Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 340
Filtrar
1.
Plant J ; 110(3): 658-672, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35106853

RESUMO

Plant cuticles are a mixture of crystalline and amorphous waxes that restrict the exchange of molecules between the plant and the atmosphere. The multicomponent nature of cuticular waxes complicates the study of the relationship between the physical and transport properties. Here, a model cuticle based on the epicuticular waxes of Petunia hybrida flower petals was formulated to test the effect of wax composition on diffusion of water and volatile organic compounds (VOCs). The model cuticle was composed of an n-tetracosane (C24 H50 ), 1-docosanol (C22 H45 OH), and 3-methylbutyl dodecanoate (C17 H34 O2 ), reflecting the relative chain length, functional groups, molecular arrangements, and crystallinity of the natural waxes. Molecular dynamics simulations were performed to obtain diffusion coefficients for compounds moving through waxes of varying composition. Simulated VOC diffusivities of the model system were found to highly correlate with in vitro measurements in isolated petunia cuticles. VOC diffusivity increased up to 30-fold in completely amorphous waxes, indicating a significant effect of crystallinity on cuticular permeability. The crystallinity of the waxes was highly dependent on the elongation of the lattice length and decrease in gap width between crystalline unit cells. Diffusion of water and higher molecular weight VOCs were significantly affected by alterations in crystalline spacing and lengths, whereas the low molecular weight VOCs were less affected. Comparison of measured diffusion coefficients from atomistic simulations and emissions from petunia flowers indicates that the role of the plant cuticle in the VOC emission network is attributed to the differential control on mass transfer of individual VOCs by controlling the composition, amount, and dynamics of scent emission.


Assuntos
Petunia , Compostos Orgânicos Voláteis , Células Epidérmicas , Epiderme Vegetal/química , Folhas de Planta/química , Compostos Orgânicos Voláteis/análise , Água , Ceras/química
2.
Physiol Plant ; 174(2): e13650, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35175634

RESUMO

Plant cuticle as hydrophobic barrier covers almost all aerial plant organs. Herein the cuticular chemical components and the transpiration of various organs of Chinese flowering cabbage (CFC) and Chinese kale (CK) were comprehensively characterized. Numerous species- and organ-specific differences in morphological, chemical, and physiological levels were found. The various organs were relatively smooth in surface for CFC but glaucous with hollow tube- and plate-type crystals for CK. The chemical composition of cuticular waxes were very-long chain n-alkanes, ketones, secondary alcohols with a prominent carbon chain of C29 in CK, primary alcohols dominated by C26 , and aldehydes prominently C30 in CFC. Cutin monomers accumulated with similar levels as waxes and were dominated by α,ω-dicarboxylic acids and fatty acids without added groups. The minimum water conductance differed considerably among species and various organs ranging between 8.9 × 10-5 (CK leaf) and 3.7 × 10-4  m s-1 (CFC leaf petiole). These differences in transpiration properties were proposed to be largely related to the cuticular chemicals in various organs and species. The presented results provide further insights to link the transpiration barrier functions with surface characteristics and cuticular chemicals.


Assuntos
Brassica , Epiderme Vegetal , Álcoois/análise , China , Epiderme Vegetal/química , Ceras/química
3.
Nutrients ; 13(10)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34684501

