Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Virology ; 590: 109906, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38096748

RESUMO

The current study reports the in-depth analysis of the epidemiology, risk factors, and molecular characterization of a complete genome of Enterovirus G (EV-G) isolated from Indian pigs. We analysed several genes of EV-G isolates collected from various provinces in India, using phylogenetic analysis, recombination detection, SimPlot, and selection pressure analyses. Our analysis of 534 porcine faecal samples revealed that 11.61% (62/534) of the samples were positive for EV-G. While the G6 genotype was the most predominant, our findings showed that Indian EV-G strains also clustered with EV-G types G1, G6, G8, and G9. Furthermore, Indian EV-G strains exhibited the highest nucleotide similarity with Vietnamese (81.3%) and Chinese EV-G isolates (80.3%). Moreover, we identified a recombinant Indian EV-G strain with a putative origin from a Japanese isolate and South Korean EV-G isolate. In summary, our findings provide significant insights into the epidemiology, genetic diversity, and evolution of EV-G in India.


Assuntos
Infecções por Enterovirus , Enterovirus , Enterovirus Suínos , Suínos , Animais , Enterovirus Suínos/genética , Infecções por Enterovirus/epidemiologia , Infecções por Enterovirus/veterinária , Infecções por Enterovirus/genética , Filogenia , Sequenciamento Completo do Genoma , Genótipo , Fatores de Risco , Genoma Viral , Enterovirus/genética
2.
Virology ; 588: 109899, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37862828

RESUMO

Porcine enterovirus G (EV-G) is endogenous to most pig farming countries worldwide. Reports that a papain-like protease (PLP) gene has been naturally inserted into the 2C/3A junction region of the EV-G genome, has increased the potential public health threats from this virus. We constructed a full-length infectious cDNA clone of EV-G, CH/17GXQZ/2017, in order to determine the packaging capacity at the 2C/3A insertion site. Subsequently, recombinants viruses containing the coding tags, GFP, iLOV and His at the 2C/3A junction region, were synthesized. The infectious virus was successfully rescued only with the insertion of the His-tag, which displayed similar virological and molecular properties to its parental strain. This study determined the packaging capacity of the 2C/3A insertion site, and it provides a practical tool for studying the functions and pathogenic mechanisms of EV-G in pigs.


Assuntos
Enterovirus Suínos , Suínos , Animais , Enterovirus Suínos/genética , Sequência de Bases , Genoma Viral , Genômica
3.
Microbiol Spectr ; 11(6): e0264323, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37830808

RESUMO

IMPORTANCE: Enterovirus G is a species of positive-sense single-stranded RNA viruses associated with several mammalian diseases. The porcine enterovirus strains isolated here were chimeric viruses with the PLCP gene of porcine torovirus, which grouped together with global EV-G1 strains. The isolated EV-G strain could infect various cell types from different species, suggesting its potential cross-species infection risk. Animal experiment showed the pathogenic ability of the isolated EV-G to piglets. Additionally, the EV-Gs were widely distributed in the swine herds. Our findings suggest that EV-G may have evolved a novel mechanism for broad tropism, which has important implications for disease control and prevention.


Assuntos
Infecções por Enterovirus , Enterovirus , Enterovirus Suínos , Doenças dos Suínos , Suínos , Animais , Enterovirus Suínos/genética , Infecções por Enterovirus/veterinária , Virulência , Filogenia , Enterovirus/genética , Mamíferos
4.
Viruses ; 15(8)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37632087

