Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 11(8): 649, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32811824

RESUMO

The folate-coupled metabolic enzyme MTHFD2 (the mitochondrial methylenetetrahydrofolate dehydrogenase/cyclohydrolase) confers redox homeostasis and drives cancer cell proliferation and migration. Here, we show that MTHFD2 is hyperacetylated and lysine 88 is the critical acetylated site. SIRT3, the major deacetylase in mitochondria, is responsible for MTHFD2 deacetylation. Interestingly, chemotherapeutic agent cisplatin inhibits expression of SIRT3 to induce acetylation of MTHFD2 in colorectal cancer cells. Cisplatin-induced acetylated K88 MTHFD2 is sufficient to inhibit its enzymatic activity and downregulate NADPH levels in colorectal cancer cells. Ac-K88-MTHFD2 is significantly decreased in human colorectal cancer samples and is inversely correlated with the upregulated expression of SIRT3. Our findings reveal an unknown regulation axis of cisplatin-SIRT3-MTHFD2 in redox homeostasis and suggest a potential therapeutic strategy for cancer treatments by targeting MTHFD2.


Assuntos
Cisplatino/metabolismo , Neoplasias Colorretais/metabolismo , Sirtuína 3/metabolismo , Acetilação , Aminoidrolases/genética , Aminoidrolases/metabolismo , Aminoidrolases/fisiologia , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Neoplasias do Colo/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Ácido Fólico/metabolismo , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Hidrolases , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Metilenotetra-Hidrofolato Desidrogenase (NADP)/fisiologia , Mitocôndrias/metabolismo , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Enzimas Multifuncionais/fisiologia , Oxirredução
2.
Mol Cell ; 78(6): 1237-1251.e7, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32442397

RESUMO

DNA replication stress can stall replication forks, leading to genome instability. DNA damage tolerance pathways assist fork progression, promoting replication fork reversal, translesion DNA synthesis (TLS), and repriming. In the absence of the fork remodeler HLTF, forks fail to slow following replication stress, but underlying mechanisms and cellular consequences remain elusive. Here, we demonstrate that HLTF-deficient cells fail to undergo fork reversal in vivo and rely on the primase-polymerase PRIMPOL for repriming, unrestrained replication, and S phase progression upon limiting nucleotide levels. By contrast, in an HLTF-HIRAN mutant, unrestrained replication relies on the TLS protein REV1. Importantly, HLTF-deficient cells also exhibit reduced double-strand break (DSB) formation and increased survival upon replication stress. Our findings suggest that HLTF promotes fork remodeling, preventing other mechanisms of replication stress tolerance in cancer cells. This remarkable plasticity of the replication fork may determine the outcome of replication stress in terms of genome integrity, tumorigenesis, and response to chemotherapy.


Assuntos
Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , DNA/biossíntese , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , DNA/genética , Dano ao DNA/genética , DNA Primase/metabolismo , DNA Primase/fisiologia , Reparo do DNA/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/fisiologia , Células HEK293 , Humanos , Células K562 , Enzimas Multifuncionais/metabolismo , Enzimas Multifuncionais/fisiologia , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/fisiologia , Fatores de Transcrição/genética
3.
J Bacteriol ; 202(4)2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31792012

RESUMO

Variation in the concentration of biological components is inescapable for any cell. Robustness in any biological circuit acts as a cushion against such variation and enables the cells to produce homogeneous output despite the fluctuation. The two-component system (TCS) with a bifunctional sensor kinase (that possesses both kinase and phosphatase activities) is proposed to be a robust circuit. Few theoretical models explain the robustness of a TCS, although the criteria and extent of robustness by these models differ. Here, we provide experimental evidence to validate the extent of the robustness of a TCS signaling pathway. We have designed a synthetic circuit in Escherichia coli using a representative TCS of Mycobacterium tuberculosis, MprAB, and monitored the in vivo output signal by systematically varying the concentration of either of the components or both. We observed that the output of the TCS is robust if the concentration of MprA is above a threshold value. This observation is further substantiated by two in vitro assays, in which we estimated the phosphorylated MprA pool or MprA-dependent transcription yield by varying either of the components of the TCS. This synthetic circuit could be used as a model system to analyze the relationship among different components of gene regulatory networks.IMPORTANCE Robustness in essential biological circuits is an important feature of the living organism. A few pieces of evidence support the existence of robustness in vivo in the two-component system (TCS) with a bifunctional sensor kinase (SK). The assays were done under physiological conditions in which the SK was much lower than the response regulator (RR). Here, using a synthetic circuit, we varied the concentrations of the SK and RR of a representative TCS to monitor output robustness in vivo. In vitro assays were also performed under conditions where the concentration of the SK was greater than that of the RR. Our results demonstrate the extent of output robustness in the TCS signaling pathway with respect to the concentrations of the two components.


Assuntos
Proteínas de Bactérias/fisiologia , Enzimas Multifuncionais/fisiologia , Proteínas Quinases/fisiologia , Transdução de Sinais/fisiologia , Regulação Bacteriana da Expressão Gênica , Fosforilação , Transcrição Gênica
4.
Mol Cell ; 77(3): 461-474.e9, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31676232

RESUMO

Acute treatment with replication-stalling chemotherapeutics causes reversal of replication forks. BRCA proteins protect reversed forks from nucleolytic degradation, and their loss leads to chemosensitivity. Here, we show that fork degradation is no longer detectable in BRCA1-deficient cancer cells exposed to multiple cisplatin doses, mimicking a clinical treatment regimen. This effect depends on increased expression and chromatin loading of PRIMPOL and is regulated by ATR activity. Electron microscopy and single-molecule DNA fiber analyses reveal that PRIMPOL rescues fork degradation by reinitiating DNA synthesis past DNA lesions. PRIMPOL repriming leads to accumulation of ssDNA gaps while suppressing fork reversal. We propose that cells adapt to repeated cisplatin doses by activating PRIMPOL repriming under conditions that would otherwise promote pathological reversed fork degradation. This effect is generalizable to other conditions of impaired fork reversal (e.g., SMARCAL1 loss or PARP inhibition) and suggests a new strategy to modulate cisplatin chemosensitivity by targeting the PRIMPOL pathway.


Assuntos
DNA Primase/metabolismo , Replicação do DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/metabolismo , Enzimas Multifuncionais/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular Tumoral , DNA/genética , Dano ao DNA/genética , Dano ao DNA/fisiologia , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Primase/fisiologia , Replicação do DNA/genética , Replicação do DNA/fisiologia , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/fisiologia , Células HEK293 , Humanos , Enzimas Multifuncionais/fisiologia , Ubiquitina-Proteína Ligases/genética
5.
Oncogene ; 38(34): 6211-6225, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31289360

RESUMO

One-carbon metabolism plays a central role in a broad array of metabolic processes required for the survival and growth of tumor cells. However, the molecular basis of how one-carbon metabolism may influence RNA methylation and tumorigenesis remains largely unknown. Here we show MTHFD2, a mitochondrial enzyme involved in one-carbon metabolism, contributes to the progression of renal cell carcinoma (RCC) via a novel epitranscriptomic mechanism that involves HIF-2α. We found that expression of MTHFD2 was significantly elevated in human RCC tissues, and MTHFD2 knockdown strongly reduced xenograft tumor growth. Mechanistically, using an unbiased methylated RNA immunoprecipitation sequencing (meRIP-Seq) approach, we found that MTHFD2 plays a critical role in controlling global N6-methyladenosine (m6A) methylation levels, including the m6A methylation of HIF-2α mRNA, which results in enhanced translation of HIF-2α. Enhanced HIF-2α translation, in turn, promotes the aerobic glycolysis, linking one-carbon metabolism to HIF-2α-dependent metabolic reprogramming through RNA methylation. Our findings also suggest that MTHFD2 and HIF-2α form a positive feedforward loop in RCC, promoting metabolic reprograming and tumor growth. Taken together, our results suggest that MTHFD2 links RNA methylation status to the metabolic state of tumor cells in RCC.


Assuntos
Aminoidrolases/fisiologia , Carcinoma de Células Renais/metabolismo , Glicólise/genética , Neoplasias Renais/metabolismo , Metilenotetra-Hidrofolato Desidrogenase (NADP)/fisiologia , Metiltransferases/metabolismo , Enzimas Multifuncionais/fisiologia , Processamento Pós-Transcricional do RNA/genética , Animais , Metabolismo dos Carboidratos/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Reprogramação Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Masculino , Metilação , Camundongos , Camundongos Nus
6.
Med Sci Monit ; 25: 4474-4484, 2019 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-31203308

RESUMO

BACKGROUND Formiminotransferase cyclodeaminase (FTCD) is a candidate tumor suppressor gene in hepatocellular carcinoma (HCC). However, the mechanism for reduced expression of FTCD and its functional role in HCC remains unclear. In this study, we explored the biological functions of FTCD in HCC. MATERIAL AND METHODS The expression and clinical correlation of FTCD in HCC tissue were analyzed using TCGA (The Cancer Genome Atlas) and a cohort of 60 HCC patients. The MEXPRESS platform was accessed to identify the methylation level in promoter region FTCD. CCK-8 assay and flow cytometry analysis were used to explore the proliferation, cell apoptosis proportion, and DNA damage in HCC cells with FTCD overexpression. Western blot analysis was performed to identify the downstream target of FTCD. RESULTS FTCD is significantly downregulated in HCC tissues and cell lines. Low FTCD expression is correlated with a poor prognosis (P<0.001) and an aggressive tumor phenotype, including AFP levels (P=0.009), tumor size (P=0.013), vascular invasion (P=0.001), BCLC stage (P=0.024), and pTNM stage (P<0.001). Bioinformatics analysis indicated promoter hypermethylation can result in decreased expression of FTCD. FTCD overexpression suppressed cell proliferation by promoting DNA damage and inducing cell apoptosis in HCC cells. FTCD overexpression resulted in increased level of PTEN protein, but a decrease in PI3K, total Akt, and phosphorylated Akt protein in HCC cells, suggesting involvement of the PI3K/Akt pathway. CONCLUSIONS FTCD acts as a tumor suppressor gene in HCC pathogenesis and progression and is a candidate prognostic marker and a possible therapeutic target for this disease.


Assuntos
Amônia-Liases/metabolismo , Carcinoma Hepatocelular/metabolismo , Glutamato Formimidoiltransferase/metabolismo , Enzimas Multifuncionais/metabolismo , Idoso , Amônia-Liases/fisiologia , Apoptose/fisiologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , China , Dano ao DNA/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Glutamato Formimidoiltransferase/fisiologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Enzimas Multifuncionais/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia
7.
Genes Dev ; 31(14): 1469-1482, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28860160

RESUMO

Protection of the stalled replication fork is crucial for responding to replication stress and minimizing its impact on chromosome instability, thus preventing diseases, including cancer. We found a new component, Abro1, in the protection of stalled replication fork integrity. Abro1 deficiency results in increased chromosome instability, and Abro1-null mice are tumor-prone. We show that Abro1 protects stalled replication fork stability by inhibiting DNA2 nuclease/WRN helicase-mediated degradation of stalled forks. Depletion of RAD51 prevents the DNA2/WRN-dependent degradation of stalled forks in Abro1-deficient cells. This mechanism is distinct from the BRCA2-dependent fork protection pathway, in which stable RAD51 filament formation prevents MRE11-dependent degradation of the newly synthesized DNA at stalled forks. Thus, our data reveal a new aspect of regulated protection of stalled replication forks that involves Abro1.


Assuntos
Replicação do DNA , Instabilidade Genômica , Proteínas Associadas à Matriz Nuclear/fisiologia , Proteases Específicas de Ubiquitina/fisiologia , Animais , Proteína BRCA2/genética , Linhagem Celular , Células Cultivadas , DNA/biossíntese , DNA Helicases/fisiologia , Endodesoxirribonucleases/fisiologia , Proteína Homóloga a MRE11/fisiologia , Camundongos Knockout , Enzimas Multifuncionais/fisiologia , Neoplasias Experimentais/genética , Proteínas Associadas à Matriz Nuclear/genética , Rad51 Recombinase/genética , Estresse Fisiológico , Proteases Específicas de Ubiquitina/genética
8.
Nucleic Acids Res ; 44(10): 4734-44, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-26926109

RESUMO

PrimPol is a DNA damage tolerant polymerase displaying both translesion synthesis (TLS) and (re)-priming properties. This led us to study the consequences of a PrimPol deficiency in tolerating mutagenic lesions induced by members of the APOBEC/AID family of cytosine deaminases. Interestingly, during somatic hypermutation, PrimPol counteracts the generation of C>G transversions on the leading strand. Independently, mutation analyses in human invasive breast cancer confirmed a pro-mutagenic activity of APOBEC3B and revealed a genome-wide anti-mutagenic activity of PRIMPOL as well as most Y-family TLS polymerases. PRIMPOL especially prevents APOBEC3B targeted cytosine mutations within TpC dinucleotides. As C transversions induced by APOBEC/AID family members depend on the formation of AP-sites, we propose that PrimPol reprimes preferentially downstream of AP-sites on the leading strand, to prohibit error-prone TLS and simultaneously stimulate error-free homology directed repair. These in vivo studies are the first demonstrating a critical anti-mutagenic activity of PrimPol in genome maintenance.


Assuntos
Citidina Desaminase/metabolismo , DNA Primase/fisiologia , DNA Polimerase Dirigida por DNA/fisiologia , Antígenos de Histocompatibilidade Menor/metabolismo , Enzimas Multifuncionais/fisiologia , Mutagênese , Animais , Linfócitos B/enzimologia , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Sistemas CRISPR-Cas , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Citidina Desaminase/antagonistas & inibidores , DNA/metabolismo , Replicação do DNA , Feminino , Humanos , Switching de Imunoglobulina , Camundongos Endogâmicos C57BL , Hipermutação Somática de Imunoglobulina , Linfócitos T/enzimologia , Raios Ultravioleta
9.
Sci Rep ; 6: 18726, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26725302

RESUMO

A multifunctional enzyme is one that performs multiple physiological functions, thus benefiting the organism. Characterization of multifunctional enzymes is important for researchers to understand how organisms adapt to different environmental challenges. In the present study, we report the discovery of a novel multifunctional enzyme Amy63 produced by marine bacterium Vibrio alginolyticus 63. Remarkably, Amy63 possesses amylase, agarase and carrageenase activities. Amy63 is a substrate promiscuous α-amylase, with the substrate priority order of starch, carrageenan and agar. Amy63 maintains considerable amylase, carrageenase and agarase activities and stabilities at wide temperature and pH ranges, and optimum activities are detected at temperature of 60 °C and pH of 6.0, respectively. Moreover, the heteroexpression of Amy63 dramatically enhances the ability of E. coli to degrade starch, carrageenan and agar. Motif searching shows three continuous glycosyl hydrolase 70 (GH70) family homologs existed in Amy63 encoding sequence. Combining serial deletions and phylogenetic analysis of Amy63, the GH70 homologs are proposed as the determinants of enzyme promiscuity. Notably, such enzymes exist in all kingdoms of life, thus providing an expanded perspective on studies of multifunctional enzymes. To our knowledge, this is the first report of an amylase having additional agarase and carrageenase activities.


Assuntos
Amilases/química , Proteínas de Bactérias/química , Glicosídeo Hidrolases/química , Vibrio alginolyticus/enzimologia , Ágar/química , Sequência de Aminoácidos , Amilases/fisiologia , Proteínas de Bactérias/fisiologia , Carragenina/química , Sequência Consenso , Escherichia coli , Evolução Molecular , Glucanos/química , Glicosídeo Hidrolases/fisiologia , Concentração de Íons de Hidrogênio , Enzimas Multifuncionais/química , Enzimas Multifuncionais/fisiologia , Filogenia , Amido/química , Amido/metabolismo , Especificidade por Substrato
10.
Proc Natl Acad Sci U S A ; 112(48): E6624-33, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627254

RESUMO

After UV irradiation, DNA polymerases specialized in translesion DNA synthesis (TLS) aid DNA replication. However, it is unclear whether other mechanisms also facilitate the elongation of UV-damaged DNA. We wondered if Rad51 recombinase (Rad51), a factor that escorts replication forks, aids replication across UV lesions. We found that depletion of Rad51 impairs S-phase progression and increases cell death after UV irradiation. Interestingly, Rad51 and the TLS polymerase polη modulate the elongation of nascent DNA in different ways, suggesting that DNA elongation after UV irradiation does not exclusively rely on TLS events. In particular, Rad51 protects the DNA synthesized immediately before UV irradiation from degradation and avoids excessive elongation of nascent DNA after UV irradiation. In Rad51-depleted samples, the degradation of DNA was limited to the first minutes after UV irradiation and required the exonuclease activity of the double strand break repair nuclease (Mre11). The persistent dysregulation of nascent DNA elongation after Rad51 knockdown required Mre11, but not its exonuclease activity, and PrimPol, a DNA polymerase with primase activity. By showing a crucial contribution of Rad51 to the synthesis of nascent DNA, our results reveal an unanticipated complexity in the regulation of DNA elongation across UV-damaged templates.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Primase/fisiologia , Proteínas de Ligação a DNA/fisiologia , DNA Polimerase Dirigida por DNA/fisiologia , DNA/efeitos da radiação , Enzimas Multifuncionais/fisiologia , Rad51 Recombinase/fisiologia , Raios Ultravioleta , Ciclo Celular , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Progressão da Doença , Relação Dose-Resposta à Radiação , Células HeLa , Humanos , Proteína Homóloga a MRE11 , RNA Interferente Pequeno/metabolismo
11.
Nat Chem Biol ; 10(6): 425-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24814673

RESUMO

Fatty acid-derived ether lipids are present not only in most vertebrates but also in some bacteria. Here we describe what is to our knowledge the first gene cluster involved in the biosynthesis of such lipids in myxobacteria that encodes the multifunctional enzyme ElbD, which shows similarity to polyketide synthases. Initial characterization of elbD mutants in Myxococcus xanthus and Stigmatella aurantiaca showed the importance of these ether lipids for fruiting body formation and sporulation.


Assuntos
Lipídeos/biossíntese , Enzimas Multifuncionais/fisiologia , Família Multigênica , Myxococcus xanthus/enzimologia , Stigmatella aurantiaca/enzimologia , Domínio Catalítico , Éteres , Genes Bacterianos , Genoma Bacteriano , Lipídeos/química , Dados de Sequência Molecular , Enzimas Multifuncionais/genética , Myxococcus xanthus/genética , Myxococcus xanthus/fisiologia , Esporos Bacterianos/fisiologia , Stigmatella aurantiaca/genética , Stigmatella aurantiaca/fisiologia
12.
Nucleic Acids Res ; 42(9): 5830-45, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24682820

RESUMO

PrimPol is a primase-polymerase involved in nuclear and mitochondrial DNA replication in eukaryotic cells. Although PrimPol is predicted to possess an archaeo-eukaryotic primase and a UL52-like zinc finger domain, the role of these domains has not been established. Here, we report that the proposed zinc finger domain of human PrimPol binds zinc ions and is essential for maintaining primase activity. Although apparently dispensable for its polymerase activity, the zinc finger also regulates the processivity and fidelity of PrimPol's extension activities. When the zinc finger is disrupted, PrimPol becomes more promutagenic, has an altered translesion synthesis spectrum and is capable of faithfully bypassing cyclobutane pyrimidine dimer photolesions. PrimPol's polymerase domain binds to both single- and double-stranded DNA, whilst the zinc finger domain binds only to single-stranded DNA. We additionally report that although PrimPol's primase activity is required to restore wild-type replication fork rates in irradiated PrimPol-/- cells, polymerase activity is sufficient to maintain regular replisome progression in unperturbed cells. Together, these findings provide the first analysis of the molecular architecture of PrimPol, describing the activities associated with, and interplay between, its functional domains and defining the requirement for its primase and polymerase activities during nuclear DNA replication.


Assuntos
DNA Primase/química , DNA Polimerase Dirigida por DNA/química , Enzimas Multifuncionais/química , Animais , Domínio Catalítico , Linhagem Celular , DNA Primase/fisiologia , Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/fisiologia , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Manganês/química , Enzimas Multifuncionais/fisiologia , Ligação Proteica , Proteínas de Xenopus/química , Zinco/química
13.
Nat Struct Mol Biol ; 20(12): 1348-50, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24304914

RESUMO

Faithful bypass of replication forks encountering obstructive DNA lesions is essential to prevent fork collapse and cell death. PrimPol is a new human primase and translesion polymerase that is able to bypass fork-blocking UV-induced lesions and to restart replication by origin-independent repriming.


Assuntos
DNA Primase/fisiologia , Replicação do DNA/fisiologia , DNA Polimerase Dirigida por DNA/fisiologia , Enzimas Multifuncionais/fisiologia , Humanos
14.
Nat Struct Mol Biol ; 20(12): 1383-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24240614

RESUMO

DNA replication forks that collapse during the process of genomic duplication lead to double-strand breaks and constitute a threat to genomic stability. The risk of fork collapse is higher in the presence of replication inhibitors or after UV irradiation, which introduces specific modifications in the structure of DNA. In these cases, fork progression may be facilitated by error-prone translesion synthesis (TLS) DNA polymerases. Alternatively, the replisome may skip the damaged DNA, leaving an unreplicated gap to be repaired after replication. This mechanism strictly requires a priming event downstream of the lesion. Here we show that PrimPol, a new human primase and TLS polymerase, uses its primase activity to mediate uninterrupted fork progression after UV irradiation and to reinitiate DNA synthesis after dNTP depletion. As an enzyme involved in tolerance to DNA damage, PrimPol might become a target for cancer therapy.


Assuntos
DNA Primase/fisiologia , Replicação do DNA/fisiologia , DNA Polimerase Dirigida por DNA/fisiologia , Enzimas Multifuncionais/fisiologia , Quebras de DNA de Cadeia Dupla , Dano ao DNA , DNA Primase/química , DNA Primase/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Instabilidade Genômica , Humanos , Enzimas Multifuncionais/química , Enzimas Multifuncionais/metabolismo , RNA Mensageiro/metabolismo , Fase S , Raios Ultravioleta
15.
Mol Cell ; 52(4): 566-73, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24267451

RESUMO

DNA damage can stall the DNA replication machinery, leading to genomic instability. Thus, numerous mechanisms exist to complete genome duplication in the absence of a pristine DNA template, but identification of the enzymes involved remains incomplete. Here, we establish that Primase-Polymerase (PrimPol; CCDC111), an archaeal-eukaryotic primase (AEP) in eukaryotic cells, is involved in chromosomal DNA replication. PrimPol is required for replication fork progression on ultraviolet (UV) light-damaged DNA templates, possibly mediated by its ability to catalyze translesion synthesis (TLS) of these lesions. This PrimPol UV lesion bypass pathway is not epistatic with the Pol η-dependent pathway and, as a consequence, protects xeroderma pigmentosum variant (XP-V) patient cells from UV-induced cytotoxicity. In addition, we establish that PrimPol is also required for efficient replication fork progression during an unperturbed S phase. These and other findings indicate that PrimPol is an important player in replication fork progression in eukaryotic cells.