RESUMO

This study was conducted to investigate the therapeutic effect of hydro-alcoholic extract of Spirulina platensis (SP), golden kiwifruit (Actinidia chinensis) flesh (KF), and golden kiwifruit peel (KP) individually or in combination (SFP) on indomethacin-induced gastric ulcer in rats. Negative control rats (GI) were orally administered distilled water in parallel with other treatments. The positive control rat group (GII) was administered 30 mg kg-1 indomethacin to induce gastric ulcers. The KF and KF extracts were used individually or together with SP in treating indomethacin-induced gastric ulcerated rat groups. Gastric ulcerated rat's groups GIII, GIV, GV, GVI, and GVII were orally administered at 30 mg kg-1 rat body weight as total phenolic content (TPC) equivalent from SP, KF, KP, SPF extracts, and Lansoprazole (30 mg kg-1, as reference drug) daily up to 14 days, respectively. The relevant biochemical parameters, antioxidant biomarkers, and histopathological examination were examined. Remarkably, treating rats with SP, KF, KP, and SFP extracts markedly reduced gastric juice and stomach volume expansion induced by indomethacin. The SP significantly retrieved the pH of gastric juice to a regular rate compared to GI. The ulcer index (UI) was significantly attenuated by SP, KF, KP, and SFP administration. The protection index percentage (PI %) was 80.79, 54.51, 66.08, 75.74, and 74.86% in GIII, GIV, GV, GVI, and GVII, respectively. The gastric mucin content was significantly better attenuated by 95.7 in GIII compared to its content in GI. Lansoprazole increased mucin content by 80.3%, which was considerably lower than SP and SFP. SP, KF, KP, SFP, and Lansoprazole improved the reform of gastric mucosal-increased secreted mucus by 95.6, 61.3, 64.8, 103.1, and 80.2% in GIII, GIV, GV, GVI, and GVII, respectively. Interestingly, SFP efficiently increased vit. B12 level by 46.0% compared to other treatments. While Lansoprazole administrating did not significantly attenuate vit. B12 level. The SP and SFP improved iron and Hemoglobin (HB) levels depending on treatment. SP, KF, KP, and SFP significantly decreased the malondialdehyde (MDA) and increased reduced glutathione (GSH) as well as superoxide dismutase (SOD) levels in blood and stomach tissues. The most potent effect was observed with SP, and SFP was even better than Lansoprazole. Histopathologically, treating rats with SP extract showed a marked reduction of gastric damage and severity changes induced by indomethacin. KP was much better than KF in lessening gastric histopathological damages caused by indomethacin. SFP significantly alleviates gastric histopathological alterations. The lansoprazole-treated group (GVII) greatly relieved the gastric histopathological changes and recorded mild focal necrosis and desquamation of the mucosa in addition to mild oedema in the serosal layer. In conclusion, the presented results proved the antiulcer potential of SP and A. chinensis extracts against an indomethacin-induced gastric ulcer in rats, which may be due to their antioxidant and anti-inflammation efficiency. Thus, these data suggested that SP, KF, KP, and SFP extracts as natural and safe alternatives have a gastroprotective potential against indomethacin-induced gastric ulceration. The antioxidative and anti-inflammatory properties are probable mechanisms.


Assuntos
Actinidia , Antiulcerosos/farmacologia , Extratos Vegetais/farmacologia , Spirulina , Úlcera Gástrica/tratamento farmacológico , Animais , Modelos Animais de Doenças , Frutas/química , Mucosa Gástrica/efeitos dos fármacos , Indometacina , Fitoterapia , Epiderme Vegetal/química , Ratos , Úlcera Gástrica/induzido quimicamente
4.
Plant Cell Environ ; 44(12): 3606-3622, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34510479

RESUMO

Chenopodium quinoa (quinoa) is considered a superfood with its favourable nutrient composition and being gluten free. Quinoa has high tolerance to abiotic stresses, such as salinity, water deficit (drought) and cold. The tolerance mechanisms are yet to be elucidated. Quinoa has epidermal bladder cells (EBCs) that densely cover the shoot surface, particularly the younger parts of the plant. Here, we report on the EBC's primary and secondary metabolomes, as well as the lipidome in control conditions and in response to abiotic stresses. EBCs were isolated from plants after cold, heat, high-light, water deficit and salt treatments. We used untargeted gas chromatography-mass spectrometry (GC-MS) to analyse metabolites and untargeted and targeted liquid chromatography-MS (LC-MS) for lipids and secondary metabolite analyses. We identified 64 primary metabolites, including sugars, organic acids and amino acids, 19 secondary metabolites, including phenolic compounds, betanin and saponins and 240 lipids categorized in five groups including glycerolipids and phospholipids. We found only few changes in the metabolic composition of EBCs in response to abiotic stresses; these were metabolites related with heat, cold and high-light treatments but not salt stress. Na+ concentrations were low in EBCs with all treatments and approximately two orders of magnitude lower than K+ concentrations.