RESUMO

Enterovirus G (EV-G) is prevalent in pig populations worldwide, and a total of 20 genotypes (G1 to G20) have been confirmed. Recently, recombinant EV-Gs carrying the papain-like cysteine protease (PLCP) gene of porcine torovirus have been isolated or detected, while their pathogenicity is poorly understood. In this study, an EV-G17-PLCP strain, 'EV-G/YN23/2022', was isolated from the feces of pigs with diarrhea, and the virus replicated robustly in numerous cell lines. The isolate showed the highest complete genome nucleotide (87.5%) and polyprotein amino acid (96.6%) identity in relation to the G17 strain 'IShi-Ya4' (LC549655), and a possible recombination event was detected at the 708 and 3383 positions in the EV-G/YN23/2022 genome. EV-G/YN23/2022 was nonlethal to piglets, but mild diarrhea, transient fever, typical skin lesions, and weight gain deceleration were observed. The virus replicated efficiently in multiple organs, and the pathological lesions were mainly located in the small intestine. All the challenged piglets showed seroconversion for EV-G/YN23/2022 at 6 to 9 days post-inoculation (dpi), and the neutralization antibody peaked at 15 dpi. The mRNA expression levels of IL-6, IL-18, IFN-α, IFN-ß, and ISG-15 in the peripheral blood mononuclear cells (PBMCs) were significantly up-regulated during viral infection. This is the first documentation of the isolation and pathogenicity evaluation of the EV-G17-PLCP strain in China. The results may advance our understanding of the evolution characteristics and pathogenesis of EV-G-PLCP.


Assuntos
Enterovirus Suínos , Torovirus , Animais , Suínos , Papaína/genética , Leucócitos Mononucleares , Virulência , China , Calpaína , Diarreia
5.
Viruses ; 15(8)2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37632093

RESUMO

Porcine sapelovirus (PSV) is a ubiquitous virus in farmed pigs that is associated with SMEDI syndrome, polioencephalomyelitis, and diarrhea. However, there are few reports on the prevalence and molecular characterization of PSV in Fujian Province, Southern China. In this study, the prevalence of PSV and a poetical combinative strain PSV2020 were characterized using real-time PCR, sequencing, and bioinformatics analysis. As a result, an overall sample prevalence of 30.8% was detected in 260 fecal samples, and a farm prevalence of 76.7% was observed in 30 Fujian pig farms, from 2020 to 2022. Noteably, a high rate of PSV was found in sucking pigs. Bioinformatics analysis showed that the full-length genome of PSV2020 was 7550 bp, and the genetic evolution of its ORF region was closest to the G1 subgroup, which was isolated from Asia and America; the similarity of nucleotides and amino acids to other PSVs was 59.5~88.7% and 51.7~97.0%, respectively. However, VP1 genetic evolution analysis showed a distinct phylogenetic topology from the ORF region; PSV2020 VP1 was closer to the DIAPD5469-10 strain isolated from Italy than strains isolated from Asia and America, which comprise the G1 subgroup based on the ORF region. Amino acid discrepancy analysis illustrated that the PSV2020 VP1 gene inserted twelve additional nucleotides, corresponding to four additional amino acids (STAE) at positions 898-902 AAs. Moreover, a potential recombination signal was observed in the 2A coding region, near the 3' end of VP1, owing to recombination analysis. Additionally, 3D genetic evolutionary analysis showed that all reference strains demonstrated, to some degree, regional conservation. These results suggested that PSV was highly prevalent in Fujian pig farms, and PSV2020, a PSV-1 genotype strain, showed gene diversity and recombination in evolutionary progress. This study also laid a scientific foundation for the investigation of PSV epidemiology, molecular genetic characteristics, and vaccine development.


Assuntos
Aminoácidos , Enterovirus Suínos , Suínos , Animais , Prevalência , Fazendas , Filogenia , China/epidemiologia , Variação Genética , Recombinação Genética
6.
Virus Res ; 335: 199185, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532142

