Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
PeerJ ; 12: e17328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770094

RESUMO

Nanotechnology and nanoparticles have gained massive attention in the scientific community in recent years due to their valuable properties. Among various AgNPs synthesis methods, microbial approaches offer distinct advantages in terms of cost-effectiveness, biocompatibility, and eco-friendliness. In the present research work, investigators have synthesized three different types of silver nanoparticles (AgNPs), namely AgNPs-K, AgNPs-M, and AgNPs-E, by using Klebsiella pneumoniae (MBC34), Micrococcus luteus (MBC23), and Enterobacter aerogenes (MBX6), respectively. The morphological, chemical, and elemental features of the synthesized AgNPs were analyzed by using UV-Vis spectroscopy (UV-Vis), Fourier transform-infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and energy-dispersive spectroscopy (EDX). UV-Vis absorbance peaks were obtained at 475, 428, and 503 nm for AgNPs-K, AgNPs-M, and AgNPs-E, respectively. The XRD analysis confirmed the crystalline nature of the synthesized AgNPs, having peaks at 26.2°, 32.1°, and 47.2°. At the same time, the FTIR showed bands at 599, 963, 1,693, 2,299, 2,891, and 3,780 cm-1 for all the types of AgNPs indicating the presence of bacterial biomolecules with the developed AgNPs. The size and morphology of the AgNPs varied from 10 nm to several microns and exhibited spherical to porous sheets-like structures. The percentage of Ag varied from 37.8% (wt.%) to 61.6%, i.e., highest in AgNPs-K and lowest in AgNPs-M. Furthermore, the synthesized AgNPs exhibited potential for environmental remediation, with AgNPs-M exhibiting the highest removal efficiency (19.24% at 120 min) for methyl orange dye in simulated wastewater. Further, all three types of AgNPs were evaluated for the removal of methyl orange dye from the simulated wastewater, where the highest dye removal percentage was 19.24% at 120 min by AgNPs-M. Antibacterial potential of the synthesized AgNPs assessment against both Gram-positive (GPB) Bacillus subtilis (MBC23), B. cereus (MBC24), and Gram-negative bacteria Enterococcus faecalis (MBP13) revealed promising results, with AgNPs-M, exhibiting the largest zone of inhibition (12 mm) against GPB B. megaterium. Such investigation exhibits the potential of the bacteria for the synthesis of AgNPs with diverse morphology and potential applications in environmental remediation and antibacterial therapy-based synthesis of AgNPs.


Assuntos
Compostos Azo , Nanopartículas Metálicas , Micrococcus luteus , Prata , Prata/química , Prata/farmacologia , Prata/metabolismo , Nanopartículas Metálicas/química , Compostos Azo/química , Compostos Azo/farmacologia , Compostos Azo/metabolismo , Micrococcus luteus/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/metabolismo , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Enterobacter aerogenes/efeitos dos fármacos , Enterobacter aerogenes/metabolismo , Difração de Raios X , Poluentes Químicos da Água/metabolismo , Corantes/química , Corantes/farmacologia
2.
Appl Microbiol Biotechnol ; 108(1): 146, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240862

RESUMO

2,3-Butanediol (2,3-BDO) is an important gateway molecule for many chemical derivatives. Currently, microbial production is gradually being recognized as a green and sustainable alternative to petrochemical synthesis, but the titer, yield, and productivity of microbial 2,3-BDO remain suboptimal. Here, we used systemic metabolic engineering strategies to debottleneck the 2,3-BDO production in Enterobacter aerogenes. Firstly, the pyruvate metabolic network was reconstructed by deleting genes for by-product synthesis to improve the flux toward 2,3-BDO synthesis, which resulted in a 90% increase of the product titer. Secondly, the 2,3-BDO productivity of the IAM1183-LPCT/D was increased by 55% due to the heterologous expression of DR1558 which boosted cell resistance to abiotic stress. Thirdly, carbon sources were optimized to further improve the yield of target products. The IAM1183-LPCT/D showed the highest titer of 2,3-BDO from sucrose, 20% higher than that from glucose, and the yield of 2,3-BDO reached 0.49 g/g. Finally, the titer of 2,3-BDO of IAM1183-LPCT/D in a 5-L fermenter reached 22.93 g/L, 85% higher than the wild-type strain, and the titer of by-products except ethanol was very low. KEY POINTS: Deletion of five key genes in E. aerogenes improved 2,3-BDO production The titer of 2,3-BDO was increased by 90% by regulating metabolic flux Response regulator DR1558 was expressed to increase 2,3-BDO productivity.


