Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 373
Filtrar
1.
PLoS One ; 19(5): e0303173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38739587

RESUMO

In this study, new series of N'-(2-(substitutedphenoxy)acetyl)-4-(1H-pyrrol-1-yl)benzohydrazides (3a-j) 4-(2,5-dimethyl-1H-pyrrol-1-yl)-N'-(2-(substitutedphenoxy)acetyl)benzohydrazides (5a-j) were synthesized, characterized and assessed as inhibitors of enoyl ACP reductase and DHFR. Most of the compounds exhibited dual inhibition against the enzymes enoyl ACP reductase and DHFR. Several synthesized substances also demonstrated significant antibacterial and antitubercular properties. A molecular docking analysis was conducted in order to determine the potential mechanism of action of the synthesized compounds. The results indicated that there were binding interactions seen with the active sites of dihydrofolate reductase and enoyl ACP reductase. Additionally, important structural details were identified that play a critical role in sustaining the dual inhibitory activity. These findings were useful for the development of future dual inhibitors. Therefore, this study provided strong evidence that several synthesized molecules could exert their antitubercular properties at the cellular level through multi-target inhibition. By shedding light on the mechanisms through which these compounds exert their inhibitory effects, this research opens up promising avenues for the future development of dual inhibitors with enhanced antibacterial and antitubercular properties. The study's findings underscore the importance of multi-target approaches in drug design, providing a strong foundation for the design and optimization of novel compounds that can effectively target bacterial infections at the cellular level.


Assuntos
Antituberculosos , Simulação de Acoplamento Molecular , Pirróis , Tetra-Hidrofolato Desidrogenase , Antituberculosos/farmacologia , Antituberculosos/química , Antituberculosos/síntese química , Tetra-Hidrofolato Desidrogenase/metabolismo , Tetra-Hidrofolato Desidrogenase/química , Pirróis/química , Pirróis/farmacologia , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/antagonistas & inibidores , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/química , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Testes de Sensibilidade Microbiana , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/síntese química , Humanos , Relação Estrutura-Atividade , Domínio Catalítico
2.
ACS Infect Dis ; 10(5): 1612-1623, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597503

RESUMO

Fusobacterium nucleatum, a pathobiont inhabiting the oral cavity, contributes to opportunistic diseases, such as periodontal diseases and gastrointestinal cancers, which involve microbiota imbalance. Broad-spectrum antimicrobial agents, while effective against F. nucleatum infections, can exacerbate dysbiosis. This necessitates the discovery of more targeted narrow-spectrum antimicrobial agents. We therefore investigated the potential for the fusobacterial enoyl-ACP reductase II (ENR II) isoenzyme FnFabK (C4N14_ 04250) as a narrow-spectrum drug target. ENRs catalyze the rate-limiting step in the bacterial fatty acid synthesis pathway. Bioinformatics revealed that of the four distinct bacterial ENR isoforms, F. nucleatum specifically encodes FnFabK. Genetic studies revealed that fabK was indispensable for F. nucleatum growth, as the gene could not be deleted, and silencing of its mRNA inhibited growth under the test conditions. Remarkably, exogenous fatty acids failed to rescue growth inhibition caused by the silencing of fabK. Screening of synthetic phenylimidazole analogues of a known FabK inhibitor identified an inhibitor (i.e., 681) of FnFabK enzymatic activity and F. nucleatum growth, with an IC50 of 2.1 µM (1.0 µg/mL) and a MIC of 0.4 µg/mL, respectively. Exogenous fatty acids did not attenuate the activity of 681 against F. nucleatum. Furthermore, FnFabK was confirmed as the intracellular target of 681 based on the overexpression of FnFabK shifting MICs and 681-resistant mutants having amino acid substitutions in FnFabK or mutations in other genetic loci affecting fatty acid biosynthesis. 681 had minimal activity against a range of commensal flora, and it was less active against streptococci in physiologic fatty acids. Taken together, FnFabK is an essential enzyme that is amenable to drug targeting for the discovery and development of narrow-spectrum antimicrobial agents.