RESUMO

Enterovirus G belongs to the family Picornaviridae and are associated with a variety of animal diseases. We isolated and characterized a novel EV-G2 strain, CHN-SCMY2021, the first genotype 2 strain isolated in China. CHN-SCMY2021 is about 25 nm diameter with morphology typical of picornaviruses and its genome is 7341 nucleotides. Sequence alignment and phylogenetic analysis based on VP1 indicated that this isolate is a genotype 2 strain. The whole genome similarity between CHN-SCMY2021 and other EV-G genotype 2 strains is 78.3-86.4%, the greatest similarity is to EVG/Porcine/JPN/Iba26-506/2014/G2 (LC316792.1). Recombination analysis indicated that CHN-SCMY2021 resulted from recombination between 714,171/CaoLanh_VN (KT265894.2) and LP 54 (AF363455.1). Except for ST cells, CHN-SCMY2021 has a broad spectrum of cellular adaptations, which are susceptible to BHK-21, PK-15, IPEC-J2, LLC-PK and Vero cells. In piglets, CHN-SCMY2021 causes mild diarrhea and thinning of the intestinal wall. The virus was mainly distributed to intestinal tissue but was also found in heart, liver, spleen, lung, kidney, brain, and spinal cord. CHN-SCMY2021 is the first systematically characterized EV-G genotype 2 strain from China, our results enrich the information on the epidemiology, molecular evolution and pathogenicity associated with EV-G.


Assuntos
Enterovirus Suínos , Animais , Suínos , Enterovirus Suínos/classificação , Enterovirus Suínos/genética , Enterovirus Suínos/patogenicidade , Filogenia , Genoma Viral , Recombinação Genética , Células Vero , Chlorocebus aethiops , Diarreia/veterinária , Diarreia/virologia , Intestinos/patologia , Intestinos/virologia
7.
Vet Microbiol ; 280: 109718, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36871521

RESUMO

The interferon-delta family was first reported in domestic pigs and belongs to the type I interferon (IFN-I) family. The enteric viruses could cause diarrhea in newborn piglets with high morbidity and mortality. We researched the function of the porcine IFN-delta (PoIFN-δ) family in the porcine intestinal epithelial cells (IPEC-J2) cells infected with porcine epidemic diarrhea virus (PEDV). Our study found that all PoIFN-δs shared a typical IFN-I signature and could be divided into five branches in the phylogenic tree. Different strains of PEDV could induce typical IFN transitorily, and the virulent strain AH2012/12 had the strongest induction of porcine IFN-δ and IFN-alpha (PoIFN-α) in the early stage of infection. In addition, it was found that PoIFN-δ5/6/9/11 and PoIFN-δ1/2 were highly expressed in the intestine. PoIFN-δ5 had a better antiviral effect on PEDV compared to PoIFN-δ1 due to its higher induction of ISGs. PoIFN-δ1 and PoIFN-δ5 also activated JAK-STAT and IRS signaling. For other enteric viruses, transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and porcine rotavirus (PoRV), PoIFN-δ1 and PoIFN-δ5 both showed an excellent antiviral effect. Transcriptome analyses uncovered the differences in host responses to PoIFN-α and PoIFN-δ5 and revealed thousands of differentially expressed genes were mainly enriched in the inflammatory response, antigen processing and presentation, and other immune-related pathways. PoIFN-δ5 would be a potential antiviral drug, especially against porcine enteric viruses. These studies were the first to report the antiviral function against porcine enteric viruses and broaden the new acquaintances of this type of interferon though not novelly discovered.


Assuntos
Infecções por Coronavirus , Enterovirus Suínos , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Suínos , Antivirais/farmacologia , Antivirais/uso terapêutico , Transcriptoma , Intestinos , Células Epiteliais , Interferon-alfa/farmacologia , Perfilação da Expressão Gênica/veterinária , Infecções por Coronavirus/veterinária
8.
J Vet Med Sci ; 85(2): 252-265, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543238

RESUMO

Type 1 recombinant enterovirus G (EV-G), which carries the papain-like cysteine protease (PLCP) gene of torovirus between its 2C/3A regions, and type 2 recombinant EV-G, which carries the torovirus PLCP gene with its flanking regions having non-EV-G sequences in place of the viral structural genes, have been detected in pig farms in several countries. In a previous study, we collected 222 fecal samples from 77 pig farms from 2104 to 2016 and detected one type 2 recombinant EV-G genome by metagenomics sequencing. In this study, we reanalyzed the metagenomic data and detected 11 type 2 recombinant EV-G genomes. In addition, we discovered new type 2 recombinant EV-G genomes of the two strains from two pig farms samples in 2018 and 2019. Thus, we identified the genomes of 13 novel type 2 recombinant EV-Gs isolated from several pig farms in Japan. Type 2 recombinant EV-G has previously been detected only in neonatal piglets. The present findings suggest that type 2 recombinant EV-G replicates in weaning piglets and sows. The detection of type 1 recombinant EV-Gs and type 2 recombinant EV-Gs at 3-year and 2-year intervals, respectively, from the same pig farm suggests that the viruses were persistently infecting or circulating in these farms.