Assuntos
Enterobacter aerogenes , Enterobacter aerogenes/genética , Enterobacter aerogenes/metabolismo , Engenharia Metabólica/métodos , Butileno Glicóis/metabolismo , Reatores Biológicos , Fermentação
3.
Dev Comp Immunol ; 154: 105138, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38286197

RESUMO

Klebsiella aerogenes (previously known as Enterobacter aerogenes) is a common opportunistic pathogen that infect the respiratory tract and central nervous system. However, how it interferes the host regulatory mechanism has not been previously described. When C. elegans were exposed to K. aerogenes, they exhibited a shorter lifespan compared to those fed with E. coli OP50. The time required for 50 % of L4 hermaphrodite nematodes to die when exposed to K. aerogenes was approximately 9 days, whereas it was about 18 days when fed with E. coli OP50. The interaction with K. aerogenes also affected the physical activity of C. elegans. Parameters like pharyngeal pumping, head thrashing, body bending, and swimming showed a gradual decline during infection. The expression of serotonin-mediated axon regeneration K. aerogenes infection led to increased levels of reactive oxygen species (ROS) in C. elegans compared to E. coli OP50-fed worms. The nematodes activated antioxidant mechanisms, including the expression of SODs, to counteract elevated ROS levels. The interaction with K. aerogenes activated immune regulatory pathways in C. elegans, including the mTOR signaling pathway downstream player SGK-1. Lifespan regulatory pathways, such as pha-4 and pmk-1, were also affected, likely contributing to the nematode ability to survive in a pathogenic environment. K. aerogenes infection has a detrimental impact on the healthspan and lifespan of C. elegans, affecting physical activity, intestinal health, serotonin regulation, ROS levels, and immune responses. These findings provide insights into the complex interactions between K. aerogenes and host organisms.


Assuntos
Proteínas de Caenorhabditis elegans , Enterobacter aerogenes , Animais , Caenorhabditis elegans , Enterobacter aerogenes/metabolismo , Espécies Reativas de Oxigênio , Escherichia coli/fisiologia , Axônios/metabolismo , Serotonina , Regeneração Nervosa , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Imunidade Inata , Ingestão de Alimentos
4.
Cell Metab ; 35(4): 685-694.e5, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36933555

RESUMO

Estradiol decline can result in depressive disorders in females; nevertheless, the causes of this decline are unclear. In this study, we isolated estradiol-degrading Klebsiella aerogenes from the feces of premenopausal females with depression. In mice, gavaging with this strain led to estradiol decline and depression-like behaviors. The gene encoding the estradiol-degrading enzyme in K. aerogenes was identified as 3ß-hydroxysteroid dehydrogenase (3ß-HSD). Heterologously expressing 3ß-HSD resulted in Escherichia coli obtaining the ability to degrade estradiol. Gavaging mice with 3ß-HSD-expressing E. coli decreased their serum estradiol levels, causing depression-like behaviors. The prevalence of K. aerogene and 3ß-HSD was higher in premenopausal women with depression than in those without depression. These results suggest that the estradiol-degrading bacteria and 3ß-HSD enzymes are potential intervention targets for depression treatment in premenopausal women.


Assuntos
Depressão , Enterobacter aerogenes , Estradiol , Microbiota , Pré-Menopausa , Adulto , Animais , Feminino , Humanos , Camundongos , 3-Hidroxiesteroide Desidrogenases/genética , 3-Hidroxiesteroide Desidrogenases/metabolismo , Depressão/metabolismo , Depressão/microbiologia , Enterobacter aerogenes/genética , Enterobacter aerogenes/metabolismo , Escherichia coli/metabolismo , Fezes/microbiologia , Pré-Menopausa/metabolismo
5.
Bioprocess Biosyst Eng ; 46(4): 535-553, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36547731

RESUMO

Dark fermentative biohydrogen production (DFBHP) has potential for utilization of rice starch wastewater (RSWW) as substrate. The hydrogen production of Enterobacter aerogenes MTCC 2822 and Clostridium acetobutylicum MTCC 11274, in pure culture and co-culture modes, was evaluated. The experiments were performed in a 2 L bioreactor, for a batch time of 120 h. The co-culture system resulted in highest cumulative hydrogen (1.13 L H2/L media) and highest yield (1.67 mol H2/mol glucose). Two parameters were optimized through response surface methodology (RSM)-substrate concentration (3.0-5.0 g/L) and initial pH (5.5-7.5), in a three-level factorial design. A total of 11 runs were performed in duplicate, which revealed that 4.0 g/L substrate concentration and 6.5 initial pH were optimal in producing hydrogen. The metabolites produced were acetic, butyric, propionic, lactic and isobutyric acids. The volumetric H2 productions, without and with pH adjustments, were 1.24 L H2/L media and 1.45 L H2/L media, respectively.


