Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.022
Filtrar
1.
J Med Virol ; 96(5): e29658, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38727043

RESUMO

Echovirus 11 (E11) has gained attention owing to its association with severe neonatal infections. Due to the limited data available, the World Health Organization (WHO) considers public health risk to the general population to be low. The present study investigated the genetic variation and molecular evolution of E11 genomes collected from May to December 2023. Whole genome sequencing (WGS) was performed for 16 E11 strains. Phylogenetic analysis on WG showed how all Italian strains belonged to genogroup D5, similarly to other E11 strains recently reported in France and Germany all together aggregated into separate clusters. A cluster-specific recombination pattern was also identified using phylogenetic analysis of different genome regions. Echovirus 6 was identified as the major recombinant virus in 3Cpro and 3Dpol regions. The molecular clock analysis revealed that the recombination event probably occurred in June 2018 (95% HPD interval: Jan 2016-Jan 2020). Shannon entropy analyses, within P1 region, showed how 11 amino acids exhibited relatively high entropy. Five of them were exposed on the canyon region which is responsible for receptor binding with the neonatal Fc receptor. The present study showed the recombinant origin of a new lineage of E11 associated with severe neonatal infections.


Assuntos
Infecções por Echovirus , Enterovirus Humano B , Genoma Viral , Genótipo , Filogenia , Recombinação Genética , Humanos , Recém-Nascido , Genoma Viral/genética , Enterovirus Humano B/genética , Enterovirus Humano B/classificação , Enterovirus Humano B/isolamento & purificação , Infecções por Echovirus/virologia , Infecções por Echovirus/epidemiologia , Variação Genética , Sequenciamento Completo do Genoma , Evolução Molecular , Itália/epidemiologia
2.
Environ Sci Technol ; 58(12): 5279-5289, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38488515

RESUMO

The sensitivity of enteroviruses to disinfectants varies among genetically similar variants and coincides with amino acid changes in capsid proteins, although the effect of individual substitutions remains unknown. Here, we employed reverse genetics to investigate how amino acid substitutions in coxsackievirus B5 (CVB5) capsid proteins affect the virus' sensitivity to free chlorine and heat treatment. Of ten amino acid changes observed in CVB5 variants with free chlorine resistance, none significantly reduced the chlorine sensitivity, indicating a minor role of the capsid composition in chlorine sensitivity of CVB5. Conversely, a subset of these amino acid changes located at the C-terminal region of viral protein 1 led to reduced heat sensitivity. Cryo-electron microscopy revealed that these changes affect the assembly of intermediate viral states (altered and empty particles), suggesting that the mechanism for reduced heat sensitivity could be related to improved molecular packing of CVB5, resulting in greater stability or altered dynamics of virus uncoating during infection.


Assuntos
Proteínas do Capsídeo , Cloro , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , Cloro/farmacologia , Microscopia Crioeletrônica , Substituição de Aminoácidos , Enterovirus Humano B/genética , Aminoácidos
3.
Int J Infect Dis ; 142: 106998, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458420

RESUMO

OBJECTIVES: Following the alert of echovirus 11 (E-11) infection in neonates in EU/EEA Member States, we conducted an investigation of E-11 circulation by gathering data from community and hospital surveillance of enterovirus (EV) in northern Italy from 01 August 2021 to 30 June 2023. METHODS: Virological results of EVs were obtained from the regional sentinel surveillance database for influenza-like illness (ILI) in outpatients, and from the laboratory database of ten hospitals for inpatients with either respiratory or neurological symptoms. Molecular characterization of EVs was performed by sequence analysis of the VP1 gene. RESULTS: In our ILI series, the rate of EV-positive specimens showed an upward trend from the end of May 2023, culminating at the end of June, coinciding with an increase in EV-positive hospital cases. The E-11 identified belonged to the D5 genogroup and the majority (83%) were closely associated with the novel E-11 variant, first identified in severe neonatal infections in France since 2022. E-11 was identified sporadically in community cases until February 2023, when it was also found in hospitalized cases with a range of clinical manifestations. All E-11 cases were children, with 14 out of 24 cases identified through hospital surveillance. Of these cases, 60% were neonates, and 71% had severe clinical manifestations. CONCLUSION: Baseline epidemiological data collected since 2021 through EV laboratory-based surveillance have rapidly tracked the E-11 variant since November 2022, alongside its transmission during the late spring of 2023.