Assuntos
Antibacterianos , Fusobacterium nucleatum , Fusobacterium nucleatum/enzimologia , Fusobacterium nucleatum/efeitos dos fármacos , Fusobacterium nucleatum/genética , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/genética , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/antagonistas & inibidores , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Ácidos Graxos/química , Infecções por Fusobacterium/microbiologia , Infecções por Fusobacterium/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
3.
Biochem Biophys Res Commun ; 705: 149740, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38458032

RESUMO

Clostridioides difficile, a gram-positive anaerobic bacterium, is one of the most frequent causes of nosocomial infections. C. difficile infection (CDI) results in almost a half a million infections and approximately 30,000 deaths in the U.S. each year. Broad-spectrum antibacterial use is a strong risk factor for development of recurring CDI. There is a critical need for narrow-spectrum antibacterials with activity limited to C. difficile. The C. difficile enoyl-acyl carrier protein (ACP) reductase II enzyme (CdFabK), an essential and rate-limiting enzyme in the organism's fatty acid biosynthesis pathway (FAS-2), is an attractive target for narrow-spectrum CDI therapeutics as it is not present in many of the non-pathogenic gut organisms. We have previously characterized inhibitors of the CdFabK enzyme with narrow-spectrum anti-difficile activity and favorable in vivo efficacy, ADME, and low dysbiosis. To expand our knowledge of the structural requirements for CdFabK inhibition, we seek to identify new inhibitors with novel chemical scaffolds. Herein we present the optimization of a thermo-FMN biophysical assay based on the principles of differential scanning fluorimetry, or thermal shift, which leverages the fluorescence signal of the FabK enzyme's FMN prosthetic group. The optimized assay was validated by pilot testing a 10K diversity-based chemical library and novel scaffold hit compounds were identified and biochemically characterized. Additionally, we show that the thermo-FMN assay can be used to determine the thermodynamic dissociation constant, Kd, of CdFabK inhibitors.


Assuntos
Clostridioides difficile , Enoil-(Proteína de Transporte de Acila) Redutase (NADH) , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/genética , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Clostridioides difficile/metabolismo , Composição de Bases , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Antibacterianos/farmacologia , Antibacterianos/química
4.
Bioorg Chem ; 143: 107103, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211549

RESUMO

Three undescribed (1-3) and nine known (4-12) platanosides were isolated and characterized from a bioactive extract of the May leaves of Platanus × acerifolia that initially showed inhibition against Staphylococcus aureus. Targeted compound mining was guided by an LC-MS/MS-based molecular ion networking (MoIN) strategy combined with conventional isolation procedures from a unique geographic location. The novel structures were mainly determined by 2D NMR and computational (NMR/ECD calculations) methods. Compound 1 is a rare acylated kaempferol rhamnoside possessing a truxinate unit. 6 (Z,E-platanoside) and 7 (E,E-platanoside) were confirmed to have remarkable inhibitory effects against both methicillin-resistant S. aureus (MIC: ≤ 16 µg/mL) and glycopeptide-resistant Enterococcus faecium (MIC: ≤ 1 µg/mL). These platanosides were subjected to docking analyses against FabI (enoyl-ACP reductase) and PBP1/2 (penicillin binding protein), both of which are pivotal enzymes governing bacterial growth but not found in the human host. The results showed that 6 and 7 displayed superior binding affinities towards FabI and PBP2. Moreover, surface plasmon resonance studies on the interaction of 1/7 and FabI revealed that 7 has a higher affinity (KD = 1.72 µM), which further supports the above in vitro data and is thus expected to be a novel anti-antibacterial drug lead.


Assuntos
Glicosídeos , Staphylococcus aureus Resistente à Meticilina , Fenóis , Sepse , Infecções Estafilocócicas , Humanos , Antibacterianos/química , Cromatografia Líquida , Enoil-(Proteína de Transporte de Acila) Redutase (NADH) , Testes de Sensibilidade Microbiana , Espectrometria de Massas em Tandem , Relação Estrutura-Atividade
5.
Protein J ; 43(1): 84-95, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38127182