Assuntos
Infecções por Enterovirus , Enterovirus Suínos , Doenças dos Suínos , Suínos , Animais , Feminino , Enterovirus Suínos/genética , Fazendas , Infecções por Enterovirus/veterinária , Japão , Recombinação Genética , Genoma Viral , Filogenia
9.
Viruses ; 14(7)2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35891398

RESUMO

Swine enteric viruses are a major cause of piglet diarrhea, causing a devastating impact on the pork industry. To further understand the molecular epidemiology and evolutionary diversity of swine enteric viruses, we carried out a molecular epidemiological investigation of swine enteric viruses (PEDV, PDCoV, PoRVA, and TGEV) on 7107 samples collected from pig farms in south-central China. The results demonstrated that PEDV is the predominant pathogen causing piglet diarrhea, and its infection occurs mainly in relatively cold winter and spring in Hunan and Hubei provinces. The positive rate of PEDV showed an abnormal increase from 2020 to 2021, and that of PoRVA and PDCoV exhibited gradual increases from 2018 to 2021. PEDV-PoRVA and PEDV-PDCoV were the dominant co-infection modes. A genetic evolution analysis based on the PEDV S1 gene and ORF3 gene revealed that the PEDV GII-a is currently epidemic genotype, and the ORF3 gene of DY2020 belongs to a different clade relative to other GII-a strains isolated in this study. Overall, our results indicated that the variant PEDV GII-a is the main pathogen of piglet diarrhea with a trend of outbreak. G9 is the dominant PoRVA genotype and has the possibility of outbreak as well. It is therefore critical to strengthen the surveillance of PEDV and PoRVA, and to provide technical reserves for the prevention and control of piglet diarrhea.


Assuntos
Infecções por Coronavirus , Enterovirus Suínos , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , China/epidemiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Diarreia/epidemiologia , Diarreia/veterinária , Filogenia , Suínos , Doenças dos Suínos/epidemiologia
10.
Virus Res ; 315: 198767, 2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35421434

RESUMO

Swine could serve as a natural reservoir for a large variety of viruses, including potential zoonotic enteric viruses. The presence of viruses with high genetic similarity between porcine and human strains may result in the emergence of zoonotic or xenozoonotic infections. Furthermore, the globalization and intensification of swine industries exacerbate the transmission and evolution of zoonotic viruses among swine herds and individuals working in swine-related occupations. To effectively prevent the public health risks posed by zoonotic swine enteric viruses, designing, and implementing a comprehensive measure for early diagnosis, prevention, and mitigation, requires interdisciplinary a collaborative ''One Health" approach from veterinarians, environmental and public health professionals, and the swine industry. In this paper, we reviewed the current knowledge of selected potential zoonotic swine enteric viruses and explored swine intensive production and its associated public health risks.


Assuntos
Enterovirus Suínos , Doenças dos Suínos , Vírus , Animais , Saúde Pública , Suínos
11.
Viruses ; 13(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34960807