Assuntos
Infecções por Enterovirus , Enterovirus , Viroses , Criança , Recém-Nascido , Humanos , Lactente , Enterovirus/genética , Vigilância de Evento Sentinela , Pacientes Internados , Infecções por Enterovirus/diagnóstico , Enterovirus Humano B/genética , Itália/epidemiologia , Hospitais , Filogenia
4.
Virulence ; 15(1): 2329569, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38555521

RESUMO

BACKGROUND: Enteroviruses (EV) are common and can cause severe diseases, particularly in young children. However, the information of EV infection in infants in China is limited due to the vast population size and extensive geographical area of the country. Here, we conducted a retrospective multicenter analysis of available EV data to assess the current epidemiological situation in the infant population in southern China. METHODS: The study enrolled infants with suspected EV infection from 34 hospitals across 12 cities in southern China between 2019 to 2022, and the confirmation of EV was done using RT-PCR and VP1 gene sequencing. RESULTS: Out of 1221 infants enrolled, 330 (27.03%) were confirmed as EV-infected. Of these, 260 (78.79%) were newborns aged 0-28 days. The EV belonged to three species: EV-B (80.61%), EV-A (11.82%), and human rhinovirus (7.58%). Newborns were more susceptible to EV-B than older infants (p < 0.001). Within EV-B, we identified 15 types, with coxsackievirus (CV) B3 (20.91%), echovirus (E) 11 (19.70%), and E18 (16.97%) being the most common. The predominant EV types changed across different years. EV infection in infants followed a seasonal pattern, with a higher incidence from May to August. Furthermore, perinatal mother-to-child EV transmission in 12 mother-newborn pairs were observed. CONCLUSION: Our study is the first to demonstrate the emergence and widespread circulation of EV-B species, mainly CVB3, E11, and E18, in southern China, primarily affecting young infants. This research provides valuable insights for future epidemic assessment, prediction, as well as the elimination of mother-to-child transmission.


Assuntos
Infecções por Enterovirus , Enterovirus , Feminino , Humanos , Lactente , Recém-Nascido , China/epidemiologia , Enterovirus/genética , Enterovirus Humano B/genética , Infecções por Enterovirus/epidemiologia , Genótipo , Transmissão Vertical de Doenças Infecciosas , Filogenia
5.
J Med Virol ; 96(3): e29514, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38488486

RESUMO

Enteroviruses cause a wide range of neurological illnesses such as encephalitis, meningitis, and acute flaccid paralysis. Two types of enteroviruses, echovirus E4 and E9, have recently been detected in South Africa and are known to be associated with meningitis and encephalitis. The objective of this study was to characterize enterovirus strains detected in cerebrospinal fluid specimens of hospitalized patients in the private and public sector to identify genotypes associated with meningitis and encephalitis. From January 2019 to June 2021 enterovirus positive nucleic acid samples were obtained from a private (n = 116) and a public sector (n = 101) laboratory. These enteroviruses were typed using a nested set of primers targeting the VP1 region of the enterovirus genome, followed by Sanger sequencing and BLASTn analysis. Forty-two percent (91/217) of the strains could be genotyped. Enterovirus B species was the major species detected in 95% (86/91) of the specimens, followed by species C in 3% (3/91) and species A in 2% (2/91) of the specimens. Echovirus E4 and E9 were the two major types identified in this study and were detected in 70% (64/91) and in 10% (9/91) of specimens, respectively. Echovirus E11 has previously been identified in sewage samples from South Africa, but this study is the first to report Echovirus E11 in cerebrospinal fluid specimens from South African patients. The genotypes identified during this study are known to be associated with encephalitis and meningitis. The predominant detection of echovirus E4 followed by E9 corresponds with other studies conducted in South Africa.