RESUMO

Klebsiella pneumoniae, a bacterial pathogen infamous for antibiotic resistance, is included in the priority list of pathogens by various public health organizations due to its extraordinary ability to develop multidrug resistance. Bacterial fatty acid biosynthesis pathway-II (FAS-II) has been considered a therapeutic drug target for antibacterial drug discovery. Inhibition of FAS-II enzyme, enoyl-acyl carrier protein reductase, FabI, not only inhibits bacterial infections but also reverses antibiotic resistance. Here, we characterized Klebsiella pneumoniae FabI (KpFabI) using complementary experimental approaches including, biochemical, x-ray crystallography, and molecular dynamics simulation studies. Biophysical studies shows that KpFabI organizes as a tetramer molecular assembly in solution as well as in the crystal structure. Enzyme kinetics studies reveal a distinct catalytic property towards crotonyl CoA and reducing cofactor NADH. Michaelis-Menten constant (Km) values of substrates show that KpFabI has higher preference towards NADH as compared to crotonyl CoA. The crystal structure of tetrameric apo KpFabI folds into a classic Rossman fold in which ß-strands are sandwiched between α-helices. A highly flexible substrate binding region is located toward the interior of the tetrameric assembly. Thermal stability assay on KpFabI with its substrate shows that the flexibility is primarily stabilized by cofactor NADH. Moreover, the molecular dynamics further supports that KpFabI has highly flexible regions at the substrate binding site. Together, these findings provide evidence for highly dynamic substrate binding sites in KpFabI, therefore, this information will be vital for specific inhibitors discovery targeting Klebsiella pneumoniae.


Assuntos
Enoil-(Proteína de Transporte de Acila) Redutase (NADH) , Klebsiella pneumoniae , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/química , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , NAD/metabolismo , Sítios de Ligação , Antibacterianos
6.
Bioorg Med Chem ; 88-89: 117330, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37224699

RESUMO

Previously, 1-((4-(4-bromophenyl)-1H-imidazol-2-yl)methyl)-3-(5-(pyridin-2-ylthio)thiazol-2-yl)urea bearing a p-bromine substitution was shown to possess selective inhibitory activity against the Clostridioides difficile enoyl-acyl carrier protein (ACP) reductase II enzyme, FabK. Inhibition of CdFabK by this compound translated to promising antibacterial activity in the low micromolar range. In these studies, we sought to expand our knowledge of the SAR of the phenylimidazole CdFabK inhibitor series while improving the potency of the compounds. Three main series of compounds were synthesized and evaluated based on: 1) pyridine head group modifications including the replacement with a benzothiazole moiety, 2) linker explorations, and 3) phenylimidazole tail group modifications. Overall, improvement in the CdFabK inhibition was achieved, while maintaining the whole cell antibacterial activity. Specifically, compounds 1-((4-(4-bromophenyl)-1H-imidazol-2-yl)methyl)-3-(5-((3-(trifluoromethyl)pyridin-2-yl)thio)thiazol-2-yl)urea, 1-((4-(4-bromophenyl)-1H-imidazol-2-yl)methyl)-3-(6-(trifluoromethyl)benzo[d]thiazol-2-yl)urea, and 1-((4-(4-bromophenyl)-1H-imidazol-2-yl)methyl)-3-(6-chlorobenzo[d]thiazol-2-yl)urea showed CdFabK inhibition (IC50 = 0.10 to 0.24 µM), a 5 to 10-fold improvement in biochemical activity relative to 1-((4-(4-bromophenyl)-1H-imidazol-2-yl)methyl)-3-(5-(pyridin-2-ylthio)thiazol-2-yl)urea, with anti-C. difficile activity ranging from 1.56 to 6.25 µg/mL. Detailed analysis of the expanded SAR, supported by computational analysis, is presented.


Assuntos
Enoil-(Proteína de Transporte de Acila) Redutase (NADH) , Ureia , Ureia/farmacologia , Antibacterianos/química , Relação Estrutura-Atividade
7.
Molecules ; 28(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37049763

RESUMO

The need for new antibiotics has become a major worldwide challenge as bacterial strains keep developing resistance to the existing drugs at an alarming rate. Enoyl-acyl carrier protein reductases (FabI) play a crucial role in lipids and fatty acid biosynthesis, which are essential for the integrity of the bacterial cell membrane. Our study aimed to discover small FabI inhibitors in continuation to our previously found hit MN02. The process was initially started by conducting a similarity search to the NCI ligand database using MN02 as a query. Accordingly, ten compounds were chosen for the computational assessment and antimicrobial testing. Most of the compounds showed an antibacterial activity against Gram-positive strains, while RK10 exhibited broad-spectrum activity against both Gram-positive and Gram-negative bacteria. All tested compounds were then docked into the saFabI active site followed by 100 ns MD simulations (Molecular Dynamics) and MM-GBSA (Molecular Mechanics with Generalised Born and Surface Area Solvation) calculations in order to understand their fitting and estimate their binding energies. Interestingly, and in line with the experimental data, RK10 was able to exhibit the best fitting with the target catalytic pocket. To sum up, RK10 is a small compound with leadlike characteristics that can indeed act as a promising candidate for the future development of broad-spectrum antibacterial agents.