Assuntos
Clostridium acetobutylicum , Enterobacter aerogenes , Oryza , Enterobacter aerogenes/metabolismo , Oryza/metabolismo , Fermentação , Amido/metabolismo , Hidrogênio/metabolismo
6.
Bioelectrochemistry ; 149: 108309, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36283190

RESUMO

Costly cofactors such as nicotinamide adenine dinucleotide hydrogen (NADH) are essential to have high activity in many redox enzymatic processes. Cofactor regeneration methods have been suggested to improve the economic aspects of the system. Here, we introduce a microbial electrosynthesis process to regenerate NADH in a two-chamber set-up with Enterobacter aerogenes biofilm as the bio-cathode. The effects of several important factors on the regeneration efficiency were studied and the highest NADH regeneration yield was achieved equal to 65 % at the potential of -1.5 V and the initial NAD+ concentration of 1 mM after 8 h of operation. The regenerated cofactor was highly enzymatically active (93 ± 4 %) which was a great merit of the process. Studying the kinetics of regeneration revealed that the electron transfer rate to the biofilm was the limiting factor. We tried to remove the limitation through co-culturing Pseudomonas aeruginosa and producing more electrochemical active compounds in the biofilm. Although, this modification was not effective for the regeneration yield, it showed that the external potential implicitly influenced the regeneration process by changing the internal microbial cell metabolic fluxes. Finally, it can be concluded that the microbial electrosynthesis is a promising green process for NADH regeneration.


Assuntos
Enterobacter aerogenes , NAD , NAD/metabolismo , Enterobacter aerogenes/metabolismo , Hidrogênio , Oxirredução , Regeneração
7.
J Biotechnol ; 358: 67-75, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36087783

RESUMO

As a valuable platform chemical, 2,3-Butanediol (2,3-BDO) has a variety of industrial applications, and its microbial production is particularly attractive as an alternative to petroleum-based production. In this study, the regulation of intracellular carbon flux and NADH/NAD+ was used to increase the 2,3-BDO production of Enterobacter aerogenes. The genes encoding lactate dehydrogenase (ldh) and pyruvate formate lyase (pfl) were disrupted using the λ-Red recombination method and CRISPR-Cas9 to reduce the production of several byproducts and the consumption of NADH. Knockout of ldh or pfl increased intracellular NADH/NAD+ by 111 % and 113 %, respectively. Moreover, two important genes in the 2,3-BDO biosynthesis pathway, acetolactate synthase (budB) and acetoin reductase (budC), were overexpressed in E. aerogenes to further amply the metabolic flux toward 2,3-BDO production. And the overexpression of budB or budC increased intracellular NADH/NAD+ by 46 % and 57 %, respectively. In shake-flask cultivation with sucrose as carbon source, the 2,3-BDO titer of the IAM1183-LPBC was 3.55 times that of the wild type. In the 5-L fermenter, the maximal 2,3-BDO production produced by the IAM1183-LPBC was 2.88 times that of the original strain. This work offers new ideas for promoting the biosynthesis of 2,3-BDO for industrial applications.


Assuntos
Acetolactato Sintase , Enterobacter aerogenes , Liases , Petróleo , Acetolactato Sintase/metabolismo , Butileno Glicóis/metabolismo , Carbono/metabolismo , Ciclo do Carbono , Enterobacter aerogenes/genética , Enterobacter aerogenes/metabolismo , Fermentação , Formiatos , L-Lactato Desidrogenase/genética , Engenharia Metabólica/métodos , NAD/metabolismo , Piruvatos , Sacarose
8.
Acta Microbiol Immunol Hung ; 69(3): 209-214, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36037044