Assuntos
Encefalite , Infecções por Enterovirus , Enterovirus , Meningite , Humanos , Lactente , África do Sul/epidemiologia , Setor Público , Enterovirus/genética , Infecções por Enterovirus/diagnóstico , Enterovirus Humano B/genética , Meningite/epidemiologia , Líquido Cefalorraquidiano , Filogenia
6.
J Appl Microbiol ; 135(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38471668

RESUMO

AIMS: Enteroviruses are significant human pathogens associated with a range of mild to severe diseases. This study aims to understand the diversity and genetic characterization of enteroviruses circulated in southwest China's border cities by using environmental surveillance. METHODS AND RESULTS: A total of 96 sewage samples were collected in three border cities and a port located in Yunnan Province, China from July 2020 to June 2022. After cell culture and VP1 sequencing, a total of 590 enterovirus isolates were identified, belonging to 21 types. All PV strains were Sabin-like with ≤6 nucleotide mutations in the VP1 coding region. Echovirus 6, echovirus 21 (a rare serotype in previous studies), and coxsackievirus B5 were the predominant serotypes, which accounted for 21.19%, 18.31%, and 13.39% of the total isolates, respectively. The prevalence of the common serotypes varied across different border cities and periods. Phylogenetic analysis revealed the presence of multiple evolutionary lineages for E21, E6, and E30, some of which formed distinct branches. CONCLUSIONS: High diversity of enteroviruses and distinct lineages of predominant serotypes circulated in southwest China's border cities.


Assuntos
Infecções por Enterovirus , Enterovirus , Humanos , Cidades , Filogenia , China/epidemiologia , Infecções por Enterovirus/epidemiologia , Enterovirus Humano B/genética , Antígenos Virais/genética , Monitoramento Ambiental/métodos
7.
Sci Rep ; 14(1): 3212, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332009

RESUMO

Echovirus 25 (E25), a member of the Enterovirus B (EV-B) species, can cause aseptic meningitis (AM), viral meningitis (VM), and acute flaccid paralysis (AFP). However, systematic studies on the molecular epidemiology of E25, especially those concerning its evolution and recombination, are lacking. In this study, 18 strains of E25, isolated from seven provinces of China between 2009 and 2018, were collected based on the Chinese hand, foot, and mouth disease (HFMD) surveillance network, and 95 sequences downloaded from GenBank were also screened. Based on the phylogenetic analysis of 113 full-length VP1 sequences worldwide, globally occurring E25 strains were classified into 9 genotypes (A-I), and genotype F was the dominant genotype in the Chinese mainland. The average nucleotide substitution rate of E25 was 6.08 × 10-3 substitutions/site/year, and six important transmission routes were identified worldwide. Seventeen recombination patterns were determined, of which genotype F can be divided into 9 recombination patterns. A positive selector site was found in the capsid protein region of genotype F. Recombination analysis and pressure selection analysis for genotype F showed multiple recombination patterns and evolution characteristics, which may be responsible for it being the dominant genotype in the Chinese mainland. This study provides a theoretical basis for the subsequent prevention and control of E25.


Assuntos
Enterovirus Humano B , Doença de Mão, Pé e Boca , Humanos , Filogenia , Genótipo , China/epidemiologia , Enterovirus Humano B/genética , Recombinação Genética , Doença de Mão, Pé e Boca/epidemiologia
8.
Sci Total Environ ; 918: 170519, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38316300

RESUMO

We report the presence of Echovirus 11 (E11) in wastewater in Sicily (Southern Italy), since August 2022. Overall, the 5.4 % of sewage samples (7/130) collected in 2022 were positives for E11 and then the percentage of E11-positive sewage samples reached the value of 27.27(18/66) in the first semester of 2023. Phylogenetic analysis of VP1 sequences showed for most E11-positive samples (16/25: 64 %) close genetic correlation (98.4-99.4 % nucleotide identity) to E11 lineage 1 strains involved in recently reported severe neonatal infections.