Assuntos
Antibacterianos , Enoil-(Proteína de Transporte de Acila) Redutase (NADH) , Antibacterianos/farmacologia , Antibacterianos/química , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Bactérias Gram-Negativas/metabolismo , Inibidores Enzimáticos/farmacologia , Bactérias Gram-Positivas/metabolismo , Bactérias/metabolismo , Simulação de Dinâmica Molecular
8.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37108083

RESUMO

Cost-effective therapy of neglected and tropical diseases such as malaria requires everlasting drug discovery efforts due to the rapidly emerging drug resistance of the plasmodium parasite. We have carried out computational design of new inhibitors of the enoyl-acyl carrier protein reductase (ENR) of Plasmodium falciparum (PfENR) using computer-aided combinatorial and pharmacophore-based molecular design. The Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) complexation QSAR model was developed for triclosan-based inhibitors (TCL) and a significant correlation was established between the calculated relative Gibbs free energies of complex formation (∆∆Gcom) between PfENR and TCL and the observed inhibitory potencies of the enzyme (IC50exp) for a training set of 20 known TCL analogues. Validation of the predictive power of the MM-PBSA QSAR model was carried out with the generation of 3D QSAR pharmacophore (PH4). We obtained a reasonable correlation between the relative Gibbs free energy of complex formation ∆∆Gcom and IC50exp values, which explained approximately 95% of the PfENR inhibition data: pIC50exp=-0.0544×∆∆Gcom+6.9336,R2=0.95. A similar agreement was established for the PH4 pharmacophore model of the PfENR inhibition (pIC50exp=0.9754×pIC50pre+0.1596, R2=0.98). Analysis of enzyme-inhibitor binding site interactions suggested suitable building blocks to be used in a virtual combinatorial library of 33,480 TCL analogues. Structural information derived from the complexation model and the PH4 pharmacophore guided us through in silico screening of the virtual combinatorial library of TCL analogues to finally identify potential new TCL inhibitors effective at low nanomolar concentrations. Virtual screening of the library by PfENR-PH4 led to a predicted IC50pre value for the best inhibitor candidate as low as 1.9 nM. Finally, the stability of PfENR-TCLx complexes and the flexibility of the active conformation of the inhibitor for selected top-ranking TCL analogues were checked with the help of molecular dynamics. This computational study resulted in a set of proposed new potent inhibitors with predicted antimalarial effects and favourable pharmacokinetic profiles that act on a novel pharmacological target, PfENR.


Assuntos
Antimaláricos , Triclosan , Triclosan/farmacologia , Triclosan/química , Plasmodium falciparum , Proteína de Transporte de Acila , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/química , Farmacóforo , Simulação de Dinâmica Molecular , Antimaláricos/farmacologia , Antimaláricos/química , Relação Quantitativa Estrutura-Atividade , Simulação de Acoplamento Molecular
9.
Nat Commun ; 14(1): 619, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739436

RESUMO

Mitochondrial fatty acid synthesis (mtFAS) is essential for respiratory function. MtFAS generates the octanoic acid precursor for lipoic acid synthesis, but the role of longer fatty acid products has remained unclear. The structurally well-characterized component of mtFAS, human 2E-enoyl-ACP reductase (MECR) rescues respiratory growth and lipoylation defects of a Saccharomyces cerevisiae Δetr1 strain lacking native mtFAS enoyl reductase. To address the role of longer products of mtFAS, we employed in silico molecular simulations to design a MECR variant with a shortened substrate binding cavity. Our in vitro and in vivo analyses indicate that the MECR G165Q variant allows synthesis of octanoyl groups but not long chain fatty acids, confirming the validity of our computational approach to engineer substrate length specificity. Furthermore, our data imply that restoring lipoylation in mtFAS deficient yeast strains is not sufficient to support respiration and that long chain acyl-ACPs generated by mtFAS are required for mitochondrial function.


