Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 4): 862-72, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25849397

RESUMO

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis. Access to iron in host macrophages depends on iron-chelating siderophores called mycobactins and is strongly correlated with Mtb virulence. Here, the crystal structure of an Mtb enzyme involved in mycobactin biosynthesis, MbtN, in complex with its FAD cofactor is presented at 2.30 Šresolution. The polypeptide fold of MbtN conforms to that of the acyl-CoA dehydrogenase (ACAD) family, consistent with its predicted role of introducing a double bond into the acyl chain of mycobactin. Structural comparisons and the presence of an acyl carrier protein, MbtL, in the same gene locus suggest that MbtN acts on an acyl-(acyl carrier protein) rather than an acyl-CoA. A notable feature of the crystal structure is the tubular density projecting from N(5) of FAD. This was interpreted as a covalently bound polyethylene glycol (PEG) fragment and resides in a hydrophobic pocket where the substrate acyl group is likely to bind. The pocket could accommodate an acyl chain of 14-21 C atoms, consistent with the expected length of the mycobactin acyl chain. Supporting this, steady-state kinetics show that MbtN has ACAD activity, preferring acyl chains of at least 16 C atoms. The acyl-binding pocket adopts a different orientation (relative to the FAD) to other structurally characterized ACADs. This difference may be correlated with the apparent ability of MbtN to catalyse the formation of an unusual cis double bond in the mycobactin acyl chain.


Assuntos
Enoil-(Proteína de Transporte de Acila) Redutase (NADPH, B-Específica)/química , Mycobacterium tuberculosis/enzimologia , Tuberculose/microbiologia , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/metabolismo , Oxazóis/metabolismo , Conformação Proteica , Alinhamento de Sequência
2.
J Microbiol Biotechnol ; 25(4): 511-20, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25370725

RESUMO

Triclosan, the widely used biocide, specifically targets enoyl-acyl carrier protein reductase (ENR) in the bacterial fatty acid synthesis system. Although the fish pathogen Aeromonas salmonicida subsp. salmonicida exhibits triclosan resistance, the nature of this resistance has not been elucidated. Here, we aimed to characterize the triclosan resistance of A. salmonicida subsp. salmonicida causing furunculosis. The fosmid library of triclosan-resistant A. salmonicida subsp. salmonicida was constructed to select a fosmid clone showing triclosan resistance. With the fosmid clone showing triclosan resistance, a subsequent secondary library search resulted in the selection of subclone pTSR-1. DNA sequence analysis of pTSR-1 revealed the presence of a chromosomal-borne fabV-encoding ENR homolog. The ENR of A. salmonicida (FabVas) exhibited significant homology with previously known FabV, including the catalytic domain YX(8)K. fabVas introduction into E. coli dramatically increased its resistance to triclosan. Heterologous expression of FabVas might functionally replace the triclosan-sensitive FabI in vivo to confer E. coli with triclosan resistance. A genome-wide search for fabVas homologs revealed the presence of an additional fabV gene (fabVas2) paralog in A. salmonicida strains and the fabVas orthologs from other gram-negative fish pathogens. Both of the potential FabV ENRs expressed similarly with or without triclosan supplement. This is the first report about the presence of two potential FabV ENRs in a single pathogenic bacterium. Our result suggests that triclosan-resistant ENRs are widely distributed in various bacteria in nature, and the wide use of this biocide can spread these triclosan-tolerant ENRs among fish pathogens and other pathogenic bacteria.


Assuntos
Aeromonas salmonicida/efeitos dos fármacos , Aeromonas salmonicida/enzimologia , Anti-Infecciosos Locais/farmacologia , Farmacorresistência Bacteriana , Enoil-(Proteína de Transporte de Acila) Redutase (NADPH, B-Específica)/metabolismo , Triclosan/farmacologia , Aeromonas salmonicida/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Farmacorresistência Bacteriana/genética , Enoil-(Proteína de Transporte de Acila) Redutase (NADPH, B-Específica)/química , Enoil-(Proteína de Transporte de Acila) Redutase (NADPH, B-Específica)/genética , Peixes/microbiologia , Regulação Bacteriana da Expressão Gênica , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Plasmídeos/genética , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Transcrição Gênica
3.
Biochemistry ; 52(24): 4217-28, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23697754

RESUMO

Drug-target kinetics has recently emerged as an especially important facet of the drug discovery process. In particular, prolonged drug-target residence times may confer enhanced efficacy and selectivity in the open in vivo system. However, the lack of accurate kinetic and structural data for a series of congeneric compounds hinders the rational design of inhibitors with decreased off-rates. Therefore, we chose the Staphylococcus aureus enoyl-ACP reductase (saFabI)--an important target for the development of new anti-staphylococcal drugs--as a model system to rationalize and optimize the drug-target residence time on a structural basis. Using our new, efficient, and widely applicable mechanistically informed kinetic approach, we obtained a full characterization of saFabI inhibition by a series of 20 diphenyl ethers complemented by a collection of 9 saFabI-inhibitor crystal structures. We identified a strong correlation between the affinities of the investigated saFabI diphenyl ether inhibitors and their corresponding residence times, which can be rationalized on a structural basis. Because of its favorable interactions with the enzyme, the residence time of our most potent compound exceeds 10 h. In addition, we found that affinity and residence time in this system can be significantly enhanced by modifications predictable by a careful consideration of catalysis. Our study provides a blueprint for investigating and prolonging drug-target kinetics and may aid in the rational design of long-residence-time inhibitors targeting the essential saFabI enzyme.


Assuntos
Enoil-(Proteína de Transporte de Acila) Redutase (NADPH, B-Específica)/química , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/química , Inibidores Enzimáticos/farmacologia , Proteínas de Escherichia coli/química , Ácido Graxo Sintase Tipo II/química , Staphylococcus aureus/enzimologia , Catálise , Química Farmacêutica , Cristalografia por Raios X , Desenho de Fármacos , Escherichia coli/metabolismo , Ácidos Graxos/química , Ligação de Hidrogênio , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Termodinâmica , Fatores de Tempo
4.
Biochem Biophys Res Commun ; 400(4): 517-22, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20800575

RESUMO

Enoyl-[acyl carrier protein] reductase (ENR) is an essential enzyme in type II fatty-acid synthesis that catalyzes the last step in each elongation cycle. Thus far FabI, FabL and FabK have been reported to carry out the reaction, with FabI being the most characterized. Some bacteria have more than one ENR, and Bacillus cereus has two (FabI and FabL) reported. Here, we have determined the crystal structures of the later in the apo form and in the ternary complex with NADP(+) and an indole naphthyridinone inhibitor. The two structures are almost identical, except for the three stretches that are disordered in the apo form. The apo form exists as a homo-dimer in both crystal and solution, while the ternary complex forms a homo-tetramer. The three stretches disordered in the apo structure are important in the cofactor and the inhibitor binding as well as in tetramer formation.


Assuntos
Bacillus cereus/enzimologia , Enoil-(Proteína de Transporte de Acila) Redutase (NADPH, B-Específica)/química , Sequência de Aminoácidos , Apoenzimas/química , Cristalografia por Raios X , Enoil-(Proteína de Transporte de Acila) Redutase (NADPH, B-Específica)/antagonistas & inibidores , Inibidores Enzimáticos/química , Dados de Sequência Molecular , NADP/química , Multimerização Proteica , Estrutura Secundária de Proteína , Especificidade por Substrato
5.
Cell Mol Life Sci ; 66(9): 1507-17, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19151923

RESUMO

The enoyl-acyl carrier protein reductase (ENR) is the last enzyme in the fatty acid elongation cycle. Unlike most enzymes in this essential pathway, ENR displays an unusual diversity among organisms. The growing interest in ENRs is mainly due to the fact that a variety of both synthetic and natural antibacterial compounds are shown to specifically target their activity. The primary anti-tuberculosis drug, isoniazid, and the broadly used antibacterial compound, triclosan, both target this enzyme. In this review, we discuss the diversity of ENRs, and their inhibitors in the light of current research progress.


Assuntos
Proteínas de Bactérias/fisiologia , Enoil-(Proteína de Transporte de Acila) Redutase (NADPH, B-Específica)/fisiologia , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/fisiologia , Proteínas de Plantas/fisiologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Enoil-(Proteína de Transporte de Acila) Redutase (NADPH, B-Específica)/antagonistas & inibidores , Enoil-(Proteína de Transporte de Acila) Redutase (NADPH, B-Específica)/química , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/antagonistas & inibidores , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Proteínas Fúngicas/fisiologia , Regulação da Expressão Gênica , Cinética , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA