Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Anticancer Res ; 44(5): 1885-1894, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677721

RESUMO

BACKGROUND/AIM: Breast cancer is a leading cause of cancer-related deaths among women. Down-regulation of the tumor suppressor gene Cyld in breast cancer has been linked to a poor prognosis. This study investigated the role of Cyld in breast cancer using conditional mutant mouse models carrying a Cyld mutation, which inactivates the deubiquitinating activity of its protein product CYLD in mammary epithelial cells. MATERIALS AND METHODS: We examined the potential of CYLD inactivation to induce mammary tumors spontaneously or modify the susceptibility of mice to mammary tumorigenesis by DMBA treatment or ErbB2 over-expression. RESULTS: CYLD inactivation significantly increased susceptibility to breast cancer induced by either DMBA treatment or ErbB2 over-expression. Moreover, while CYLD inactivation alone did not lead to spontaneous mammary tumorigenesis, it did contribute to the formation of multifocal hyperplastic lesions in virgin mice of predominantly FVB/NJ background. CONCLUSION: Our study demonstrates the tumor enhancing potential of CYLD inactivation in mammary tumorigenesis in vivo and establishes novel relevant mouse models that can be exploited for developing prognostic and therapeutic protocols.


Assuntos
Enzima Desubiquitinante CYLD , Animais , Feminino , Camundongos , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Enzima Desubiquitinante CYLD/genética , Enzima Desubiquitinante CYLD/metabolismo , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/genética , Mutação , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
2.
Cell Death Dis ; 15(1): 95, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287022

RESUMO

Abnormal expression of Cylindromatosis (CYLD), a tumor suppressor molecule, plays an important role in tumor development and treatment. In this work, we found that CYLD binds to class I histone deacetylases (HDAC1 and HDAC2) through its N-terminal domain and inhibits HDAC1 activity. RNA sequencing showed that CYLD-HDAC axis regulates cellular antioxidant response via Nrf2 and its target genes. Then we revealed a mechanism that class I HDACs mediate redox abnormalities in CYLD low-expressing tumors. HDACs are central players in the DNA damage signaling. We further confirmed that CYLD regulates radiation-induced DNA damage and repair response through inhibiting class I HDACs. Furthermore, CYLD mediates nasopharyngeal carcinoma cell radiosensitivity through class I HDACs. Thus, we identified the function of the CYLD-HDAC axis in radiotherapy and blocking HDACs by Chidamide can increase the sensitivity of cancer cells and tumors to radiation therapy both in vitro and in vivo. In addition, ChIP and luciferase reporter assays revealed that CYLD could be transcriptionally regulated by zinc finger protein 202 (ZNF202). Our findings offer novel insight into the function of CYLD in tumor and uncover important roles for CYLD-HDAC axis in radiosensitivity, which provide new molecular target and therapeutic strategy for tumor radiotherapy.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias Nasofaríngeas , Humanos , Inibidores de Histona Desacetilases/farmacologia , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/radioterapia , Estresse Oxidativo , Histona Desacetilases/metabolismo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia , Enzima Desubiquitinante CYLD/genética , Enzima Desubiquitinante CYLD/metabolismo , Proteínas Repressoras/metabolismo
3.
Appl Biochem Biotechnol ; 196(1): 588-603, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37162682

RESUMO

N6-Methyladenosine (m6A) mRNA methylation modification is regarded as an important mechanism involved in diverse physiological processes. YT521-B homology (YTH) domain family members are associated with the tumorigenesis of several cancers. However, the role of YTHDC2 in papillary thyroid cancer (PTC) progression remains unknown. Results showed that YTHDC1, YTHDF1, YTHDF2, and YTHDF3 showed no observable difference in thyroid cancer samples. YTHDC2 was significantly downregulated in thyroid cancer samples and cells. YTHDC2 inhibited cell proliferation in PTC cells. YTHDC2 elicited apoptosis in PTC cells, as demonstrated by the elevated expression of pro-apoptotic factors cl-caspase-3/caspase-3 and Bcl-2-associated (Bax), and the reduced anti-apoptotic B cell lymphoma-2 (Bcl-2) expression. There was a positive correlation between YTHDC2 and cylindromatosis (CYLD) expression based on GEPIA database. YTHDC2 increased CYLD expression in PTC cells. CYLD knockdown abolished the effects of YTHDC2 on PTC cell proliferation and apoptosis. Additionally, YTHDC2 inactivated the protein kinase B (Akt) pathway by increasing CYLD in PTC cells. Overall, YTHDC2 inhibited cell proliferation and induced apoptosis in PTC cells by regulating CYLD-mediated inactivation of Akt pathway.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Caspase 3/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Proliferação de Células/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Enzima Desubiquitinante CYLD/genética , Enzima Desubiquitinante CYLD/metabolismo , RNA Helicases
4.
Exp Cell Res ; 434(1): 113870, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38049082