Assuntos
Enterovirus , Águas Residuárias , Humanos , Recém-Nascido , Esgotos , Sicília , Filogenia , Enterovirus Humano B/genética
9.
J Virol ; 98(2): e0150423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289119

RESUMO

Coxsackievirus B3 (CVB3) is known to cause acute myocarditis and pancreatitis in humans. We investigated the microRNAs (miRNAs) that can potentially govern the viral life cycle by binding to the untranslated regions (UTRs) of CVB3 RNA. MicroRNA-22-3p was short-listed, as its potential binding site overlapped with the region crucial for recruiting internal ribosome entry site trans-acting factors (ITAFs) and ribosomes. We demonstrate that miR-22-3p binds CVB3 5' UTR, hinders recruitment of key ITAFs on viral mRNA, disrupts the spatial structure required for ribosome recruitment, and ultimately blocks translation. Likewise, cells lacking miR-22-3p exhibited heightened CVB3 infection compared to wild type, confirming its role in controlling infection. Interestingly, miR-22-3p level was found to be increased at 4 hours post-infection, potentially due to the accumulation of viral 2A protease in the early phase of infection. 2Apro enhances the miR-22-3p level to dislodge the ITAFs from the SD-like sequence, rendering the viral RNA accessible for binding of replication factors to switch to replication. Furthermore, one of the cellular targets of miR-22-3p, protocadherin-1 (PCDH1), was significantly downregulated during CVB3 infection. Partial silencing of PCDH1 reduced viral replication, demonstrating its proviral role. Interestingly, upon CVB3 infection in mice, miR-22-3p level was found to be downregulated only in the small intestine, the primary target organ, indicating its possible role in influencing tissue tropism. It appears miR-22-3p plays a dual role during infection by binding viral RNA to aid its life cycle as a viral strategy and by targeting a proviral protein to restrict viral replication as a host response.IMPORTANCECVB3 infection is associated with the development of end-stage heart diseases. Lack of effective anti-viral treatments and vaccines for CVB3 necessitates comprehensive understanding of the molecular players during CVB3 infection. miRNAs have emerged as promising targets for anti-viral strategies. Here, we demonstrate that miR-22-3p binds to 5' UTR and inhibits viral RNA translation at the later stage of infection to promote viral RNA replication. Conversely, as host response, it targets PCDH1, a proviral factor, to discourage viral propagation. miR-22-3p also influences CVB3 tissue tropism. Deciphering the multifaced role of miR-22-3p during CVB3 infection unravels the necessary molecular insights, which can be exploited for novel intervening strategies to curb infection and restrict viral pathogenesis.


Assuntos
Regiões 5' não Traduzidas , Infecções por Coxsackievirus , Enterovirus Humano B , Interações entre Hospedeiro e Microrganismos , MicroRNAs , Biossíntese de Proteínas , RNA Viral , Animais , Humanos , Camundongos , Regiões 5' não Traduzidas/genética , Antivirais/metabolismo , Infecções por Coxsackievirus/genética , Infecções por Coxsackievirus/virologia , Enterovirus Humano B/genética , Enterovirus Humano B/patogenicidade , Enterovirus Humano B/fisiologia , Células HeLa , Intestino Delgado/metabolismo , Intestino Delgado/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Tropismo Viral/genética , Replicação Viral/genética , Cisteína Endopeptidases/metabolismo , Protocaderinas/deficiência , Protocaderinas/genética , Miocardite , Interações entre Hospedeiro e Microrganismos/genética
10.
ACS Nano ; 18(5): 4241-4255, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38278522

RESUMO

Breast cancer's immunosuppressive environment hinders effective immunotherapy, but oncolytic viruses hold promise for addressing this challenge by targeting tumor cells and altering the microenvironment. Yet, neutralizing antibodies and immune clearance impede their clinical utility. This study explored microRNA-modified coxsackievirus B3 (miR-CVB3), an innovative oncolytic virus, and its potential in breast cancer treatment. It investigated miR-CVB3's impact on immune-related proteins and utilized exosomes as both protective shields and delivery carriers. Results demonstrated miR-CVB3's capacity to reshape immune-related protein profiles toward a more immunostimulatory state and enhance exosome-mediated immune cell activation. Notably, cancer cell-released exosomes encapsulating miR-CVB3 (ExomiR-CVB3) maintained its antitumor cytotoxicity and bolstered its immunostimulatory effects. Moreover, ExomiR-CVB3 shielded miR-CVB3 from neutralizing antibodies and rapid immune clearance when it was systemically administered. Building on these findings, ExomiR-CVB3 was engineered with the AS1411 aptamer and doxorubicin (ExomiR-CVB3/DoxApt), enhancing therapeutic efficacy. This notable approach, combining genomic modification, aptamer surface decoration, and doxorubicin addition, demonstrated safe delivery of CVB3 to cancer cells. Comprehensive in vitro and in vivo analyses revealed selective breast cancer cell targeting, cell death induction, and significant immune cell infiltration within the tumor microenvironment while sparing healthy organs. In summary, this study highlights ExomiR-CVB3/DoxApt as a pioneering breast cancer treatment strategy adaptable for diverse cancer types, offering a potent and versatile approach to reshaping cancer immunotherapy.