Assuntos
Cromossomos Humanos/genética , Adutos de DNA/genética , DNA Primase/fisiologia , Replicação do DNA , DNA Polimerase Dirigida por DNA/fisiologia , Enzimas Multifuncionais/fisiologia , Sequência de Aminoácidos , Animais , Proliferação de Células , Sobrevivência Celular , Galinhas , Adutos de DNA/química , Adutos de DNA/metabolismo , Dano ao DNA , DNA Primase/química , DNA de Cadeia Simples/química , DNA Polimerase Dirigida por DNA/química , Pontos de Checagem da Fase G2 do Ciclo Celular , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Enzimas Multifuncionais/química , Raios Ultravioleta , Xenopus
16.
Mol Cell ; 52(4): 541-53, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24207056

RESUMO

We describe a second primase in human cells, PrimPol, which has the ability to start DNA chains with deoxynucleotides unlike regular primases, which use exclusively ribonucleotides. Moreover, PrimPol is also a DNA polymerase tailored to bypass the most common oxidative lesions in DNA, such as abasic sites and 8-oxoguanine. Subcellular fractionation and immunodetection studies indicated that PrimPol is present in both nuclear and mitochondrial DNA compartments. PrimPol activity is detectable in mitochondrial lysates from human and mouse cells but is absent from mitochondria derived from PRIMPOL knockout mice. PRIMPOL gene silencing or ablation in human and mouse cells impaired mitochondrial DNA replication. On the basis of the synergy observed with replicative DNA polymerases Polγ and Polε, PrimPol is proposed to facilitate replication fork progression by acting as a translesion DNA polymerase or as a specific DNA primase reinitiating downstream of lesions that block synthesis during both mitochondrial and nuclear DNA replication.


Assuntos
DNA Primase/fisiologia , Replicação do DNA , DNA Polimerase Dirigida por DNA/fisiologia , Enzimas Multifuncionais/fisiologia , Sequência de Aminoácidos , Animais , Ácido Apurínico/química , Sequência de Bases , Domínio Catalítico , Núcleo Celular/enzimologia , DNA Polimerase II/química , DNA Polimerase gama , DNA Primase/química , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , DNA Polimerase Dirigida por DNA/química , Desoxiadenosinas/química , Desoxirribonucleotídeos/química , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/enzimologia , Dados de Sequência Molecular , Enzimas Multifuncionais/química
17.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 9): 1633-44, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23999287

RESUMO

The enzymes 3,4-dihydroxy-2-butanone 4-phosphate synthase (DHBPS) and GTP cyclohydrolase II (GCHII) catalyze the initial steps of both branches of the bacterial riboflavin-biosynthesis pathway. The structures and molecular mechanisms of DHBPS and GCHII as separate polypeptides are known; however, their organization and molecular mechanism as a bifunctional enzyme are unknown to date. Here, the crystal structure of an essential bifunctional DHBPS/GCHII enzyme from Mycobacterium tuberculosis (Mtb-ribA2) is reported at 3.0 Šresolution. The crystal structure revealed two conformationally different molecules of Mtb-ribA2 in the asymmetric unit that form a dimer via their GCHII domains. Interestingly, analysis of the crystal packing revealed a long `helical-like oligomer' formed by DHBPS and GCHII functional homodimers, thus generating an `open-ended' unit-cell lattice. However, size-exclusion chromatography studies suggest that Mtb-ribA2 exists as a dimer in solution. To understand the discrepancy between the oligomerization observed in solution and in the crystal structure, the DHBPS (Mtb-DHBPS) and GCHII (Mtb-GCHII) domains of Mtb-ribA2 have been cloned, expressed and purified as His-tagged proteins. Size-exclusion chromatography studies indicated that Mtb-GCHII is a dimer while Mtb-DHBPS exists as a monomer in solution. Moreover, kinetic studies revealed that the GCHII activities of Mtb-ribA2 and Mtb-GCHII are similar, while the DHBPS activity of Mtb-ribA2 is much higher than that of Mtb-DHBPS alone. Taken together, the results strongly suggest that Mtb-ribA2 exists as a dimer formed through its GCHII domains and requires full-length Mtb-ribA2 for optimal DHBPS activity.