Assuntos
Mitocôndrias , Oxirredutases , Humanos , Ácidos Graxos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxirredutases/metabolismo , Respiração , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)
10.
J Biomol Struct Dyn ; 41(5): 2002-2015, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35043754

RESUMO

Plasmodium falciparum is counted as one of the deadly species causing malaria. In that respect, enoyl acyl carrier protein reductase is recognized as one of the attractive druggable targets for the identification of antimalarials. Thus, from the structural proteome of ENR, common feature pharmacophores were constructed. To identify the representative models, all the hypotheses were subjected to validation methods, like, test set, enrichment factor, and Güner-Henry method, and the selected representative hypotheses were used to screen out the drug-like natural products. Further, the screened candidates were advanced to molecular docking calculations. Based on the docking score criteria and presence of essential interaction with Tyr277, seven candidates were shortlisted to conduct the HYDE and QSAR assessment. Further, the stability of these complexes was evaluated by employing molecular dynamics simulations, molecular mechanics-generalized born surface area approach-based free binding energy calculations with the residue-wise contribution of PfENR to the total binding free energy of the complex. On comparing the root mean square deviation, and fluctuation plots of the docked candidates with the reference, all the candidates displayed stable behavior, and the same outcome was depicted from the secondary structure element. However, from the free energy calculations, and residue-wise contribution conducted after dynamics, it was observed that out of seven, only five candidates sustain the binding with Tyr277 and cofactor of PfENR. Therefore, in the current work, the hybrid study of screening and stability lead to the identification of five structurally diverse candidates that can be employed for the design of novel antimalarials.Communicated by Ramaswamy H. Sarma.


Assuntos
Antimaláricos , Produtos Biológicos , Malária , Humanos , Simulação de Acoplamento Molecular , Antimaláricos/farmacologia , Antimaláricos/química , Farmacóforo , Enoil-(Proteína de Transporte de Acila) Redutase (NADH) , Simulação de Dinâmica Molecular , Plasmodium falciparum/metabolismo
11.
J Chem Inf Model ; 62(22): 5746-5761, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36343333

RESUMO

The enzyme enoyl-ACP reductase (FabI) is the limiting step of the membrane's fatty acid biosynthesis in bacteria and a druggable target for novel antibacterial agents. The FabI active form is a homotetramer, which displays the highest affinity to inhibitors. Herein, molecular dynamics studies were carried out using the structure of FabI in complex with known inhibitors to investigate their effects on tetramerization. Our results suggest that multimerization is essential for the integrity of the catalytic site and that inhibitor binding enables the multimerization by stabilizing the substrate binding loop (SBL, L:195-200) coupled with changes in the H4/5 (QR interface). We also observed that AFN-1252 (naphtpyridinone derivative) promotes unique conformational changes affecting monomer-monomer interfaces. These changes are induced by AFN-1252 interaction with key residues in the binding sites (Ala95, Tyr146, and Tyr156). In addition, the analysis of water trajectories indicated that AFN-1252 complexes allow more water molecules to enter the binding site than triclosan and MUT056399 complexes. FabI-AFN-1252 simulations show accumulation of water molecules near the Tyr146/147 pocket, which can become a hotspot to the design of novel FabI inhibitors.


Assuntos
Aquaporinas , Triclosan , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/química , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Água/metabolismo , Inibidores Enzimáticos/farmacologia
12.
Mol Microbiol ; 118(5): 541-551, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36100979

RESUMO

The Enterococcus faecalis genome contains two enoyl-ACP reductases genes, fabK and fabI, which encode proteins having very different structures. Enoyl-ACP reductase catalyzes the last step of the elongation cycle of type II fatty acid synthesis pathway. The fabK gene is located within the large fatty acid synthesis operon whereas fabI is located together with two genes fabN and fabO required for unsaturated fatty acid synthesis. Prior work showed that FabK is weakly expressed due to poor translational initiation and hence virtually all the cellular enoyl ACP reductase activity is that encoded by fabI. Since FabK is a fully functional enzyme, the question is why FabI is an essential enzyme. Why not increase FabK activity? We report that overproduction of FabK is lethal whereas FabI overproduction only slows the growth and is not lethal. In both cases, normal growth is restored by the addition of oleic acid, an unsaturated fatty acid, to the medium indicating that enoyl ACP reductase overproduction disrupts unsaturated fatty acid synthesis. We report that this is due to competition with FabO, a putative 3-ketoacyl-ACP synthase I via FabN, a dehydratase/isomerase providing evidence that the enoyl-ACP reductase must be matched to the unsaturated fatty acid synthetic genes. FabO has been ascribed the same activity as E. coli FabB and we report in vitro evidence that this is the case, whereas FabN is a dehydratase/isomerase, having the activity of E. coli FabA. However, FabN is much larger than FabA, it is a hexamer rather than a dimer like FabA.