Assuntos
Chenopodium quinoa/metabolismo , Metabolismo dos Lipídeos , Metaboloma , Células Vegetais/metabolismo , Epiderme Vegetal/metabolismo , Chenopodium quinoa/química , Lipidômica , Células Vegetais/química , Epiderme Vegetal/química , Cloreto de Sódio/metabolismo , Estresse Fisiológico
5.
Adv Sci (Weinh) ; 8(19): e2101902, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34338438

RESUMO

Analysis of the epicuticular wax layer on the surface of plant leaves can provide a unique window into plant physiology and responses to environmental stimuli. Well-established analytical methodologies can quantify epicuticular wax composition, yet few methods are capable of imaging wax distribution in situ or in vivo. Here, the first report of Fourier transform infrared (FTIR) reflectance spectroscopic imaging as a non-destructive, in situ, method to investigate variation in epicuticular wax distribution at 25 µm spatial resolution is presented. The authors demonstrate in vivo imaging of alterations in epicuticular waxes during leaf development and in situ imaging during plant disease or exposure to environmental stressors. It is envisaged that this new analytical capability will enable in vivo studies of plants to provide insights into how the physiology of plants and crops respond to environmental stresses such as disease, soil contamination, drought, soil acidity, and climate change.


Assuntos
Doenças das Plantas , Epiderme Vegetal/química , Fenômenos Fisiológicos Vegetais , Estresse Fisiológico/fisiologia , Ceras/química , Microscopia Eletrônica de Varredura , Folhas de Planta/química
6.
Plant J ; 108(1): 93-119, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34288188

RESUMO

The objective of this research was to investigate the differences between glaucous and non-glaucous near-isogenic lines (NILs) of winter rye (Secale cereale L.) in terms of epicuticular wax layer properties (weight, composition, and crystal morphology), selected physiological and biochemical responses, yield components, above-ground biomass, and plant height under soil drought stress. An important aspect of this analysis was to examine the correlation between the above characteristics. Two different NIL pairs were tested, each consisting of a typical glaucous line and a non-glaucous line with a recessive mutation. The drought experiment was conducted twice (2015-2016). Our study showed that wax accumulation during drought was not correlated with higher leaf hydration and glaucousness. Environmental factors had a large impact on the response of the lines to drought in individual years, both in terms of physiological and biochemical reactions, and the composition of epicuticular leaf wax. The analysed pairs displayed significantly different responses to drought. Demonstration of the correlation between the components of rye leaf wax and the physiological and biochemical parameters of rye NILs is a significant achievement of this work. Interestingly, the study showed a correlation between the wax components and the content of photosynthetic pigments and tocopherols, whose biosynthesis, similarly to the biosynthesis of wax precursors, is mainly located in chloroplasts. This suggests a relationship between wax biosynthesis and plant response to various environmental conditions and drought stress.


Assuntos
Secale/fisiologia , Ceras/metabolismo , Biomassa , Clorofila A/metabolismo , Secas , Meio Ambiente , Fluorescência , Fenótipo , Fotossíntese , Epiderme Vegetal/química , Epiderme Vegetal/genética , Epiderme Vegetal/fisiologia , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/fisiologia , Secale/química , Secale/genética , Estresse Fisiológico , Tocoferóis/metabolismo , Ceras/química
7.
Plant Physiol Biochem ; 158: 434-445, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33257229

RESUMO

Barrier properties of the hydrophobic plant cuticle depend on its physicochemical composition. The cuticular compounds vary considerably among plant species but also among organs and tissues of the same plant and throughout developmental stages. As yet, these intraspecific modifications at the cuticular wax and cutin level are only rarely examined. Attempting to further elucidate cuticle profiles, we analysed the adaxial and abaxial surfaces of the sclerophyllous leaf and three developmental stages of the drupe fruit of Prunus laurocerasus, an evergreen model plant native to temperate regions. According to gas chromatographic analyses, the cuticular waxes contained primarily pentacyclic triterpenoids dominated by ursolic acid, whereas the cutin biopolyester mainly consisted of 9/10,ω-dihydroxy hexadecanoic acid. Distinct organ- and side-specific patterns were found for cuticular lipid loads, compositions and carbon chain length distributions. Compositional variations led to different structural and functional barrier properties of the plant cuticle, which were investigated further microscopically, infrared spectroscopically and gravimetrically. The minimum water conductance was highlighted at 1 × 10-5 m s-1 for the perennial, hypostomatous P. laurocerasus leaf and at 8 × 10-5 m s-1 for the few-month-living, stomatous fruit suggesting organ-specific cuticular barrier demands.