RESUMO

Previous studies have revealed that B cell activation is regulated by various microRNAs(miRNAs). However, the role of microRNA-130b regulating B cell activation and apoptosis is still unclear. In the present study, we first found that the expression of miR-130b was the lowest in Pro/Pre-B cells and the highest in immature B cells. Besides, the expression of miR-130b decreased after activation in B cells. Through the immuno-phenotypic analysis of miR-130b transgenic and knockout mice, we found that miR-130b mainly promoted the proliferation of B cells and inhibited B cell apoptosis. Furthermore, we identified that Cyld, a tumor suppressor gene was the target gene of miR-130b in B cells. Besides, the Cyld-mediated NF-κB signaling was increased in miR-130b overexpressed B cells, which further explains the enhanced proliferation of B cells. In conclusion, we propose that miR-130b promotes B cell proliferation via Cyld-mediated NF-κB signaling, which provides a new theoretical basis for the molecular regulation of B cell activation.


Assuntos
MicroRNAs , NF-kappa B , Animais , Camundongos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Enzima Desubiquitinante CYLD/genética , Enzima Desubiquitinante CYLD/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais/genética
5.
Medicina (Kaunas) ; 59(10)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37893484

RESUMO

Background and Objectives: Psoriasis is an immune-mediated chronic inflammatory skin disorder and commonly associated with highly noticeable erythematous, thickened and scaly plaques. Deubiquitinase genes, such as tumor necrosis factor-alpha protein 3 (TNFAIP3, A20), the cylindromatosis (CYLD) and Cezanne, function as negative regulators of inflammatory response through the Janus kinase/signal transducers and activators of transcription (JAK-STAT) pathways. In this study, polymorphisms and expressions of A20, CYLD and Cezanne genes as well as immunophenotype in psoriatic patients were determined. Materials and Methods: In total, 82 patients with psoriasis and 147 healthy individuals with well-characterized clinical profiles were enrolled. Gene polymorphisms were determined by direct DNA sequencing, gene expression profile by quantitative real time-polymerase chain reaction (PCR), immunophenotype by flow cytometry, and the secretion of cytokines and cancer antigen (CA) 125 by enzyme-linked Immunosorbent assay (ELISA). Results: The inactivation of A20, CYLD and Cezanne and increased levels of TNF-α, IFN-γ and CA 125 was observed in psoriatic patients. Importantly, patients with low A20 expression had significant elevations of triglyceride and total cholesterol concentrations and higher numbers of CD13+CD117- and CD19+CD23+ (activated B) cells than those with high A20 expression. Genetic analysis indicated that all rs4495487 SNPs in the JAK2 gene, rs200878487 SNPs in the A20 gene and four SNPs (c.1584-375, c.1584-374, rs1230581026 and p.W433R) in the Cezanne gene were associated with significant risks, while the rs10974947 variant in the JAK2 gene was at reduced risk of psoriasis. Moreover, in the Cezanne gene, p.W433R was predicted to be probably damaging by the Polyphen-2 prediction tool and an AA/CC haplotype was associated with a high risk of psoriasis. In addition, patients with higher CA 125 levels than the clinical cutoff 35 U/mL showed increased levels of IFN-γ than those with normal CA 125 levels. Conclusions: A20 expression was associated with lipid metabolism and the recruitment of CD13+ CD117- and activated B cells into circulation in psoriatic patients. Besides this, the deleterious effect of the p.W433R variant in the Cezanne gene may contribute to the risk of psoriasis.


