RESUMO
Water supply for human consumption requires certain quality that reduces health risks to consumers. In this sense, the process of disinfection plays an important role in the elimination of pathogenic microorganisms. Even though chlorination is the most applied process based on its effectiveness and cost, its application is being questioned considering the formation of disinfection by-products (DBPs). Therefore, alternative disinfectants are being evaluated and some treatment processes have been proposed to remove DBPs precursors (organic matter. This paper reports the results of disinfection of a non conventional source of water (aquifer recharged unintentionally with raw wastewater) with peracetic acid (PAA) and ultraviolet radiation (UV) as well as nanofiltration (NF) followed by chlorination to produce safe drinking water. The results showed that a dose of 2 mg/L PAA was needed to eliminate total and faecal coliforms. For UV light, a dose of 12.40 mWs/cm2 reduced total and faecal coliforms below the detection limit. On the other hand, chlorine demand of water before NF was 1.1-1.3 mg/L with a trihalomethane formation potential (THMFP) of 118.62 microg/L, in contrast with chlorination after NF where the demand was 0.5 mg/L and THMFP of 17.64 microg/L. The recommended scheme is nanofiltration + chlorination.