Assuntos
Frutas/química , Epiderme Vegetal/química , Folhas de Planta/química , Prunus/química , Ceras/química , Lipídeos de Membrana/química , Triterpenos/química , Água
8.
J Plant Physiol ; 255: 153294, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33070052

RESUMO

Fruit cracking is a key problem restricting the development of the jujube (Ziziphus jujuba) industry, and is closely related to the distribution of the wax layer on the surface of the fruit. Three jujube cultivars with different levels of cracking resistance, namely 'Popozao', 'Banzao', and 'Hupingzao', were selected for comparison. Cracks on the cuticular membrane (CM) of 'Hupingzao' widened and deepened during the coloring period. The wax level of highly cracking-resistant 'Popozao' was significantly higher than that of 'Hupingzao' during the fruit coloring period. The fruit wax composition of the three jujube cultivars were quite similar, consisting mainly of alkanes, triterpenoids, aldehydes, amines, phenols, esters, ketones, fatty acids, primary alcohols, and other, unclassified compounds. Fatty acids, primary alcohols, and alkanes were the predominant fruit wax compounds of the three cultivars. We further analyzed the carbon chain length of aliphatic compounds and found that the concentration of fatty acids in 'Popozao' was significantly lower than that in 'Banzao' and 'Hupingzao' during the coloring period. Moreover, C28-30 were the most abundant primary alcohols during fruit development. Highly cracking-resistant cultivar 'Popozao' contains more very-long-chain alkanes and aldehydes (carbon atom >20) than 'Banzao' and 'Hupingzao' during the coloring period. In addition, we assessed the expression levels of 11 genes involved in fatty acid biosynthesis, elongation, and degradation, and in wax biosynthesis. Gene expression analysis indicated that KCS1, CER1, CYP86B1, and CYP86A play crucial roles in wax formation on jujube fruit. In conclusion, fruit cracking was correlated with whether wax synthesis is coordinated with fruit enlargement and'Popozao' has a stronger ability to synthesize very-long-chain alkanes and aldehydes. Understanding the diff ;erences in the cuticular wax and the activities of the corresponding genes in jujube cultivars with different sensitivities to cracking will provide a specific way to prevent fruit cracking.


Assuntos
Produtos Agrícolas/genética , Frutas/química , Frutas/genética , Epiderme Vegetal/química , Ceras/química , Ziziphus/química , Ziziphus/genética , Produtos Agrícolas/química , Produtos Agrícolas/fisiologia , Frutas/fisiologia , Regulação da Expressão Gênica de Plantas , Variação Genética , Epiderme Vegetal/fisiologia , Ziziphus/fisiologia
9.
Acta Sci Pol Technol Aliment ; 19(3): 261-270, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32978909

RESUMO

BACKGROUND: The search for new sources of natural antioxidants is very important because many diseases are caused by oxidative stress. Fruit which contain antioxidants are an important part of a healthy diet. The aim of this study was to evaluate the antioxidant activity of extracts of both the fresh and frozen peel and the flesh of Garcinia mangostana L. METHODS: The extracts from the fresh and frozen peel and the flesh of mangosteen were prepared by ultrasound-assisted extraction using 20%, 40%, 70% and 96% (v/v) ethanol for 15, 30 or 60 minutes. The antioxidant potential was evaluated by the DPPH, ABTS, CUPRAC, FRAP and FIC methods, whereas the total phenolic content was measured using the Folin-Ciocalteu (F-C) technique. The contents of anthocyanins and flavonoids in the peel extracts were also determined. RESULTS: In most cases, the highest antioxidant activity was observed in the fresh peel samples. It was higher than the antioxidant potential of the frozen peels and the fresh and frozen flesh. The ultrasound-assisted extraction, in particular those lasting 30 or 60 minutes and using ethanol in concentrations higher than 20% (v/v), seemed to be an effective extraction process. CONCLUSIONS: The obtained results suggest that G. mangostana, in particular its peels, could be a valuable source of antioxidants. The extraction parameters, such as the time or solvent concentration, as well as the type of plant material, had an impact on the tested properties of the extracts. However, more detailed studies on the antioxidant activity of the studied plants are required.