Assuntos
Psoríase , Transdução de Sinais , Humanos , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Psoríase/genética , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Enzima Desubiquitinante CYLD/metabolismo
6.
J Biol Chem ; 299(12): 105370, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865315

RESUMO

G protein-coupled receptors (GPCRs) are highly druggable and implicated in numerous diseases, including vascular inflammation. GPCR signals are transduced from the plasma membrane as well as from endosomes and controlled by posttranslational modifications. The thrombin-activated GPCR protease-activated receptor-1 is modified by ubiquitin. Ubiquitination of protease-activated receptor-1 drives recruitment of transforming growth factor-ß-activated kinase-1-binding protein 2 (TAB2) and coassociation of TAB1 on endosomes, which triggers p38 mitogen-activated protein kinase-dependent inflammatory responses in endothelial cells. Other endothelial GPCRs also induce p38 activation via a noncanonical TAB1-TAB2-dependent pathway. However, the regulatory processes that control GPCR ubiquitin-driven p38 inflammatory signaling remains poorly understood. We discovered mechanisms that turn on GPCR ubiquitin-dependent p38 signaling, however, the mechanisms that turn off the pathway are not known. We hypothesize that deubiquitination is an important step in regulating ubiquitin-driven p38 signaling. To identify specific deubiquitinating enzymes (DUBs) that control GPCR-p38 mitogen-activated protein kinase signaling, we conducted a siRNA library screen targeting 96 DUBs in endothelial cells and HeLa cells. We identified nine DUBs and validated the function two DUBs including cylindromatosis and ubiquitin-specific protease-34 that specifically regulate thrombin-induced p38 phosphorylation. Depletion of cylindromatosis expression by siRNA enhanced thrombin-stimulated p38 signaling, endothelial barrier permeability, and increased interleukin-6 cytokine expression. Conversely, siRNA knockdown of ubiquitin-specific protease-34 expression decreased thrombin-promoted interleukin-6 expression and had no effect on thrombin-induced endothelial barrier permeability. These studies suggest that specific DUBs distinctly regulate GPCR-induced p38-mediated inflammatory responses.


Assuntos
Enzima Desubiquitinante CYLD , Enzimas Desubiquitinantes , Células Endoteliais , Trombina , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Enzima Desubiquitinante CYLD/metabolismo , Enzimas Desubiquitinantes/metabolismo , Células Endoteliais/metabolismo , Células HeLa , Interleucina-6/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Receptor PAR-1/metabolismo , RNA Interferente Pequeno/metabolismo , Trombina/farmacologia , Trombina/metabolismo , Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Linhagem Celular , Regulação Enzimológica da Expressão Gênica , Fosforilação/genética
7.
Oncol Rep ; 50(5)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37772388

RESUMO

Tumor suppressor cylindromatosis (CYLD) dysfunction by its downregulation is significantly associated with poor prognosis in patients with glioblastoma (GBM), the most aggressive and malignant type of glioma. However, no effective treatment is currently available for patients with CYLD­downregulated GBM. The aim of the present study was to identify the crucial cell signaling pathways and novel therapeutic targets for CYLD downregulation in GBM cells. CYLD knockdown in GBM cells induced GBM malignant characteristics, such as proliferation, metastasis, and GBM stem­like cell (GSC) formation. Comprehensive proteomic analysis and RNA sequencing data from the tissues of patients with GBM revealed that Wnt/ß­catenin signaling was significantly activated by CYLD knockdown in patients with GBM. Furthermore, a Wnt/ß­catenin signaling inhibitor suppressed all CYLD knockdown­induced malignant characteristics of GBM. Taken together, the results of the present study revealed that Wnt/ß­catenin signaling is responsible for CYLD silencing­induced GBM malignancy; therefore, targeting Wnt/ß­catenin may be effective for the treatment of CYLD­negative patients with GBM with poor prognosis.


Assuntos
Glioblastoma , Humanos , Glioblastoma/patologia , beta Catenina/genética , Proteômica , Via de Sinalização Wnt/genética , Regulação para Baixo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Enzima Desubiquitinante CYLD/genética , Enzima Desubiquitinante CYLD/metabolismo
8.
PLoS One ; 18(8): e0283586, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37549179