RESUMO

A commercial pig farm with no history of porcine circovirus 2 (PCV2) or porcine reproductive and respiratory syndrome virus (PRRSV) repeatedly reported a significant reduction in body weight gain and wasting symptoms in approximately 20-30% of the pigs in the period between three and six weeks after weaning. As standard clinical interventions failed to tackle symptomatology, viral metagenomics were used to describe and monitor the enteric virome at birth, 3 weeks, 4 weeks, 6 weeks, and 9 weeks of age. The latter four sampling points were 7 days, 3 weeks, and 6 weeks post weaning, respectively. Fourteen distinct enteric viruses were identified within the herd, which all have previously been linked to enteric diseases. Here we show that wasting is associated with alterations in the enteric virome of the pigs, characterized by: (1) the presence of enterovirus G at 3 weeks of age, followed by a higher prevalence of the virus in wasting pigs at 6 weeks after weaning; (2) rotaviruses at 3 weeks of age; and (3) porcine sapovirus one week after weaning. However, the data do not provide a causal link between specific viral infections and the postweaning clinical problems on the farm. Together, our results offer evidence that disturbances in the enteric virome at the preweaning stage and early after weaning have a determining role in the development of intestinal barrier dysfunctions and nutrient uptake in the postweaning growth phase. Moreover, we show that the enteric viral load sharply increases in the week after weaning in both healthy and wasting pigs. This study is also the first to report the dynamics and co-infection of porcine rotavirus species and porcine astrovirus genetic lineages during the first 9 weeks of the life of domestic pigs.


Assuntos
Enterovirus Suínos/isolamento & purificação , Intestinos/virologia , Rotavirus/isolamento & purificação , Sapovirus/isolamento & purificação , Doenças dos Suínos/virologia , Viroma/fisiologia , Síndrome de Emaciação/veterinária , Animais , Astroviridae/isolamento & purificação , Feminino , Masculino , Metagenômica , Suínos , Síndrome de Emaciação/virologia , Desmame
12.
BMC Vet Res ; 17(1): 277, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34399753

RESUMO

BACKGROUND: Enterovirus G (EV-G) causes subclinical infections and is occasionally associated with diarrhea in pigs. In this study, we conducted a cross-sectional survey of EV-G in pigs from 73 pig farms in 20 provinces of Thailand from December 2014 to January 2018. RESULTS: Our results showed a high occurrence of EV-Gs which 71.6 % of fecal and intestinal samples (556/777) and 71.2 % of pig farms (52/73) were positive for EV-G by RT-PCR specific to the 5'UTR. EV-Gs could be detected in all age pig groups, and the percentage positivity was highest in the fattening group (89.7 %), followed by the nursery group (89.4 %). To characterize the viruses, 34 EV-G representatives were characterized by VP1 gene sequencing. Pairwise sequence comparison and phylogenetic analysis showed that Thai-EV-Gs belonged to the EV-G1, EV-G3, EV-G4, EV-G8, EV-G9 and EV-G10 genotypes, among which the EV-G3 was the predominant genotype in Thailand. Co-infection with different EV-G genotypes or with EV-Gs and porcine epidemic diarrhea virus (PEDV) or porcine deltacoronavirus (PDCoV) on the same pig farms was observed. CONCLUSIONS: Our results confirmed that EV-G infection is endemic in Thailand, with a high genetic diversity of different genotypes. This study constitutes the first report of the genetic characterization of EV-GS in pigs in Thailand.


Assuntos
Enterovirus Suínos/genética , Doenças dos Suínos/virologia , Envelhecimento , Animais , Enterovirus Suínos/isolamento & purificação , Fazendas , Fezes/virologia , Feminino , Variação Genética , Masculino , Filogenia , Suínos , Doenças dos Suínos/epidemiologia , Tailândia/epidemiologia
13.
Arch Virol ; 166(10): 2683-2692, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34268639