Assuntos
Neoplasias da Mama , Exossomos , MicroRNAs , Humanos , Feminino , Enterovirus Humano B/genética , Neoplasias da Mama/tratamento farmacológico , Imunização , MicroRNAs/genética , Anticorpos Neutralizantes , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Microambiente Tumoral
11.
J Med Virol ; 96(1): e29323, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38164047

RESUMO

Enteroviruses (EVs), single-stranded, positive-sense RNA viruses, can be classified into four species (A-D), which have previously been linked to a diverse range of disease manifestations and infections affecting the central nervous system. In the Enterovirus species B (EV-B), Echovirus type 11 (E11) has been observed to occasionally circulate in Taiwan, which was responsible for an epidemic of enterovirus infections in 2018. Here, 48 clinical specimens isolated in 2003, 2004, 2009, and 2018 were collected for the high-throughput sequencing. Notably, we identified 2018 Taiwanese strains having potential recombinations in the 3D gene, as well as one 2003 strain having a double recombination with E6 and Coxsackievirus B5 in the P2 and P3 regions, respectively. Additionally, one amino acid signature mutated from the Histidine (H) in throat swab specimens to the Tyrosine (Y) in cerebral spinal fluid specimens was detected at position 1496 (or 57) of the genomic coordinate (or 3A gene) to further demonstrate intra-host evolution in different organs. In conclusion, this study identifies potential intertypic recombination events and an intra-host signature mutation in E11 strains, isolated during a 2018 neurological disease outbreak in Taiwan, contributing to our understanding of its evolution and pathogenesis.


Assuntos
Infecções por Enterovirus , Enterovirus , Humanos , Filogenia , Enterovirus Humano B/genética , Enterovirus/genética , Infecções por Enterovirus/epidemiologia , Recombinação Genética
12.
Virus Res ; 339: 199250, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37865350

RESUMO

Evidence is emerging on the roles of long noncoding RNAs (lncRNAs) as regulatory factors in a variety of viral infection processes, but the mechanisms underlying their functions in coxsackievirus group B type3 (CVB3)-induced acute viral myocarditis have not been explicitly delineated. We previously demonstrated that CVB3 infection decreases miRNA-21 expression; however, lncRNAs that regulate the miRNA-21-dependent CVB3 disease process have yet to be identified. To evaluate lncRNAs upstream of miRNA-21, differentially expressed lncRNAs in CVB3-infected mouse hearts were identified by microarray analysis and lncRNA/miRNA-21 interactions were predicted bioinformatically. MEG3 was identified as a candidate miRNA-21-interacting lncRNA upregulated in CVB3-infected mouse hearts. MEG3 expression was verified to be upregulated in HeLa cells 48 h post CVB3 infection and to act as a competitive endogenous RNA of miRNA-21. MEG3 knockdown resulted in the upregulation of miRNA-21, which inhibited CVB3 replication by attenuating P38-MAPK signaling in vitro and in vivo. Knockdown of MEG3 expression before CVB3 infection inhibited viral replication in mouse hearts and alleviated cardiac injury, which improved survival. Furthermore, the knockdown of CREB5, which was predicted bioinformatically to function upstream of MEG3, was demonstrated to decrease MEG3 expression and CVB3 viral replication. This study identifies the function of the lncRNA MEG3/miRNA-21/P38 MAPK axis in the process of CVB3 replication, for which CREB5 could serve as an upstream modulator.