RESUMO

Acute myeloid leukemia (AML) is the most aggressive hematopoietic malignancy characterized by uncontrolled proliferation of myeloid progenitor cells within the bone marrow. Tumor suppressor cylindromatosis (CYLD) is a deubiquitinating enzyme, which suppresses inflammatory response in macrophages. Macrophages have a central role in the defense against foreign substances and circulating cancer cells by their professional phagocytic capacity. Little is known about contributions of CYLD to changes in biological properties of human macrophages and its involvement in AML. The present study, therefore, explored whether macrophage functions in healthy individuals and AML patients are influenced by CYLD. To this end, ninety-two newly diagnosed AML patients and 80 healthy controls were recruited. The mRNA expression levels of inflammation-related genes were evaluated by real-time PCR, cell maturation, phagocytosis and apoptosis assays by flow cytometry and secretion of inflammatory cytokines by ELISA. As a result, AML patients with the low CYLD expression were significantly higher in M4/M5 than other subtypes according to the FAB type. The low CYLD expression was also closely associated with older patients and enhanced level of LDH in AML. Moreover, treatment of normal macrophages with CYLD siRNA enhanced activation of STAT-1, leading to increases in expressions of maturation markers and IL-6 production as well as suppression in cell apoptosis and phagocytosis, while macrophage phagocytosis from AML M4/M5b was higher than that from healthy controls upon CYLD siRNA transfection through STAT1 signalling. In conclusion, the inhibitory effects of CYLD on macrophage functions are expected to affect the immune response in AML.


Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Macrófagos/metabolismo , Citocinas/metabolismo , Fagocitose , RNA Interferente Pequeno , Enzima Desubiquitinante CYLD/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
9.
Int J Mol Sci ; 24(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176077

RESUMO

Oxidative stress (OS) arises as a consequence of an imbalance between the formation of reactive oxygen species (ROS) and the capacity of antioxidant defense mechanisms to neutralize them. Excessive ROS production can lead to the damage of critical biomolecules, such as lipids, proteins, and DNA, ultimately contributing to the onset and progression of a multitude of diseases, including atherosclerosis, chronic obstructive pulmonary disease, Alzheimer's disease, and cancer. Cylindromatosis (CYLD), initially identified as a gene linked to familial cylindromatosis, has a well-established and increasingly well-characterized function in tumor inhibition and anti-inflammatory processes. Nevertheless, burgeoning evidence suggests that CYLD, as a conserved deubiquitination enzyme, also plays a pivotal role in various key signaling pathways and is implicated in the pathogenesis of numerous diseases driven by oxidative stress. In this review, we systematically examine the current research on the function and pathogenesis of CYLD in diseases instigated by oxidative stress. Therapeutic interventions targeting CYLD may hold significant promise for the treatment and management of oxidative stress-induced human diseases.


Assuntos
Estresse Oxidativo , Transdução de Sinais , Humanos , Enzima Desubiquitinante CYLD/genética , Enzima Desubiquitinante CYLD/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Oxirredução
10.
Blood Cancer J ; 13(1): 37, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922488

RESUMO

The paracaspase mucosa-associated lymphoid tissue 1 (MALT1) is a protease and scaffold protein essential in propagating B-cell receptor (BCR) signaling to NF-κB. The deubiquitinating enzyme cylindromatosis (CYLD) is a recently discovered MALT1 target that can negatively regulate NF-κB activation. Here, we show that low expression of CYLD is associated with inferior prognosis of diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) patients, and that chronic BCR signaling propagates MALT1-mediated cleavage and, consequently, inactivation and rapid proteasomal degradation of CYLD. Ectopic overexpression of WT CYLD or a MALT1-cleavage resistant mutant of CYLD reduced phosphorylation of IκBα, repressed transcription of canonical NF-κB target genes and impaired growth of BCR-dependent lymphoma cell lines. Furthermore, silencing of CYLD expression rendered BCR-dependent lymphoma cell lines less sensitive to inhibition of NF-κΒ signaling and cell proliferation by BCR pathway inhibitors, e.g., the BTK inhibitor ibrutinib, indicating that these effects are partially mediated by CYLD. Taken together, our findings identify an important role for MALT1-mediated CYLD cleavage in BCR signaling, NF-κB activation and cell proliferation, which provides novel insights into the underlying molecular mechanisms and clinical potential of inhibitors of MALT1 and ubiquitination enzymes as promising therapeutics for DLBCL, MCL and potentially other B-cell malignancies.


Assuntos
Enzima Desubiquitinante CYLD , Linfoma Difuso de Grandes Células B , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa , NF-kappa B , Humanos , Caspases/metabolismo , Enzima Desubiquitinante CYLD/genética , Enzima Desubiquitinante CYLD/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , NF-kappa B/metabolismo , Receptores de Antígenos de Linfócitos B , Transdução de Sinais/fisiologia
11.
Cell Rep ; 42(1): 111961, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640323

RESUMO

SPATA2 mediates the recruitment of CYLD to immune receptor complexes by bridging the interaction of CYLD with the linear ubiquitylation assembly complex (LUBAC) component HOIP. Whether SPATA2 exhibits functions independently of CYLD is unclear. Here, we show that, while Cyld-/- and Spata2-/- mice are viable, double mutants exhibit highly penetrant perinatal lethality, indicating independent functions of SPATA2 and CYLD. Cyld-/-Spata2-/- fibroblasts show increased M1-linked TNFR1-SC ubiquitylation and, similar to Cyld-/-Spata2-/- macrophages and intestinal epithelial cells, elevated pro-inflammatory gene expression compared with Cyld-/- or Spata2-/- cells. We show that SPATA2 competes with OTULIN for binding to HOIP via its PUB-interacting motif (PIM) and its zinc finger domain, thereby promoting autoubiquitylation of LUBAC. Consistently, increased pro-inflammatory signaling in Cyld-/-Spata2-/- cells depends on the presence of OTULIN. Our data therefore indicate that SPATA2 counteracts, independently of CYLD, the deubiquitylation of LUBAC by OTULIN and thereby attenuates LUBAC activity and pro-inflammatory signaling.


Assuntos
Transdução de Sinais , Fatores de Transcrição , Animais , Camundongos , Ubiquitinação , Fatores de Transcrição/metabolismo , NF-kappa B/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Enzima Desubiquitinante CYLD/metabolismo
12.
Int Immunopharmacol ; 114: 109202, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36538852

RESUMO

Bladder carcinoma (BC) is one of the most commonly diagnosed malignant cancers worldwide. Kelch-like protein 21 (KLHL21) has been shown to be involved in a number of human tumors. The study aimed to investigate the effects and mechanism of KLHL21 on BC progression. We found that KLHL21 expression was significantly decreased in human BC tissues and cell lines compared with the paired normal samples, and patients with lower KLHL21 expression exhibited poorer overall survival. In vitro studies then showed that KLHL21 over-expression significantly reduced the proliferation, migration and invasion in BC cells, while KLHL21 knockdown markedly accelerated the proliferative, migratory and invasive properties of BC cells. Animal studies confirmed that KLHL21 exhibited anti-tumor function in the xenograft mouse models, as indicated by the reduced tumor growth rates, and mice with KLHL21 knockdown showed the opposite tumor growth profile. Additionally, we found that KLHL21 negatively mediated the nuclear factor-κB (NF-κB) signaling activation, as well as its down-streaming molecules involved in the biological regulation of cell survival, death and migratory processes. Mechanistically, cylindromatosis (CYLD) expression levels were significantly up-regulated in BC cells over-expressing KLHL21, but were down-regulated upon KLHL21 knockdown. We further uncovered that KLHL21 directly interacted with CYLD in BC cells. Of note, we found that KLHL21 mainly in cytoplasm could restrain CYLD degradation by prohibiting its ubiquitination in BC cells. More importantly, our in vitro experiments displayed that KLHL21-inhibited progression and NF-κB/p65 activation in BC cells were completely abolished by CYLD deletion, revealing that CYLD expression was required for KLHL21 to perform its anti-tumor function in BC. Collectively, all these findings uncovered that KLHL21/CYLD axis may be a promising therapeutic target for BC treatment.


Assuntos
NF-kappa B , Neoplasias da Bexiga Urinária , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Enzima Desubiquitinante CYLD/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Neoplasias da Bexiga Urinária/patologia
13.
Fish Shellfish Immunol ; 132: 108454, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36442704