Assuntos
Enoil-(Proteína de Transporte de Acila) Redutase (NADH) , Enterococcus faecalis , Enterococcus faecalis/metabolismo , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/genética , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Escherichia coli/metabolismo , Ácidos Graxos Insaturados , Hidroliases/genética
13.
Environ Sci Technol ; 56(21): 14923-14936, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35594374

RESUMO

Sewage treatment plants (STPs) accumulate both antibiotic and nonantibiotic antimicrobial compounds that can select for antibiotic resistant bacteria. Herein, we aimed to identify the predominant antibacterial compounds impacting E. coli from Ontario sewage sludge consisting of thousands of unknown compounds. Among the 10 extracted sludge samples, 6 extracts exerted significant growth inhibition effects in E. coli. A total of 103 compounds were tentatively detected across the 10 sludge samples by suspect screening, among which the bacterial enoyl-ACP reductase (FabI) inhibitor triclocarban was detected at the highest abundance. A hypomorphic FabI knockdown E. coli strain was highly susceptible to the sludge extracts, confirming FabI inhibitors as the primary antibacterial compounds in the sludge. Protein affinity pulldown identified triclosan as the major ligand binding to a His-tagged FabI protein from the sludge, despite the higher abundance of triclocarban in the same samples. Effect-directed analysis was used to determine the contributions of triclosan to the observed antibacterial potencies. Antibacterial effects were only detected in F17 and F18 across 20 fractions, which was consistent with the elution of triclosan and triclocarban in the same two fractions. Further, potency mass balance analysis confirmed that triclosan explained the majority (58-113%) of inhibition effects from sludge extracts. This study highlighted triclosan as the predominant antibacterial compound in sewage sludge impacting E. coli despite the co-occurrence of numerous other antibiotics and nonantibiotics.


Assuntos
Triclosan , Triclosan/farmacologia , Triclosan/química , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/química , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Esgotos , Antibacterianos/farmacologia , Escherichia coli , Ontário , Bactérias/metabolismo
14.
Biochimie ; 198: 8-22, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35276316

RESUMO

The enoyl-acyl carrier protein reductase (ENR) is an established drug target and catalyzes the last reduction step of the fatty acid elongation cycle. Here, we report the crystal structures of FabI from Moraxella catarrhalis (McFabI) in the apo form, binary complex with NAD+ and ternary complex with NAD + -triclosan (TCL) determined at 2.36, 2.12 and 2.22 Å resolutions, respectively. The comparative study of these three structures revealed three different conformational states for the substrate-binding loop (SBL), including an unstructured intermediate, a structured intermediate and a closed conformation in the apo, binary and ternary complex forms, respectively; indicating the flexibility of SBL during the ligand binding. Virtual screening has suggested that estradiol cypionate may be a potential inhibitor of McFabI. Subsequently, estradiol (EST), the natural form of estradiol cypionate, was assessed for its FabI-binding and -inhibition properties. In vitro studies demonstrated that TCL and EST bind to McFabI with high affinity (KD = 0.038 ± 0.004 and 5 ± 0.06 µM respectively) and inhibit its activity (Ki = 62.93 ± 3.95 nM and 25.97 ± 1.93 µM respectively) and suppress the growth of M. catarrhalis. These findings reveal that TCL and EST inhibit the McFabI activity and thereby affect cell growth. This study suggests that estradiol may be exploited as a novel scaffold for the designing and development of more potential FabI inhibitors.


Assuntos
Enoil-(Proteína de Transporte de Acila) Redutase (NADH) , Triclosan , Proteína de Transporte de Acila , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Estradiol , Moraxella catarrhalis , Triclosan/farmacologia
15.
Microb Pathog ; 163: 105391, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34999247

RESUMO

OBJECTIVES: The aim of this study was to explore the antibiofilm and antivirulence efficacy of benzylaniline 4k against MRSA. METHODS: The clinical MRSA strains were identified and used to evaluate their potential to form biofilm using crystal violet assay. The minimal inhibitory concentration (MIC) was determined using broth microdilution method. The expression of genes was detected using quantitative real-time PCR (qRT-PCR). Rabbit blood hemolytic assay was used to observe the inhibitory ability of alpha-hemolysin (Hla). RESULTS: Compound 4k showed potent antibacterial activity against 16 clinical MRSA with an MIC50 of 1.25 mg/L and MIC90 of 2.25 mg/L. The value of minimum biofilm eradication concentration (MBEC) against MRSA2858 biofilm was of 1.5 mg/L, close to its MIC, superior to those of vancomycin and erythromycin. Compound 4k eradicated the formation of biofilm through inhibiting the gene expression of branched-chain fatty acid synthesis, down-regulating the expression of quorum-sensing (QS) regulatory genes (norA, agrA, icaA, hla), decreasing the level of hemolysis in a dose-dependent manner, and inhibiting rabbit blood hemolysis by 86.9% at a concentration of 1.25 mg/L. In a mouse model of abdominal infection, compound 4k was more effective than vancomycin in reducing bacterial load. CONCLUSIONS: These results suggested that compound 4k could be developed as promising an anti-MRSA agent through affecting quorum-sensing system.