Assuntos
Infecções por Coxsackievirus , Enterovirus , MicroRNAs , Miocardite , RNA Longo não Codificante , Viroses , Animais , Humanos , Camundongos , Infecções por Coxsackievirus/complicações , Infecções por Coxsackievirus/genética , Enterovirus/genética , Enterovirus Humano B/genética , Enterovirus Humano B/metabolismo , Células HeLa/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , Miocardite/genética , Miocardite/metabolismo , Miocardite/virologia , RNA Longo não Codificante/genética , Replicação Viral
13.
Viruses ; 15(10)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37896753

RESUMO

Appendix has a distinct abundance of lymphatic cells and serves as a reservoir of microbiota which helps to replenish the large intestine with healthy flora. And it is the primary site of IgA induction, which shapes the composition of the intestinal microbiota. Recent population-based cohort studies report that appendectomy is associated with an increased risk of acute myocardial infarction and ischemic heart disease. Here, whether appendectomy has an effect on the occurrence and development of coxsackievirus B3 (CVB3)-induced viral myocarditis is studied. 103 TCID50 CVB3 was inoculated i.p. into appendectomized and sham-operated mice. RNA levels of viral load and pro-inflammatory cytokines in the hearts and the intestine were detected by RT-PCR. Compared to sham-operated mice, appendectomized mice exhibited attenuated cardiac inflammation and improved cardiac function, which is associated with a systemic reduced viral load. Appendectomized mice also displayed a reduction in cardiac neutrophil and macrophage infiltration and pro-inflammatory cytokine production. Mechanistically, we found that CVB3 induced an early and potent IL-10 production in the cecal patch at 2 days post infection. Appendectomy significantly decreased intestinal IL-10 and IL-10+ CD4+ Treg frequency which led to a marked increase in intestinal (primary entry site for CVB3) anti-viral IFN-γ+ CD4+ T and IFN-γ+ CD8+ T response and viral restriction, eventually resulting in improved myocarditis. Our results suggest that appendix modulates cardiac infection and inflammation through regulating intestinal IL-10+ Treg response.


Assuntos
Infecções por Coxsackievirus , Miocardite , Humanos , Camundongos , Animais , Interleucina-10 , Apendicectomia , Inflamação/complicações , Enterovirus Humano B/genética , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
14.
Microbiol Spectr ; 11(6): e0171123, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37819138

RESUMO

IMPORTANCE: This study is the first report of echovirus 5 (E5) associated with severe acute respiratory infection and obtained the first E5 whole-genome sequence in China. Combined with the sequences available in the GenBank database, the first genotyping, phylogenetic characteristics, recombination, and genetic evolutionary analysis of E5 was performed in this study. Our findings providing valuable information on global E5 molecular epidemiology.


Assuntos
Enterovirus Humano B , Recombinação Genética , Enterovirus Humano B/genética , Filogenia , China/epidemiologia , Genoma Viral
15.
Euro Surveill ; 28(39)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37768558

RESUMO

Enteroviruses are a common cause of seasonal childhood infections. The vast majority of enterovirus infections are mild and self-limiting, although neonates can sometimes develop severe disease. Myocarditis is a rare complication of enterovirus infection. Between June 2022 and April 2023, twenty cases of severe neonatal enteroviral myocarditis caused by coxsackie B viruses were reported in the United Kingdom. Sixteen required critical care support and two died. Enterovirus PCR on whole blood was the most sensitive diagnostic test. We describe the initial public health investigation into this cluster and aim to raise awareness among paediatricians, laboratories and public health specialists.


Assuntos
Infecções por Enterovirus , Enterovirus , Miocardite , Recém-Nascido , Humanos , Criança , Miocardite/diagnóstico , Miocardite/complicações , Infecções por Enterovirus/complicações , Infecções por Enterovirus/diagnóstico , Enterovirus/genética , Enterovirus Humano B/genética , Saúde Pública
16.
J Microbiol ; 61(9): 865-877, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37713068

RESUMO

Echoviruses belong to the genus Enterovirus in the Picornaviridae family, forming a large group of Enterovirus B (EV-B) within the Enteroviruses. Previously, Echoviruses were classified based on the coding sequence of VP1. In this study, we performed a reliable phylogenetic classification of 277 sequences isolated from 1992 to 2019 based on the full-length genomes of Echovirus. In this report, phylogenetic, phylogeographic, recombination, and amino acid variability landscape analyses were performed to reveal the evolutional characteristics of Echovirus worldwide. Echoviruses were clustered into nine major clades, e.g., G1-G9. Phylogeographic analysis showed that branches G2-G9 were linked to common strains, while the branch G1 was only linked to G5. In contrast, strains E12, E14, and E16 clustered separately from their G3 and G7 clades respectively, and became a separate branch. In addition, we identified a total of 93 recombination events, where most of the events occurred within the VP1-VP4 coding regions. Analysis of amino acid variation showed high variability in the a positions of VP2, VP1, and VP3. This study updates the phylogenetic and phylogeographic information of Echovirus and indicates that extensive recombination and significant amino acid variation in the capsid proteins drove the emergence of new strains.