RESUMO

Porcine sapelovirus (PSV) infections have been associated with a wide spectrum of symptoms, ranging from asymptomatic infection to clinical signs including diarrhoea, pneumonia, reproductive disorders, and polioencephalomyelitis. Although it has a global distribution, there have been relatively few studies on PSV in domestic animals. We isolated a PSV strain, SHCM2019, from faecal specimens from swine, using PK-15 cells. To investigate its molecular characteristics and pathogenicity, the genomic sequence of strain SHCM2019 was analysed, and clinical manifestations and pathological changes occurring after inoculation of neonatal piglets were observed. The virus isolated using PK-15 cells was identified as PSV using RT-PCR, transmission electron microscopy (TEM), and immunofluorescence assay (IFA). Sequencing results showed that the full-length genome of the SHCM2019 strain was 7,567 nucleotides (nt) in length, including a 27-nucleotide poly(A) tail. Phylogenetic analysis demonstrated that this virus was a PSV isolate belonging to the Chinese strain cluster. Recombination analysis indicated that there might be a recombination breakpoint upstream of the 3D region of the genome. Pathogenicity experiments demonstrated that the virus isolate could cause diarrhoea and pneumonia in piglets. In breif, a recombinant PSV strain, SHCM2019, was isolated and shown to be pathogenic. Our results may provide a reference for future research on the pathogenic mechanism and evolutionary characteristics of PSV.


Assuntos
Infecções por Enterovirus/veterinária , Enterovirus Suínos/genética , Enterovirus Suínos/isolamento & purificação , Doenças dos Suínos/virologia , Animais , Linhagem Celular , China , Infecções por Enterovirus/patologia , Infecções por Enterovirus/virologia , Enterovirus Suínos/classificação , Enterovirus Suínos/patogenicidade , Fezes/virologia , Genoma Viral/genética , Filogenia , Recombinação Genética , Suínos , Doenças dos Suínos/patologia , Virulência
14.
Braz J Microbiol ; 52(3): 1617-1622, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34024036

RESUMO

Porcine encephalomyelitis can be associated with many etiologies, including viral agents, such as Porcine teschovirus (PTV), Porcine sapelovirus (PSV), and Porcine astrovirus (PoAstV). In this study, we investigated the presence of these viruses in a neurological disease outbreak in a swine farm in Southern Brazil. The piglet production farm unity had 1200 weaning piglets, and 40 piglets with neurological signs such as motor incoordination, paresis, and paralysis of hind limbs, with an evolution time of approximately 4 days. Among these, 10 piglets were submitted to postmortem examination. Gross lesions were restricted to a mild enlargement of the nerve roots and ganglia of spinal cord segments. The microscopic lesions were characterized by nonsuppurative encephalomyelitis and ganglioneuritis with evident neuronal degeneration and necrosis. Samples of the central nervous system (CNS), cerebrospinal fluid, and feces were collected and submitted to molecular analysis. PTV was identified in all samples of the CNS, while eight of the piglets were also positive for PSV, and seven were positive for Porcine enterovirus (EV-G). PoAstV was identified in a pool of feces of healthy animals used as controls. This study demonstrates the occurrence of encephalomyelitis associated with PTV on a swine farm in Southern Brazil, as well as the presence of other viruses such as PSV, EV-G, and PoAstV in the swineherd. Sequences of the fragments that were previously amplified by PCR showed a high similarity to PTV 6. Herein, we describe the first case report of severe swine polioencephalomyelitis associated with PTV in South America.


Assuntos
Encefalomielite , Enterovirus Suínos , Infecções por Picornaviridae , Picornaviridae , Doenças dos Suínos , Teschovirus , Animais , Brasil/epidemiologia , Encefalomielite/epidemiologia , Encefalomielite/veterinária , Enterovirus Suínos/genética , Fazendas , Filogenia , Picornaviridae/genética , Infecções por Picornaviridae/epidemiologia , Infecções por Picornaviridae/veterinária , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia , Teschovirus/genética
15.
Arch Virol ; 165(12): 2909-2914, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32951133

RESUMO

Two and three genotypes of enterovirus G (EV-G) carrying a papain-like cysteine protease (PL-CP) sequence were detected on two pig farms and classified into genotypes G1 and G10, and G1, G8, and G17, respectively, based on VP1 sequences. A G10 EV-G virus bearing a PL-CP sequence was detected for the first time. Phylogenetic analysis of the P2 and P3 regions grouped the viruses by farm with high sequence similarity. Furthermore, clear recombination break points were detected in the 2A region, suggesting that PL-CP EV-G-containing strains gained sequence diversity through recombination events among the multiple circulating EV-G genotypes on the farms.