Assuntos
Compostos de Anilina , Staphylococcus aureus Resistente à Meticilina , Animais , Antibacterianos/farmacologia , Biofilmes , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/antagonistas & inibidores , Ácido Graxo Sintase Tipo II/antagonistas & inibidores , Genes Reguladores , Staphylococcus aureus Resistente à Meticilina/genética , Camundongos , Testes de Sensibilidade Microbiana , Percepção de Quorum , Coelhos
16.
J Biomol Struct Dyn ; 40(14): 6295-6307, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33554762

RESUMO

Malaria is a disease caused by Plasmodium genus. which P. falciparum is responsible for the most severe form of the disease, cerebral malaria. In 2018, 405,000 people died of malaria. Antimalarial drugs have serious adverse effects and limited efficacy due to multidrug-resistant strains. One way to overcome these limitations is the use of computational approaches for prioritizing candidates to phenotypic assays and/or in vitro assays against validated targets. Plasmodium falciparum Enoyl-ACP reductase (PfENR) is noteworthy because it catalyzes the rate-limiting step of the biosynthetic pathway of fatty acid. Thus, the study aimed to identify potential PfENR inhibitors by ligand (2D molecular similarity and pharmacophore models) and structure-based virtual screening (molecular docking). 2D similarity-based virtual screening using Tanimoto Index (> 0.45) selected 29,236 molecules from natural products subset available in ZINC database (n = 181,603). Next, 10 pharmacophore models for PfENR inhibitors were generated and evaluated based on the internal statistical parameters from GALAHAD™ and ROC/AUC curve. These parameters selected a suitable pharmacophore model with one hydrophobic center and two hydrogen bond acceptors. The alignment of the filtered molecules on best pharmacophore model resulted in the selection of 10,977 molecules. These molecules were directed to the docking-based virtual screening by AutoDock Vina 1.1.2 program. These strategies selected one compound to phenotypic assays against parasite. ZINC630259 showed EC50 = 0.12 ± 0.018 µM in antiplasmodial assays and selective index similar to other antimalarial drugs. Finally, MM/PBSA method showed stability of molecule within PfENR binding site (ΔGbinding=-57.337 kJ/mol).Communicated by Ramaswamy H. Sarma.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Antimaláricos/química , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/química , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Inibidores Enzimáticos/química , Humanos , Malária/tratamento farmacológico , Simulação de Acoplamento Molecular , Plasmodium falciparum
17.
J Biomol Struct Dyn ; 40(9): 4021-4037, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33251968

RESUMO

Multiple antibiotic-resistant strains of Klebsiella pneumoniae can cause life-threatening infections. Bacterial enoyl-acyl carrier protein (ACP) reductases (ENRs) are considered critical targets for developing antibiotics. Our current study aims to identify inhibitors of K. pneumoniae ENRs (FabI and FabV). Due to the unavailability of experimental structures, protein models of FabI and FabV were predicted and validated in this study. Virtual screening of the 1930 FDA-approved drug database was conducted against the active site of the FabI protein with the help of the LEA3D server, and carfilzomib was chosen among the screened drugs for further docking studies. Carfilzomib, a proteasome inhibitor used in the treatment of multiple myeloma, was among the best-suited compounds obtained from the virtual screening and was found to be bactericidal in the in vitro experiment. Carfilzomib was docked against the active sites of the FabI and FabV proteins, and the ENR of Mycobacterium tuberculosis, InhA. Carfilzomib showed a high binding affinity with all three proteins. Molecular dynamics (MD) simulations were conducted following the docking studies. MD simulations revealed that carfilzomib binds strongly to the active sites of the above mentioned ENRs. Our study found that carfilzomib is a potential inhibitor of the ENRs of K. pneumoniae and M. tuberculosis. This is a possible mechanism of its bactericidal property against M. tuberculosis observed in vitro in addition to its predicted actions on zinc-dependent metalloprotease-1 and peptide deformylase, two other drug target enzymes of M. tuberculosis. Our study suggests that this drug could be used as a lead compound to develop antibiotics that can selectively act against ENRs of bacteria, without interfering with the activities of human proteasome. Communicated by Ramaswamy H. Sarma.