Assuntos
Enterovirus Humano B , Enterovirus , Enterovirus Humano B/genética , Filogenia , Proteínas do Capsídeo/genética , Aminoácidos/genética
17.
Virol J ; 20(1): 215, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730633

RESUMO

BACKGROUND: Echovirus 30 is prone to cause hand-foot-and-mouth disease in infants and children. However, molecular epidemiologic information on the spread of E30 in southwestern China remains limited. In this study, we determined and analyzed the whole genomic sequences of E30 strains isolated from the stools of patients with hand-foot-and-mouth disease in Yunnan Province, China, in 2019. METHODS: E30 isolates were obtained from fecal samples of HFMD patients. The whole genomes were sequenced by segmented PCR and analyzed for phylogeny, mutation and recombination. MEGA and DNAStar were used to align the present isolates with the reference strains. The VP1 sequence of the isolates were analyzed for selection pressure using datamonkey server. RESULTS: The complete genome sequences of four E30 were obtained from this virus isolation. Significant homologous recombination signals in the P2-3'UTR region were found in all four isolates with other serotypes. Phylogenetic analysis showed that the four E30 isolates belonged to lineage H. Comparison of the VP1 sequences of these four isolates with other E30 reference strains using three selection pressure analysis models FUBAR, FEL, and MEME, revealed a positive selection site at 133rd position. CONCLUSIONS: This study extends the whole genome sequence of E30 in GenBank, in which mutations and recombinations have driven the evolution of E30 and further improved and enriched the genetic characteristics of E30, providing fundamental data for the prevention and control of diseases caused by E30. Furthermore, we demonstrated the value of continuous and extensive surveillance of enterovirus serotypes other than the major HFMD-causing viruses.


Assuntos
Febre Aftosa , Doença de Mão, Pé e Boca , Criança , Animais , Lactente , Humanos , Filogenia , China/epidemiologia , Enterovirus Humano B/genética , Doença de Mão, Pé e Boca/epidemiologia
18.
Virol Sin ; 38(5): 699-708, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37543144

RESUMO

Long noncoding RNAs (lncRNAs) modulate many aspects of biological and pathological processes. Recent studies have shown that host lncRNAs participate in the antiviral immune response, but functional lncRNAs in coxsackievirus B5 (CVB5) infection remain unknown. Here, we identified a novel cytoplasmic lncRNA, LINC1392, which was highly inducible in CVB5 infected RD cells in a time- and dose-dependent manner, and also can be induced by the viral RNA and IFN-ß. Further investigation showed that LINC1392 promoted several important interferon-stimulated genes (ISGs) expression, including IFIT1, IFIT2, and IFITM3 by activating MDA5, thereby inhibiting the replication of CVB5 in vitro. Mechanistically, LINC1392 bound to ELAV like RNA binding protein 1 (ELAVL1) and blocked ELAVL1 interaction with MDA5. Functional study revealed that the 245-835 â€‹nt locus of LINC1392 exerted the antiviral effect and was also an important site for ELAVL1 binding. In mice, LINC1392 could inhibit CVB5 replication and alleviated the histopathological lesions of intestinal and brain tissues induced by viral infection. Our findings collectively reveal that the novel LINC1392 acts as a positive regulator in the IFN-I signaling pathway against CVB5 infection. Elucidating the underlying mechanisms on how lncRNA regulats the host innate immunity response towards CVB5 infection will lay the foundation for antiviral drug research.