RESUMO

Colistin is considered as the last-line antibiotic for the treatment of infections caused by extensively drug-resistant Gram-negative pathogens belonging to the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) group. The present study aimed to explore the colistin resistance mechanisms of a Klebsiella aerogenes (formerly Enterobacter aerogenes) isolate (Kae1177-1bg) obtained from a Bulgarian critically ill patient with septic shock in 2020. Antimicrobial susceptibility testing and whole-genome sequencing using DNA nanoball technology were performed. The resulting read pairs were used for draft genome assembly, MLST analysis and mutation screening in the pmrA/B, phoP/Q, and mgrB genes. Kae1177-1bg demonstrated high-level resistance to colistin, resistance to 3rd generation cephalosporins and susceptibility to all other antibiotics tested. In our strain a CMY-2-type class C cephalosporinase was the only ß-lactamase identified. No mobile colistin resistance (mcr) genes were detected. A total of three missense variants in the genes for the two-component PmrA/PmrB system were identified. Two of them were located in the pmrB (pR57K and pN275K) and one in the pmrA gene (pL162M). The pN275K variant emerged as the most likely cause for colistin resistance because it affected a highly conservative position and was the only nonconservative amino acid substitution. In conclusion, to the best of our knowledge, this is the first documented clinical case of a high-level colistin-resistant K. aerogenes in Bulgaria and the first identification of the nonconservative amino acid substitution pN275K worldwide. Colistin-resistant Gram-negative pathogens of ESKAPE group are serious threat to public health and should be subjected to infection control stewardship practices.


Assuntos
Enterobacter aerogenes , Infecções por Klebsiella , Choque Séptico , Humanos , Colistina/farmacologia , Enterobacter aerogenes/genética , Enterobacter aerogenes/metabolismo , Bulgária , Tipagem de Sequências Multilocus , Estado Terminal , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/uso terapêutico , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética , Infecções por Klebsiella/tratamento farmacológico
9.
Genomics ; 114(2): 110321, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35218872

RESUMO

Klebsiella (nee Enterobacter) aerogenes is the first human gut commensal bacterium with a documented sensitivity to the pineal/gastrointestinal hormone melatonin. Exogenous melatonin specifically increases the size of macrocolonies on semisolid agar and synchronizes the circadian clock of K. aerogenes in a concentration dependent manner. However, the mechanisms driving these phenomena are unknown. In this study, we applied RNA sequencing to identify melatonin sensitive transcripts during culture maturation. This work demonstrates that the majority of melatonin sensitive genes are growth stage specific. Melatonin exposure induced differential gene expression of 81 transcripts during exponential growth and 30 during early stationary phase. This indole molecule affects genes related to biofilm formation, fimbria biogenesis, transcriptional regulators, carbohydrate transport and metabolism, phosphotransferase systems (PTS), stress response, metal ion binding and transport. Differential expression of biofilm and fimbria-related genes may be responsible for the observed differences in macrocolony area. These data suggest that melatonin enhances Klebsiella aerogenes host colonization.


Assuntos
Relógios Circadianos , Enterobacter aerogenes , Melatonina , Enterobacter aerogenes/genética , Enterobacter aerogenes/metabolismo , Humanos , Klebsiella/genética , Melatonina/metabolismo , Melatonina/farmacologia
10.
J Biomol Struct Dyn ; 40(24): 13641-13657, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34676806

RESUMO

Hospital pathogens, including Klebsiella aerogenes are becoming increasingly common, with the rise of Beta-lactam-resistant strains, especially in isolates recovered from intensive care rooms. Beta-lactamases participate in both the antibacterial activity and the mediation of the antibiotic resistance of Beta-lactams. The rapid spread of broad-spectrum Beta-lactam antibiotic resistance in pathogenic bacteria has recently become a major global health problem. As a result, new drugs that specifically target Beta-lactamases are urgently needed, and this enzyme has been identified to resolve the problem of bacterial resistance. In previous work, we de-novo developed, synthesized, and studied the in-vitro and in-silico behavior of four novel broad spectrum antimicrobial peptides, namely PEP01 to PEP04. All four peptides had significant antibacterial action against K. aerogenes. The literature evidence strongly suggests that Beta-lactamases are extremely important for bacteria, including K. aerogenes, and hence are therapeutically important and possible targets. Therefore, in this study we incorporated molecular modeling, docking, and simulation studies of the above four AMPs against the Beta-lactamase protein of K. aerogenes. The docking findings were also compared to eight FDA approved Beta-lactam antibiotics. According to our findings, all four peptides have strong binding affinity and interactions with Beta-lactamases and PEP02 has the highest docking score. In MD simulations, the protein-peptide complexes were more stable at 50 ns. We found that the new AMP-PEP02 is the most efficient and suitable drug candidate for inactivating Beta-lactamase protein, and that it is an alternative to or complements existing antibiotics for managing Beta-lactamase related resistance mechanisms based on this computational conclusion.Communicated by Ramaswamy H. Sarma.