Assuntos
Cisteína Proteases/genética , Infecções por Enterovirus/veterinária , Enterovirus Suínos/genética , Genoma Viral , Recombinação Genética , Animais , Proteínas do Capsídeo/genética , Infecções por Enterovirus/epidemiologia , Infecções por Enterovirus/virologia , Enterovirus Suínos/enzimologia , Fezes/virologia , Variação Genética , Genótipo , Japão , Filogenia , Análise de Sequência de DNA , Sus scrofa , Proteínas Virais/genética
16.
Pathog Dis ; 78(5)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32691821

RESUMO

Porcine enterovirus G (EV-G) and teschovirus (PTV) generally cause asymptomatic infections. Although both viruses have been reported from various countries, they are rarely detected from India. To detect these viruses in Western India, fecal samples (n = 26) of diarrheic piglets aged below three months from private pig farms near Pune (Maharashtra) were collected. The samples were screened by reverse transcription-polymerase chain reaction using conserved enterovirus specific primers from 5' untranslated region. For genetic characterization of detected EV-G strain, nearly complete genome, and for PTV, partial VP1 gene were sequenced. EV-G strain showed the highest identity in a VP1 gene at nucleotide (78.61%) and amino acid (88.65%) level with EV-G15, prototype strain. However, its complete genome was homologous with the nucleotide (78.38% identity) and amino acid (91.24% identity) level to Ishi-Ka2 strain (LC316832), unassigned EV-G genotype detected from Japan. The nearly complete genome of EV-G15 consisted of 7398 nucleotides excluding the poly(A) tail and has an open reading frame that encodes a 2170 amino acid polyprotein. Genetic analysis of the partial VP1 gene of teschovirus identified porcine teschovirus 4 (PTV-4) and putative PTV-17 genotype. To the best of our knowledge, this is the first report on nearly full genome characterization of EV-G15, and detection of PTV-4 and putative PTV-17 genotypes from India. Further, detection and characterization of porcine enteroviruses are needed for a comprehensive understanding of their genetic diversity and their association with symptomatic infections from other geographical regions of India.


Assuntos
Enterovirus Suínos/classificação , Enterovirus Suínos/genética , Teschovirus/classificação , Teschovirus/genética , Regiões 5' não Traduzidas , Animais , Infecções Assintomáticas/epidemiologia , DNA Viral , Infecções por Enterovirus/veterinária , Infecções por Enterovirus/virologia , Enterovirus Suínos/isolamento & purificação , Fezes/virologia , Variação Genética , Genótipo , Índia/epidemiologia , Tipagem Molecular , Fases de Leitura Aberta , Filogenia , Infecções por Picornaviridae/veterinária , Infecções por Picornaviridae/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Suínos/virologia , Doenças dos Suínos/virologia , Teschovirus/isolamento & purificação , Sequenciamento Completo do Genoma
17.
J Gen Virol ; 101(8): 840-852, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32553066

RESUMO

The genetic diversity of enterovirus G (EV-G) was investigated in the wild-boar population in Japan. EV-G-specific reverse transcription PCR demonstrated 30 (37.5 %) positives out of 80 faecal samples. Of these, viral protein 1 (VP1) fragments of 20 samples were classified into G1 (3 samples), G4 (1 sample), G6 (2 samples), G8 (4 samples), G11 (1 sample), G12 (7 samples), G14 (1 sample) and G17 (1 sample), among which 11 samples had a papain-like cysteine protease (PL-CP) sequence, believed to be the first discoveries in G1 (2 samples) or G17 (1 sample) wild-boar EV-Gs, and in G8 (2 samples) or G12 (6 samples) EV-Gs from any animals. Sequences of the non-structural protein regions were similar among EV-Gs possessing the PL-CP sequence (PL-CP EV-Gs) regardless of genotype or origin, suggesting the existence of a common ancestor for these strains. Interestingly, for the two G8 and two G12 samples, the genome sequences contained two versions, with or without the PL-CP sequence, together with the homologous 2C/PL-CP and PL-CP/3A junction sequences, which may explain how the recombination and deletion of the PL-CP sequences occured in the PL-CP EV-G genomes. These findings shed light on the genetic plasticity and evolution of EV-G.