Assuntos
Interferon Tipo I , RNA Longo não Codificante , Animais , Camundongos , Enterovirus Humano B/genética , Interações Hospedeiro-Patógeno/genética , Imunidade Inata , Interferon Tipo I/genética , RNA Longo não Codificante/genética , Transdução de Sinais/genética
19.
Antiviral Res ; 217: 105702, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37604350

RESUMO

Coxsackievirus B3 (CVB3) is one of the major pathogens of viral myocarditis, lacking specific anti-virus therapeutic options. Increasing evidence has shown an important involvement of the miR-17-92 cluster both in virus infection and cardiovascular development and diseases, while its role in CVB3-induced viral myocarditis remains unclear. In this study, we found that miR-19a and miR-19b were significantly up-regulated in heart tissues of CVB3-infected mice and exerted a significant facilitatory impact on CVB3 biosynthesis and replication, with a more pronounced effect observed in miR-19b, by targeting the encoding region of viral RNA-dependent RNA polymerase 3D (RdRp, 3Dpol) to increase viral genomic RNA stability. The virus-promoting effects were nullified by the synonymous mutations in the viral 3Dpol-encoding region, which corresponded to the seed sequence shared by miR-19a and miR-19b. In parallel, treatment with miR-19b antagomir not only resulted in a noteworthy suppression of CVB3 replication and infection in infected cells, but also demonstrated a significant reduction in the cardiac viral load of CVB3-infected mice, resulting in a considerable alleviation of myocarditis. Collectively, our study showed that CVB3-induced cardiac miR-19a/19b contributed to viral myocarditis via facilitating virus biosynthesis and replication, and targeting miR-19a/19b might represent a novel therapeutic target for CVB3-induced viral myocarditis.


Assuntos
Enterovirus Humano B , MicroRNAs , Miocardite , Miocárdio , Replicação Viral , Enterovirus Humano B/genética , Enterovirus Humano B/fisiologia , Miocardite/metabolismo , Miocardite/virologia , Miocárdio/metabolismo , Miocárdio/patologia , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Humanos , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Genoma Viral , RNA Polimerase Dependente de RNA/genética , Antagomirs/farmacologia , Camundongos Endogâmicos BALB C , Células HEK293 , Células HeLa , Camundongos , Animais
20.
PLoS One ; 18(8): e0290584, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37639390

RESUMO

Enterovirus B (EVB) is a common species of enterovirus, mainly consisting of Echovirus (Echo) and Coxsackievirus B (CVB). The population is generally susceptible to EVB, especially among children. Since the 21st century, EVB has been widely prevalent worldwide, and can cause serious diseases, such as viral meningitis, myocarditis, and neonatal sepsis. By using cryo-electron microscopy, the three-dimensional (3D) structures of EVB and their uncoating receptors (FcRn and CAR) have been determined, laying the foundation for the study of viral pathogenesis and therapeutic antibodies. A limited number of epitopes bound to neutralizing antibodies have also been determined. It is unclear whether additional epitopes are present or whether epitope mutations play a key role in molecular evolutionary history and epidemics, as in influenza and SARS-CoV-2. In the current study, the conformational epitopes of six representative EVB serotypes (E6, E11, E30, CVB1, CVB3 and CVB5) were systematically predicted by bioinformatics-based epitope prediction algorithm. We found that their epitopes were distributed into three clusters, where the VP1 BC loop, C-terminus and VP2 EF loop were the main regions of EVB epitopes. Among them, the VP1 BC loop and VP2 EF loop may be the key epitope regions that determined the use of the uncoating receptors. Further molecular evolution analysis based on the VP1 and genome sequences showed that the VP1 C-terminus and VP2 EF loop, as well as a potential "breathing epitope" VP1 N-terminus, were common mutation hotspot regions, suggesting that the emergence of evolutionary clades was driven by epitope mutations. Finally, footprints showed mutations were located on or near epitopes, while mutations on the receptor binding sites were rare. This suggested that EVB promotes viral epidemics by breaking the immune barrier through epitope mutations, but the mutations avoided the receptor binding sites. The bioinformatics study of EVB epitopes may provide important information for the monitoring and early warning of EVB epidemics and developing therapeutic antibodies.


Assuntos
COVID-19 , Capsídeo , Humanos , Microscopia Crioeletrônica , SARS-CoV-2 , Proteínas do Capsídeo , Enterovirus Humano B/genética , Epitopos/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...