Assuntos
Antibacterianos , Enoil-(Proteína de Transporte de Acila) Redutase (NADH) , Mycobacterium tuberculosis , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/antagonistas & inibidores , Klebsiella pneumoniae , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/metabolismo , NAD/metabolismo , Oligopeptídeos
18.
Protein Sci ; 31(3): 568-579, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34882866

RESUMO

The enzyme enoyl-ACP reductase (also called FabI in bacteria) is an essential member of the fatty acid synthase II pathway in plants and bacteria. This enzyme is the target of the antibacterial drug triclosan and has been the subject of extensive studies for the past 20 years. Despite the large number of reports describing the biochemistry of this enzyme, there have been no studies that provided direct observation of the protein and its various ligands. Here we describe the use of native MS to characterize the protein-ligand interactions of FabI with its coenzymes NAD+ and NADH and with the inhibitor triclosan. Measurements of the gas-phase affinities of the enzyme for these ligands yielded values that are in close agreement with solution-phase affinity measurements. Additionally, FabI is a homotetramer and we were able to measure the affinity of each subunit for each coenzyme, which revealed that both coenzymes exhibit a positive homotropic allosteric effect. An allosteric effect was also observed in association with the inhibitor triclosan. These observations provide new insights into this well-studied enzyme and suggest that there may still be gaps in the existing mechanistic models that explain FabI inhibition.


Assuntos
Triclosan , Coenzimas , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/química , Ácido Graxo Sintase Tipo II , Ligantes , Triclosan/química , Triclosan/metabolismo , Triclosan/farmacologia
19.
Antimicrob Agents Chemother ; 65(9): e0262220, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34152809

RESUMO

To combat the looming crisis of antimicrobial-resistant infections, there is an urgent need for novel antimicrobial discovery and drug target identification. The benzoxaborole series was previously identified as an inhibitor of mycobacterial growth. Here, we demonstrate that a benzoxaborole is also active against the Gram-negative bacterium Escherichia coli in vitro. We isolated resistant mutants of E. coli and subjected them to whole-genome sequencing. We found mutations in the enoyl acyl carrier protein FabI. Mutations mapped around the active center site located close to the cofactor binding site. This site partially overlaps with the binding pocket of triclosan, a known FabI inhibitor. Similar to triclosan, the physical interaction of the benzoxaborole with FabI was dependent on the cofactor NAD+. Identification of the putative target of this compound in E. coli provides scope for further development and optimization of this series for Gram-negative pathogens.


Assuntos
Enoil-(Proteína de Transporte de Acila) Redutase (NADH) , Triclosan , Antibacterianos/farmacologia , Sítios de Ligação , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
20.
Nucleic Acids Res ; 49(W1): W359-W365, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33963854

RESUMO

Protein complexes are involved in many important processes in living cells. To understand the mechanisms of these processes, it is necessary to solve the 3D structures of the protein complexes. When protein complex structures have not yet been determined by experiment, protein-protein docking tools can be used to computationally model the structures of these complexes. Here, we present a webserver which provides access to LZerD and Multi-LZerD protein docking tools. The protocol provided by the server have performed consistently among the top in the CAPRI blind evaluation. LZerD docks pairs of structures, while Multi-LZerD can dock three or more structures simultaneously. LZerD uses a soft protein surface representation with 3D Zernike descriptors and explores the binding pose space using geometric hashing. Multi-LZerD performs multi-chain docking by combining pairwise solutions by LZerD. Both methods output full-atom docked models of the input proteins. Users can also input distance constraints between interacting or non-interacting residues as well as residues that locate at the interface or far from the interface. The webserver is equipped with a user-friendly panel that visualizes the distribution and structures of binding poses of top scoring models. The LZerD webserver is available at https://lzerd.kiharalab.org.


Assuntos
Simulação de Acoplamento Molecular/métodos , Complexos Multiproteicos/química , Software , Antígenos CD/química , Proteínas de Bactérias/química , Moléculas de Adesão Celular/química , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/química , Humanos , Internet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...