Assuntos
Enterobacter aerogenes , beta-Lactamases , beta-Lactamases/metabolismo , beta-Lactamas/farmacologia , Simulação de Dinâmica Molecular , Enterobacter aerogenes/metabolismo , Peptídeos Antimicrobianos , Antibacterianos/química , Bactérias/metabolismo , Inibidores de beta-Lactamases , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular
11.
Biotechnol Lett ; 43(2): 435-443, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33230595

RESUMO

Dark fermentative hydrogen production from glucose by Enterobacter aerogenes was studied. The kinetic models of modified Gompertz and Logistic were employed to investigate the progress of hydrogen production. The predicted maximum hydrogen production (Hmax) by modified Gompertz and Logistic was 11.92 and 11.28 mL, respectively. The kinetic models of modified Gompertz, Logistic, and Richards were used to study biomass growth in batch experiments. The maximum biomass growth (Xmax) by models of modified Gompertz, Logistic, and Richards was 4.90, 4.85, and 4.95 (g L-1), respectively. The modified Gompertz was applied to simulate the consumption of glucose where the maximum degraded glucose (Smax) was obtained 19.77 g L-1. The correlation coefficients of all the models were over 0.97, which illustrate that the models fit the data very well. However, the modified Gompertz model presents higher R2 and lower RSS and is more appropriate than the other models.


Assuntos
Enterobacter aerogenes/metabolismo , Glucose/metabolismo , Hidrogênio/metabolismo , Biomassa , Enterobacter aerogenes/genética , Fermentação , Concentração de Íons de Hidrogênio , Cinética
12.
Sci Rep ; 10(1): 1986, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029880

RESUMO

Enterobacter aerogenes LU2 was isolated from cow rumen and recognized as a potential succinic acid producer in our previous study. Here, we present the first complete genome sequence of this new, wild strain and report its basic genetic features from a biotechnological perspective. The MinION single-molecule nanopore sequencer supported by the Illumina MiSeq platform yielded a circular 5,062,651 bp chromosome with a GC content of 55% that lacked plasmids. A total of 4,986 genes, including 4,741 protein-coding genes, 22 rRNA-, 86 tRNA-, and 10 ncRNA-encoding genes and 127 pseudogenes, were predicted. The genome features of the studied strain and other Enterobacteriaceae strains were compared. Functional studies on the genome content, metabolic pathways, growth, and carbon transport and utilization were performed. The genomic analysis indicates that succinic acid can be produced by the LU2 strain through the reductive branch of the tricarboxylic acid cycle (TCA) and the glyoxylate pathway. Antibiotic resistance genes were determined, and the potential for bacteriocin production was verified. Furthermore, one intact prophage region of length ~31,9 kb, 47 genomic islands (GIs) and many insertion sequences (ISs) as well as tandem repeats (TRs) were identified. No clustered regularly interspaced short palindromic repeats (CRISPRs) were found. Finally, comparative genome analysis with well-known succinic acid producers was conducted. The genome sequence illustrates that the LU2 strain has several desirable traits, which confirm its potential to be a highly efficient platform for the production of bulk chemicals.


Assuntos
Vias Biossintéticas/genética , Enterobacter aerogenes/metabolismo , Microbiologia Industrial , Rúmen/microbiologia , Ácido Succínico/metabolismo , Animais , Bovinos , Cromossomos Bacterianos/genética , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Enterobacter aerogenes/genética , Genoma Bacteriano , Genômica , Sequenciamento Completo do Genoma/métodos
13.
PLoS One ; 14(9): e0222465, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31536529

RESUMO

Inflammatory immune responses induced by lipopolysaccharides (LPS) of gram-negative bacteria play an important role in the pathogenesis of preterm labor and delivery, and in neonatal disorders. To better characterize LPS-induced inflammatory response, we determined the cytokine profile of umbilical cord blood mononuclear cells (UBMC) stimulated with LPS of seven vaginal gram-negative bacteria commonly found in pregnant women with preterm labor and preterm rupture of membrane. UBMC from ten newborns of healthy volunteer mothers were stimulated with purified LPS of Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Proteus mirabilis, Acinetobacter calcoaceticus, Citrobacter freundii, and Pseudomonas aeruginosa. UBMC supernatants were tested for the presence of secreted pro-inflammatory cytokines (IL-6, IL-1ß, TNF), anti-inflammatory cytokine (IL-10), TH1-type cytokines (IL-12, IFN-γ), and chemokines (IL-8, MIP-1α, MIP-1ß, MCP-1) by Luminex technology. The ten cytokines were differentially induced by the LPS variants. LPS of E. coli and E. aerogenes showed the strongest stimulatory activity and P. aeruginosa the lowest. Interestingly, the ability of UBMC to respond to LPS varied greatly among donors, suggesting a strong individual heterogeneity in LPS-triggered inflammatory response.


Assuntos
Citocinas/metabolismo , Sangue Fetal/citologia , Bactérias Gram-Negativas/metabolismo , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/farmacologia , Vagina/microbiologia , Acinetobacter calcoaceticus/metabolismo , Adulto , Citrobacter freundii/metabolismo , Enterobacter aerogenes/metabolismo , Escherichia coli/metabolismo , Feminino , Ruptura Prematura de Membranas Fetais/metabolismo , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Trabalho de Parto Prematuro/microbiologia , Gravidez , Pseudomonas aeruginosa/metabolismo , Adulto Jovem
14.
Chemosphere ; 233: 786-795, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31340409

RESUMO

Microbial volatile organic compounds (mVCs) are formed in the metabolism of microorganisms and widely distributed in nature and pose threats to human health. However, the air pollution by microorganisms is a situation which is poorly understood. In this study, the cytotoxicity of E. aerogenes VCs was evaluated in the model organism Saccharomyces cerevisiae. E. aerogenes VCs inhibited the survival of yeast and triggered the formation of intracellular reactive oxygen species (ROS). The hypersensitive of MAP kinase mpk1/slt2 and 19S regulatory assembly chaperone adc17 mutants to the E. aerogenes VCs indicated cell wall integrity (CWI) pathway together with stress-inducible proteasome assembly regulation are essentially involved in mVCs tolerance mechanism. Furthermore, exposure to the mVCs resulted in the transcriptional upregulation of the CWI pathway, the regulatory particle assembly chaperones, and genes involved in proteasome regulations. Our research suggested that the ROS/MAPK signaling and proteasome regulatory pathway play pivotal roles in the integration and fine-tuning of the mVCs stress response. This study provides a molecular framework for future study of the effects of mVCs on more complex organisms, such as humans.


Assuntos
Enterobacter aerogenes/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Compostos Orgânicos Voláteis/farmacologia , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Parede Celular/metabolismo , Citoplasma/metabolismo , Chaperonas Moleculares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ativação Transcricional
15.
Appl Microbiol Biotechnol ; 103(5): 2141-2153, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30613897

RESUMO

Endophytic microorganisms can metabolize organic contaminants and assist in plant growth, thus facilitating the phytoremediation of polluted environments. An endophytic bacterium capable of decoloring malachite green (MG) was isolated from the leaves of the wetland plant Suaeda salsa and was identified as Klebsiella aerogenes S27. Complete decolorization of MG (100 mg/l) was achieved in 8 h at 30 °C and pH 7.0. Ultraviolet-visible spectroscopy and Fourier-transform infrared spectroscopy analyses indicated the degradation of MG by the isolate. The enzymic assays of the strain showed the triphenylmethane reductase (TMR) activity. A gene encoding putative TMR-like protein (named as KaTMR) was cloned and heterologously expressed in Escherichia coli. KaTMR showed only 42.6-43.3% identities in amino acids compared with well-studied TMRs, and it phylogenetically formed a new branch in the family of TMRs. The degraded metabolites by recombinant KaTMR were detected by liquid chromatography-mass spectrometry, showing differences from the products of reported TMRs. The biotransformation pathway of MG was proposed. Phytotoxicity studies revealed the less-toxic nature of the degraded metabolites compared to the dye. This study presented the first report of an endophyte on the degradation and detoxification of triphenylmethane dye via a novel oxidoreductase, thus facilitating the study of the plant-endophyte symbiosis in the bioremediation processes.


Assuntos
Biodegradação Ambiental , Enterobacter aerogenes/metabolismo , Oxirredutases/metabolismo , Corantes de Rosanilina/metabolismo , Poluentes Químicos da Água/metabolismo , Biotransformação/fisiologia , Chenopodiaceae/microbiologia , Corantes/metabolismo , Enterobacter aerogenes/classificação , Enterobacter aerogenes/isolamento & purificação , Compostos de Tritil/metabolismo
16.
Interdiscip Sci ; 11(1): 135-144, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29086207