Assuntos
Proteínas de Bactérias/química , GTP Cicloidrolase/química , Transferases Intramoleculares/química , Enzimas Multifuncionais/química , Mycobacterium tuberculosis/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/fisiologia , Cristalografia por Raios X , GTP Cicloidrolase/fisiologia , Transferases Intramoleculares/fisiologia , Enzimas Multifuncionais/fisiologia , Multimerização Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência
18.
Carcinogenesis ; 32(3): 427-33, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21156972

RESUMO

The causal metabolic pathways underlying associations between folate and risk for colorectal cancer (CRC) have yet to be established. Folate-mediated one-carbon metabolism is required for the de novo synthesis of purines, thymidylate and methionine. Methionine is converted to S-adenosylmethionine (AdoMet), the major one-carbon donor for cellular methylation reactions. Impairments in folate metabolism can modify DNA synthesis, genomic stability and gene expression, characteristics associated with tumorigenesis. The Mthfd1 gene product, C1-tetrahydrofolate synthase, is a trifunctional enzyme that generates one-carbon substituted tetrahydrofolate cofactors for one-carbon metabolism. In this study, we use Mthfd1(gt/+) mice, which demonstrate a 50% reduction in C1-tetrahydrofolate synthase, to determine its influence on tumor development in two mouse models of intestinal cancer, crosses between Mthfd1(gt/+) and Apc(min)(/+) mice and azoxymethane (AOM)-induced colon cancer in Mthfd1(gt/+) mice. Mthfd1 hemizygosity did not affect colon tumor incidence, number or load in Apc(min/+) mice. However, Mthfd1 deficiency increased tumor incidence 2.5-fold, tumor number 3.5-fold and tumor load 2-fold in AOM-treated mice. DNA uracil content in the colon was lower in Mthfd1(gt/+) mice, indicating that thymidylate biosynthesis capacity does not play a significant role in AOM-induced colon tumorigenesis. Mthfd1 deficiency-modified cellular methylation potential, as indicated by the AdoMet: S-adenosylhomocysteine ratio and gene expression profiles, suggesting that changes in the transcriptome and/or decreased de novo purine biosynthesis and associated mutability cause cellular transformation in the AOM CRC model. This study emphasizes the impact and complexity of gene-nutrient interactions with respect to the relationships among folate metabolism and colon cancer initiation and progression.


Assuntos
Aminoidrolases/fisiologia , Neoplasias do Colo/genética , DNA de Neoplasias/metabolismo , Formiato-Tetra-Hidrofolato Ligase/fisiologia , Meteniltetra-Hidrofolato Cicloidrolase/fisiologia , Metilenotetra-Hidrofolato Desidrogenase (NADP)/fisiologia , Complexos Multienzimáticos/fisiologia , Enzimas Multifuncionais/fisiologia , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Aminoidrolases/genética , Animais , Apoptose , Azoximetano/toxicidade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Carcinógenos/toxicidade , Proliferação de Células , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Feminino , Formiato-Tetra-Hidrofolato Ligase/genética , Perfilação da Expressão Gênica , Técnicas Imunoenzimáticas , Masculino , Meteniltetra-Hidrofolato Cicloidrolase/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multienzimáticos/genética , Enzimas Multifuncionais/genética , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Uracila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA