emphysema (0) and presence of emphysema (1-4). COPD severity was based on the Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria. PD-L1, FGFR1, PIK3CA, PTEN, and p16 expression were evaluated by immunohistochemistry (IHC). Expression level was classified as tumor cells (TC) 3 (≥ 50%), TC2 (5-49%), TC1 (1-4%), or TC0 (< 1%), and as tumor-infiltrating immune cells (IC) 3 (≥ 50%), IC2 (5-49%), IC1 (1-4%), or IC0 (< 1%) for PD-L1. Expression level was compared between none-mild/moderate-severe total emphysema, no/presence of local emphysema, no COPD/COPD, and GOLD 1/GOLD 2, 3. RESULTS: PD-L1 expression was significantly correlated with severity of emphysema in TC0, 1, 2 vs. TC3 (P = 0.012). PD-L1 was significantly higher inversely in none-mild emphysema compared to moderate-severe (95% CI, 0.061-5.852, P = 0.045). There were no other significant associations between PD-L1, FGFR1, PIK3CA, PTEN, and p16 expression and total/local severity of emphysema or presence of COPD/GOLD stage. CONCLUSIONS: PD-L1 expression in SCC was correlated with severity of emphysema in TC0, 1, 2 vs. TC3 and more frequent in none-mild emphysema than moderate-severe emphysema.


Assuntos
Antígeno B7-H1/imunologia , Carcinoma de Células Escamosas/imunologia , Neoplasias Pulmonares/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Enfisema Pulmonar/imunologia , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/complicações , Classe I de Fosfatidilinositol 3-Quinases/imunologia , Inibidor p16 de Quinase Dependente de Ciclina/imunologia , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/complicações , Linfócitos do Interstício Tumoral/imunologia , Masculino , Pessoa de Meia-Idade , PTEN Fosfo-Hidrolase/imunologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Enfisema Pulmonar/diagnóstico , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/imunologia , Estudos Retrospectivos , Índice de Gravidade de Doença
20.
Inflamm Res ; 68(11): 957-968, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31468083

RESUMO

OBJECTIVE AND DESIGN: Chronic exposure to cigarette smoke promotes airway inflammation and emphysema accompanied by enhanced CD8+ interferon (IFN)-γ+ T(Tc1) and CD8+ interleukin (IL)-17+ T(Tc17) cell responses. The mammalian target of rapamycin (mTOR) has been involved in the pathogenesis of emphysema. Inhibiting mTOR by rapamycin has been reported to alleviate emphysema, but the mechanism is not fully understood. We aimed to explore the effect of rapamycin on Tc1 and Tc17 cell responses induced by cigarette smoke exposure. MATERIALS: Male C57BL/6 mice were exposed to cigarette smoke or room air for 24 weeks. Half of the smoke-exposed mice received rapamycin in the last 12 weeks. The severity of emphysema in those mice was evaluated by mean linear intercept (MLI), mean alveolar airspace area (MAA) and destructive index (DI). Bronchoalveolar lavage was collected and analyzed. Phosphorylated (p-) mTOR in CD8+ T cells, Tc1 and Tc17 cells were detected by flow cytometry. The relative expression of p-mTOR in lungs was determined by western blot analysis. IFN-γ and IL-17A levels were detected by enzyme-linked immunosorbent assays. IFN-γ, mTOR and RAR-related orphan receptor (ROR)γt mRNA levels were evaluated by the real-time polymerase chain reaction. RESULTS: Elevated p-mTOR expression in CD8+ T cells and lung tissue was accompanied by the enhanced Tc1 and Tc17 cell responses in lungs of mice exposed to cigarette smoke. Rapamycin reduced inflammatory cells in BALF and decreased MLI, DI and MAA in lungs. Rapamycin decreased p-mTOR expression, and down-regulation of mTOR and RORγt mRNA levels along with the attenuation of Tc1 and Tc17 cell responses in mice with emphysema. CONCLUSIONS: The mTOR was activated in CD8+ T cells accompanied by the enhanced Tc1 and Tc17 cell responses in cigarette smoke-related pulmonary inflammation. Rapamycin ameliorated emphysema and attenuated Tc1 and Tc17 cell responses probably caused by inhibiting mTOR in cigarette smoke-exposed mice.


Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Enfisema Pulmonar/imunologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Linfócitos T CD8-Positivos/imunologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Sirolimo/uso terapêutico , Fumaça , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/imunologia , Nicotiana , Produtos do Tabaco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...