Assuntos
Proteínas do Capsídeo/genética , Cisteína Proteases/genética , Infecções por Enterovirus/virologia , Fezes/virologia , Papaína/genética , Sus scrofa/virologia , Animais , Enterovirus Suínos , Variação Genética/genética , Genoma Viral/genética , Genótipo , Japão , Filogenia , Recombinação Genética/genética , Suínos , Doenças dos Suínos/virologia
18.
Arch Virol ; 165(2): 355-366, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31845156

RESUMO

Picornaviruses infect a wide range of mammals including livestock such as cattle and swine. As with other picornavirus genera such as Aphthovirus, there is emerging evidence of a significant economic impact of livestock infections caused by members of the genera Enterovirus and Kobuvirus. While the human-infecting enteroviruses and kobuviruses have been intensively studied during the past decades in great detail, research on livestock-infecting viruses has been mostly limited to the genomic characterization of the viral strains identified worldwide. Here, we extend our previous studies of the structure and function of the complexes composed of the non-structural 3A proteins of human-infecting enteroviruses and kobuviruses and the host ACBD3 protein and present a structural and functional characterization of the complexes of the following livestock-infecting picornaviruses: bovine enteroviruses EV-E and EV-F, porcine enterovirus EV-G, and porcine kobuvirus AiV-C. We present a series of crystal structures of these complexes and demonstrate the role of these complexes in facilitation of viral replication.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Infecções por Enterovirus/metabolismo , Enterovirus Bovino/patogenicidade , Enterovirus Suínos/patogenicidade , Kobuvirus/patogenicidade , Proteínas de Membrana/metabolismo , Infecções por Picornaviridae/metabolismo , Animais , Bovinos , Linhagem Celular , Infecções por Enterovirus/veterinária , Infecções por Enterovirus/virologia , Enterovirus Suínos/genética , Células HEK293 , Humanos , Kobuvirus/genética , Infecções por Picornaviridae/veterinária , Infecções por Picornaviridae/virologia , Suínos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/genética
19.
Infect Genet Evol ; 75: 103975, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31344488

RESUMO

Enterovirus G (EV-G) belongs to the family of Picornaviridae. Two types of recombinant porcine EV-Gs carrying papain-like cysteine protease (PLCP) gene of porcine torovirus, a virus in Coronaviridae, are reported. Type 1 recombinant EV-Gs are detected in pig feces in Japan, USA, and Belgium and carry the PLPC gene at the junction site of 2C/3A genes, while PLPC gene replaces the viral structural genes in type 2 recombinant EV-G detected in pig feces in a Chinese farm. We identified a novel type 2 recombinant EV-G carrying the PLCP gene with flanking sequences in place of the viral structural genes in pig feces in Japan. The ~0.3 kb-long upstream flanking sequence had no sequence homology with any proteins deposited in GenBank, while the downstream ~0.9 kb-long flanking sequence included a domain having high amino acid sequence homology with a baculoviral inhibitor of apoptosis repeat superfamily. The pig feces, where the novel type 2 recombinant EV-G was detected, also carried type 1 recombinant EV-G. The amount of type 1 and type 2 recombinant EV-G genomes was almost same in the pig feces. Although the phylogenetic analysis suggested that these two recombinant EV-Gs have independently evolved, type 1 recombinant EV-G might have served as a helper virus by providing viral structural proteins for dissemination of the type 2 recombinant EV-G.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Cisteína Proteases/genética , Infecções por Enterovirus/veterinária , Enterovirus Suínos/genética , Proteínas Estruturais Virais/genética , Animais , Proteínas Reguladoras de Apoptose/genética , Cisteína Proteases/metabolismo , Infecções por Enterovirus/epidemiologia , Infecções por Enterovirus/virologia , Fezes/virologia , Regulação Enzimológica da Expressão Gênica , Regulação Viral da Expressão Gênica , Filogenia , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...