RESUMO

Enterobacter aerogenes have been reported as important opportunistic and multi-resistant bacterial pathogens for humans during the last three decades in hospital wards. The emergence of drug-resistant E. aerogenes demands the need for developing new drugs. Peptidoglycan is an important component of the cell wall of bacteria and the peptidoglycan biochemical pathway is considered as the best source of antibacterial targets. Within this pathway, four Mur ligases MurC, MurD, MurE, and MurF are responsible for the successive additions of L-alanine and suitable targets for developing novel antibacterial drugs. As an inference from this fact, we modeled the three-dimensional structure of above Mur ligases using best template structures available in PDB and analyzed its common binding features. Structural refinement and energy minimization of the predicted Mur ligases models is also being done using molecular dynamics studies. The models of Mur ligases were further investigated for in silico docking studies using bioactive plant compounds from the literature. Interestingly, these results indicate that four plant compounds Isojuripidine, Atroviolacegenin, Porrigenin B, and Nummularogenin showing better docking results in terms of binding energy and number of hydrogen bonds. All these four compounds are spirostan-based compounds with differences in side chains and the amino acid such as ASN, LYS, THR, HIS, ARG (polar) and PHE, GLY, VAL, ALA, MET (non-polar) playing active role in binding site of all four Mur ligases. Overall, in the predicted model, the four plant compounds with its binding features could pave way to design novel multi-targeted antibacterial plant-based bioactive compounds specific to Mur ligases for the treatment of Enterobacter infections.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Enterobacter aerogenes/efeitos dos fármacos , Sítios de Ligação , Enterobacter aerogenes/metabolismo , Humanos , Simulação de Dinâmica Molecular
17.
J Sci Food Agric ; 99(1): 281-289, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29855046

RESUMO

BACKGROUND: Bacteria with 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity could decrease the ethylene level, confer resistance of plant, and stimulate plant growth under biotic and abiotic stress conditions. RESULTS: Plant growth-promoting rhizobacteria (PGPR) strains Enterobacter aerogenes (LJL-5) and Pseudomonas aeruginosa (LJL-13) were obtained from the rhizosphere of alfalfa grown under saline-alkali conditions. The ACC deaminase activity of E. aerogenes (LJL-5) and Ps. aeruginosa (LJL-13) was approximately 2-5 µmol mg-1  h-1 . indole acetic acid synthesis was increased with the increasing concentration of l-tryptophan. Siderophore production and phosphate solubilization in Ps. aeruginosa (LJL-13) were higher than those in E. aerogenes (LJL-5). Compared to the non-inoculated seedlings (1.31 ng mL-1  h-1 ), inoculated alfalfa seedlings with E. aerogenes (LJL-5) (0.90 ng mL-1  h-1 ) and Ps. aeruginosa (LJL-13) (0.78 ng mL-1  h-1 ) emitted lower levels of ethylene. Under saline-alkali conditions in the greenhouse, inoculation with E. aerogenes (LJL-5) and Ps. aeruginosa (LJL-13) increased the biomass, soil and plant analyzer development (SPAD), and P content of alfalfa plants, and also induced the activity of antioxidant enzymes (superoxide dismutase, peroxidase and catalase), promoted the accumulation of antioxidant substances and removed various harmful substances. Under saline-alkali conditions in the field (2012, 2013, and 2014), inoculation of alfalfa with E. aerogenes (LJL-5) and Ps. aeruginosa (LJL-13) significantly increased the shoot height, fresh and dry weights, yield and crude protein content of alfalfa plants, but decreased the fiber content. CONCLUSION: Two PGPR strains were isolated from the rhizosphere of alfalfa in saline-alkali conditions. Both strains could promote alfalfa growth in saline-alkali soil, and could be used as biofertilizer to promote plant growth under stress and reduce environmental pollution caused by fertilizers simultaneously. © 2018 Society of Chemical Industry.


Assuntos
Enterobacter aerogenes/metabolismo , Medicago sativa/crescimento & desenvolvimento , Medicago sativa/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Pseudomonas aeruginosa/metabolismo , Solo/química , Proteínas de Bactérias/metabolismo , Carbono-Carbono Liases/metabolismo , Enterobacter aerogenes/enzimologia , Enterobacter aerogenes/genética , Etilenos/metabolismo , Concentração de Íons de Hidrogênio , Ácidos Indolacéticos/metabolismo , Medicago sativa/química , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Microbiologia do Solo
18.
CEN Case Rep ; 8(1): 38-41, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30141138

RESUMO

Urinary tract infections after JJ stent insertion are among the most common complications, and the associated microorganisms carry more antibiotic resistance determinants than those found in urine prior to stent insertion. In line with the trends in healthcare epidemiology which implicate multi-resistant microorganisms in a plethora of healthcare-associated infections, prosthetic stent material also represents an ideal milieu for biofilm formation and subsequent infection development with resistant bacterial agents. Here we describe a case of a 73-year-old Caucasian woman presenting with urinary tract infection after JJ ureteric stent insertion due to ureteric obstruction and hydronephrosis of her left kidney. Extensive microbiological work-up and comprehensive molecular analysis identified the putative microorganism as carbapenem-resistant Enterobacter aerogenes carrying New Delhi metallo-beta-lactamase 1 (NDM-1). This is a first literature report implicating such extensively resistant strain of this species in early indwelling ureteric stent complications, and also the first report of NDM-1 in Enterobacter aerogenes in Croatia and Europe.