RESUMO

Ubiquitination and deubiquitination of target proteins is an important mechanism for cells to rapidly respond to changes in the external environment. The deubiquitinase, cylindromatosis (CYLD), is a tumor suppressor protein. CYLD from Drosophila melanogaster participates in the antimicrobial immune response. In vertebrates, CYLD also regulates bacterial-induced apoptosis. However, whether CYLD can regulate the bacterial-induced innate immune response in crustaceans is unknown. In the present study, we reported the identification and cloning of CYLD in Chinese mitten crab, Eriocheir sinensis. Quantitative real-time reverse transcription polymerase chain reaction analysis showed that EsCYLD was widely expressed in all the examined tissues and was upregulated in the hemolymph after Vibrio parahaemolyticus challenge. Knockdown of EsCYLD in hemocytes promoted the cytoplasm-to-nucleus translocation of transcription factor Relish under V. parahaemolyticus stimulation and increased the expression of corresponding antimicrobial peptides. In vivo, silencing of EsCYLD promoted the removal of bacteria from the crabs and enhanced their survival. In addition, interfering with EsCYLD expression inhibited apoptosis of crab hemocytes caused by V. parahaemolyticus stimulation. In summary, our findings revealed that EsCYLD negatively regulates the nuclear translocation of Relish to affect the expression of corresponding antimicrobial peptides and regulates the apoptosis of crab hemocytes, thus indirectly participating in the innate immunity of E. sinensis.


Assuntos
Apoptose , Proteínas de Artrópodes , Braquiúros , Enzima Desubiquitinante CYLD , Hemócitos , Imunidade Inata , Fatores de Transcrição , Animais , Sequência de Aminoácidos , Peptídeos Antimicrobianos/metabolismo , Proteínas de Artrópodes/classificação , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Sequência de Bases , Braquiúros/imunologia , Braquiúros/microbiologia , Enzima Desubiquitinante CYLD/classificação , Enzima Desubiquitinante CYLD/genética , Enzima Desubiquitinante CYLD/metabolismo , Hemócitos/enzimologia , Imunidade Inata/genética , Filogenia , Fatores de Transcrição/metabolismo , Vibrio parahaemolyticus , Transporte Ativo do Núcleo Celular
14.
Cell Rep ; 41(13): 111864, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36577382

RESUMO

During heart maturation, gap junctions assemble into hemichannels and polarize to the intercalated disc at cell borders to mediate electrical impulse conduction. However, the molecular mechanism underpinning cardiac gap junction assembly remains elusive. Herein, we demonstrate an important role for the deubiquitinating enzyme cylindromatosis (CYLD) in this process. Depletion of CYLD in mice impairs the formation of cardiac gap junctions, accelerates cardiac fibrosis, and increases heart failure. Mechanistically, CYLD interacts with plakoglobin and removes lysine 63-linked polyubiquitin chains from plakoglobin. The deubiquitination of plakoglobin enhances its interaction with the desmoplakin/end-binding protein 1 complex localized at the microtubule plus end, thereby promoting microtubule-dependent transport of connexin 43 (Cx43), a key component of gap junctions, to the cell membrane. These findings establish CYLD as a critical player in regulating gap junction assembly and have important implications in heart development and diseases.


Assuntos
Conexina 43 , Coração , Animais , Camundongos , Conexina 43/genética , gama Catenina/metabolismo , Miocárdio/metabolismo , Junções Comunicantes/metabolismo , Enzima Desubiquitinante CYLD/metabolismo
15.
Biochemistry (Mosc) ; 87(9): 957-964, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36180997

RESUMO

Toll-like receptor 4 (TLR4) is a key pattern recognition receptor that can be activated by bacterial lipopolysaccharide to elicit inflammatory response. Proper activation of TLR4 is critical for the host defense against microbial infections. Since overactivation of TLR4 causes deleterious effects and inflammatory diseases, its activation needs to be tightly controlled by negative regulatory mechanisms, among which the most pivotal could be deubiquitination of key signaling molecules mediated by deubiquitinating enzymes (DUBs). CYLD is a member of the USP family of DUBs that acts as a critical negative regulator of TLR4-depedent inflammatory responses by deconjugating polyubiquitin chains from signaling molecules, such as TRAF6 and TAK1. Dysregulation of CYLD is implicated in inflammatory diseases. However, how the function of CYLD is regulated during inflammatory response remains largely unclear. Recently, we and other authors have shown that Spata2 functions as an important CYLD partner to regulate enzymatic activity of CYLD and substrate binding by this protein. Here, we show that a Spata2-like protein, Spata2L, can also form a complex with CYLD to inhibit the TLR4-dependent inflammatory response. We found that Spata2L constitutively interacts with CYLD and that the deficiency of Spata2L enhances the LPS-induced NF-κB activation and proinflammatory cytokine gene expression. Mechanistically, Spata2L potentiated CYLD-mediated deubiquitination of TRAF6 and TAK1 likely by promoting CYLD enzymatic activity. These findings identify Spata2L as a novel CYLD regulator, provide new insights into regulatory mechanisms underlying CYLD role in TLR4 signaling, and suggest potential targets for modulating TLR4-induced inflammation.