Assuntos
Enterobacter aerogenes/isolamento & purificação , Infecções por Enterobacteriaceae/microbiologia , Stents/microbiologia , Infecções Urinárias/microbiologia , beta-Lactamases/biossíntese , Idoso , Carbapenêmicos/farmacologia , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/etiologia , Infecção Hospitalar/microbiologia , Farmacorresistência Bacteriana Múltipla , Enterobacter aerogenes/efeitos dos fármacos , Enterobacter aerogenes/metabolismo , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/etiologia , Feminino , Humanos , Testes de Sensibilidade Microbiana/métodos , Obstrução Ureteral/terapia , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/etiologia
19.
Biotechnol Bioeng ; 115(9): 2183-2193, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29777590

RESUMO

Bioelectrochemical systems (BES) hold great promise for sustainable energy generation via a microbial catalyst from organic matter, for example, from wastewater. To improve current generation in BES, understanding the underlying microbiology of the electrode community is essential. Electron mediator producing microorganism like Pseudomonas aeruginosa play an essential role in efficient electricity generation in BES. These microbes enable even nonelectroactive microorganism like Enterobacter aerogenes to contribute to current production. Together they form a synergistic coculture, where both contribute to community welfare. To use microbial co-operation in BES, the physical and chemical environments provided in the natural habitats of the coculture play a crucial role. Here, we show that synergistic effects in defined cocultures of P. aeruginosa and E. aerogenes can be strongly enhanced toward high current production by adapting process parameters, like pH, temperature, oxygen demand, and substrate requirements. Especially, oxygen was identified as a major factor influencing coculture behavior and optimization of its supply could enhance electric current production over 400%. Furthermore, operating the coculture in fed-batch mode enabled us to obtain very high current densities and to harvest electrical energy for 1 month. In this optimized condition, the coulombic efficiency of the process was boosted to 20%, which is outstanding for mediator-based electron transfer. This study lays the foundation for a rationally designed utilization of cocultures in BES for bioenergy generation from specific wastewaters or for bioprocess sensing and for benefiting from their synergistic effects under controlled bioprocess condition.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Eletricidade , Transporte de Elétrons , Enterobacter aerogenes/metabolismo , Interações Microbianas , Pseudomonas aeruginosa/metabolismo , Biotransformação , Meios de Cultura/química , Enterobacter aerogenes/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Compostos Orgânicos/metabolismo , Oxigênio/metabolismo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Temperatura
20.
J Hazard Mater ; 351: 317-329, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29554529

RESUMO

Heavy metal resistant PGPR mediated bioremediation, phytostimulation and stress alleviation is an eco-friendly method for sustainable agriculture in the metal contaminated soil. The isolation of such PGPR is highly demanding to reduce heavy metals in contaminated cultivated fields for agricultural benefit. The present study was successful to isolate a potent multi-heavy metal resistant PGPR strain, identified as Enterobacter aerogenes strain K6 based on MALDI-TOF MS, FAME analysis and 16S rDNA sequence homology, from rice rhizosphere contaminated with a variety of heavy metals/metalloid near industrial area. The strain exhibited high degree of resistance to Cd2+, Pb2+ and As3+ upto 4000 µg/mL, 3800 µg/mL and 1500 µg/mL respectively. Intracellular Cd accumulation of this strain was evidenced by AAS-SEM-TEM-EDX-XRF studies. Moreover, it showed several important PGP traits like IAA production, nitrogen fixation, phosphate solubilization, ACC deaminase activity even under high Cd stress (upto 3000 µg/mL). The combined effect of Cd resistance and PGP activities of this strain was manifested to the significant (p < 0.05) growth promotion of rice seedling under Cd stress by reducing oxidative stress (through antioxidants), stress ethylene and Cd uptake in seedlings. Thus K6 strain conferred Cd-tolerance in rice seedlings and could be applied as PGPR in contaminated fields.


Assuntos
Cádmio/metabolismo , Cádmio/toxicidade , Enterobacter aerogenes/metabolismo , Oryza/efeitos dos fármacos , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Biodegradação Ambiental , Resistência a Medicamentos , Oryza/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Rizosfera , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...