Assuntos
Fator 6 Associado a Receptor de TNF , Receptor 4 Toll-Like , Citocinas/metabolismo , Enzima Desubiquitinante CYLD/genética , Enzima Desubiquitinante CYLD/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Poliubiquitina/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 4 Toll-Like/metabolismo
16.
Taiwan J Obstet Gynecol ; 61(4): 596-600, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35779906

RESUMO

OBJECTIVE: Endometrial cancer is a threat to women health worldwide. Cylindromatosis (CYLD) enzyme is a tumour suppressor, considered an effective prognostic marker in various malignancies, but its role in endometrial carcinoma is not fully elucidated. Here, we sought to estimate the prognostic value of CYLD expression in endometrial carcinoma. MATERIALS AND METHODS: CYLD levels were immunohistochemically evaluated in 65 patients with endometrial carcinoma and inferential statistics were applied. RESULTS: Low or negative CYLD expression significantly correlates with older ages, non-endometrioid and invasive carcinomas, tumours with moderate or poor differentiation and advanced stages. Moreover, non-endometrioid and invasive carcinomas are independent risk factors for weaker CYLD expression. Kaplan-Meier analysis illustrated that negative or low CYLD expression is statistically significantly associated with increased death risk, compared to moderate or high expression. CONCLUSION: This study demonstrates for the first time a clear correlation between CYLD expression and clinicohistopathological parameters of endometrial carcinoma patients, suggesting its use as a potential prognostic/predictive marker for Endometrial Carcinoma.


Assuntos
Carcinoma , Enzima Desubiquitinante CYLD , Neoplasias do Endométrio , Carcinoma/genética , Carcinoma/patologia , Enzima Desubiquitinante CYLD/genética , Enzima Desubiquitinante CYLD/metabolismo , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Feminino , Humanos , Prognóstico
17.
Oncotarget ; 13: 707-722, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634245

RESUMO

Evolving understanding of head and neck squamous cell carcinoma (HNSCC) is leading to more specific diagnostic disease classifications. Among HNSCC caused by the human papilloma virus (HPV), tumors harboring defects in TRAF3 or CYLD are associated with improved clinical outcomes and maintenance of episomal HPV. TRAF3 and CYLD are negative regulators of NF-κB and inactivating mutations of either leads to NF-κB overactivity. Here, we developed and validated a gene expression classifier separating HPV+ HNSCCs based on NF-κB activity. As expected, the novel classifier is strongly enriched in NF-κB targets leading us to name it the NF-κB Activity Classifier (NAC). High NF-κB activity correlated with improved survival in two independent cohorts. Using NAC, tumors with high NF-κB activity but lacking defects in TRAF3 or CYLD were identified; thus, while TRAF3 or CYLD gene defects identify the majority of tumors with NF-κB activation, unknown mechanisms leading to NF-kB activity also exist. The NAC correctly classified the functional consequences of two novel CYLD missense mutations. Using a reporter assay, we tested these CYLD mutations revealing that their activity to inhibit NF-kB was equivalent to the wild-type protein. Future applications of the NF-κB Activity Classifier may be to identify HPV+ HNSCC patients with better or worse survival with implications for treatment strategies.


Assuntos
Alphapapillomavirus , Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Enzima Desubiquitinante CYLD/genética , Enzima Desubiquitinante CYLD/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Humanos , NF-kappa B/metabolismo , Papillomaviridae/genética , Papillomaviridae/metabolismo , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/metabolismo
18.
Sci Adv ; 8(13): eabh1824, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35363524

RESUMO

Mutations in PINK1 and parkin highlight the mitochondrial axis of Parkinson's disease (PD) pathogenesis. PINK1/parkin regulation of the transcriptional repressor PARIS bears direct relevance to dopamine neuron survival through augmentation of PGC-1α-dependent mitochondrial biogenesis. Notably, knockout of PARIS attenuates dopaminergic neurodegeneration in mouse models, indicating that interventions that prevent dopaminergic accumulation of PARIS could have therapeutic potential in PD. To this end, we have identified the deubiquitinase cylindromatosis (CYLD) to be a regulator of PARIS protein stability and proteasomal degradation via the PINK1/parkin pathway. Knockdown of CYLD in multiple models of PINK1 or parkin inactivation attenuates PARIS accumulation by modulating its ubiquitination levels and relieving its repressive effect on PGC-1α to promote mitochondrial biogenesis. Together, our studies identify CYLD as a negative regulator of dopamine neuron survival, and inhibition of CYLD may potentially be beneficial in PD by lowering PARIS levels and promoting mitochondrial biogenesis.


Assuntos
Neurônios Dopaminérgicos , Doença de Parkinson , Animais , Enzima Desubiquitinante CYLD/genética , Enzima Desubiquitinante CYLD/metabolismo , Enzimas Desubiquitinantes/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Ubiquitinação
19.
Mol Ther ; 30(7): 2568-2583, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35351656

RESUMO

Proneural (PN) to mesenchymal (MES) transition (PMT) is a crucial phenotypic shift in glioblastoma stem cells (GSCs). However, the mechanisms driving this process remain poorly understood. Here, we report that Fos-like antigen 1 (FOSL1), a component of AP1 transcription factor complexes, is a key player in regulating PMT. FOSL1 is predominantly expressed in the MES subtype, but not PN subtype, of GSCs. Knocking down FOSL1 expression in MES GSCs leads to the loss of MES features and tumor-initiating ability, whereas ectopic expression of FOSL1 in PN GSCs is able to induce PMT and maintain MES features. Moreover, FOSL1 facilitates ionizing radiation (IR)-induced PMT and radioresistance of PN GSCs. Inhibition of FOSL1 enhances the anti-tumor effects of IR by preventing IR-induced PMT. Mechanistically, we find that FOSL1 promotes UBC9-dependent CYLD SUMOylation, thereby inducing K63-linked polyubiquitination of major nuclear factor κB (NF-κB) intermediaries and subsequent NF-κB activation, which results in PMT induction in GSCs. Our study underscores the importance of FOSL1 in the regulation of PMT and suggests that therapeutic targeting of FOSL1 holds promise to attenuate molecular subtype switching in patients with glioblastomas.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Células-Tronco Mesenquimais , Proteínas Proto-Oncogênicas c-fos/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Enzima Desubiquitinante CYLD/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , Células-Tronco Mesenquimais/metabolismo , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/metabolismo , Radiação Ionizante , Enzimas de Conjugação de Ubiquitina/metabolismo
20.
Cancer Lett ; 532: 215586, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35131382

RESUMO

Aberrant cancer metabolism contributes to cell proliferation and tumor progression. However, the contribution of enhanced glycolysis, observed during cancer metabolism, to the pathogenesis and progression of nasopharyngeal carcinoma (NPC) remains unclear. CYLD, an NF-κB inhibitor, is frequently deficient in NPC. Here, we investigated the role of CYLD in the metabolic reprogramming of NPC and found that restoration of CYLD expression suppressed glycolysis in NPC cells. Mechanistic dissection showed that CYLD stabilized p53 and facilitated its nuclear translocation, thereby enhancing p53 activity by removing K63-linked and K48-linked ubiquitin chains of p53, which can bind to the PFKFB3 promoter and inhibit its transcription. Additionally, CYLD interacted with FZR1 to promote APC/C-FZR1 E3 ligase activity, which further ubiquitinated and degraded PFKFB3 via the 26S proteasomal system. Furthermore, clinical tissue array analysis indicated that low expression of CYLD was correlated with high expression of PFKFB3 and poor prognosis among patients with NPC. In conclusion, CYLD suppressed PFKFB3 expression via two factors, namely, p53 and FZR1, to inhibit glycolysis and delay tumor growth and progression in NPC. CYLD is a biomarker indicating poor prognosis of patients with NPC.


Assuntos
Neoplasias Nasofaríngeas , Proteína Supressora de Tumor p53 , Linhagem Celular Tumoral , Enzima Desubiquitinante CYLD/genética , Enzima Desubiquitinante CYLD/metabolismo , Humanos , Proteínas I-kappa B/metabolismo , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/patologia , Fosfofrutoquinase-2/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...