Assuntos
Antioxidantes/farmacologia , Frutas/química , Garcinia mangostana/química , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Antocianinas/análise , Antocianinas/farmacologia , Antioxidantes/análise , Benzotiazóis/metabolismo , Compostos de Bifenilo/metabolismo , Flavonoides/análise , Flavonoides/farmacologia , Conservação de Alimentos/métodos , Armazenamento de Alimentos/métodos , Congelamento , Humanos , Fenóis/análise , Fenóis/farmacologia , Picratos/metabolismo , Epiderme Vegetal/química , Extratos Vegetais/química , Polifenóis/análise , Ácidos Sulfônicos/metabolismo
10.
Food Res Int ; 133: 108707, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32466922

RESUMO

A particular challenge to making wine from Pinot noir grapes is the delicate flavor, light color and poor ageing potential of the wine. Conventional Pinot noir must preparations were compared with those made using a skin-based supplement to assess the impact on non-bleachable (sulfur resistant) pigments in the wine. When supplemented with either fresh grape pomace of Pinot noir, Pinot gris or Chardonnay grapes; Pinot noir grape marc or a commercial liquid grape skin extract, the additional seeds and pulp from the supplements were shown to compromise the development of stable pigments in the wine. To compare the relative merits of tannin derived from grape skins and seeds, the supplements used in a parallel experiment were the skins alone of the same three grape varieties and at six months bottle age, the stable pigment concentration was found to exceed the amount attributable to the supplement. A third experiment used fermented grape skins as the supplement, with 85% of the supplementary anthocyanin recovered as stable pigment complexes in the wine. Notably, this series of experiments showed that supplements containing grape seeds appeared to compromise non-bleachable pigment formation in the wine while skin only supplements stimulated their development.


Assuntos
Pigmentação/efeitos dos fármacos , Epiderme Vegetal/química , Sementes/química , Vitis , Vinho , Antocianinas/análise , Fermentação , Taninos/análise
11.
Int J Biol Macromol ; 152: 137-146, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32092422

RESUMO

In this study, the antioxidant ability of peanut shell and skin extracts and their effects on the physical and structure properties of starch-chitosan film were investigated. The results showed that the DPPH radical scavenging ability of peanut skin extracts was significantly higher than the peanut shell extracts. This could be due to the rich rutin and 4-O-caffeoulquinic acid existed in the peanut skin extracts. When added the peanut skin and shell extracts into the starch-chitosan film, the apparent viscosity of film forming solution at 100 s-1 decreased. Moreover, water vapor permeability and swelling of film decreased with the addition of peanut skin and shell extracts. Two peanut extracts also increased the color L* and opacity of film. The tensile strength of film increased with the addition of peanut skin extracts, and decreased with peanut shell extracts. The addition of two extracts also resulted in the increase of endothermic temperature of starch-chitosan film. But there were no new peaks appeared in the FTIR image. Only the peaks at 3276 cm-1, 1382 cm-1, 1249 cm-1 shifted to 3273 cm-1, 1385 cm-1 and 1258 cm-1, which implied the peanut shell and skin extracts disturbed the hydrogen bond and vibration of molecular chain in film matrix.


Assuntos
Antioxidantes/química , Arachis/química , Quitosana/química , Embalagem de Alimentos/métodos , Epiderme Vegetal/química , Extratos Vegetais/química , Amido/química , Reologia , Solubilidade , Temperatura , Resistência à Tração , Água/química
12.
Artigo em Inglês | MEDLINE | ID: mdl-32046160

RESUMO

Leaf cuticle sorption is one important process for the uptake of environment pollutants in plants, and mixed powder including adaxial and abaxial cuticle is generally used to demonstrate the sorption behavior. However, the difference of adaxial and abaxial cuticle on plant cuticle sorption is not well understood. Abaxial cuticle (PAC) and adaxial cuticle (PBC) were isolated from hypostomatic Photinia serrulata to investigate their adsorption of a model radionuclide (strontium). The elemental composition and FTIR spectra for two cuticles were quite similar and both show high affinity (H/C, 1.59 and 1.65) and polarity ((O + N)/C, 0.470 and 0.499). Both adsorption isotherms fit well with Langmuir model (R2, 0.97 and 0.97), and the maximum adsorption capacity of PAC was 12.1 mg/g, little higher than that of PBC (10.3 mg/g). Adsorption of strontium increased with the increase of pH, and the maximum was attained when pH ≥4. Electrostatic attraction was demonstrated to be the main mechanism of -strontium adsorption onto PAC and PBC, and the similar adsorption of adaxial and abaxial cuticle was consistent with their similar isoelectric point.


Assuntos
Photinia/química , Epiderme Vegetal/química , Folhas de Planta/química , Estrôncio/química , Adsorção
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 224: 117460, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31422338

RESUMO

Over the past decades, ATR-FTIR has emerged as promising tool for the identification of plants at the genus and (sub-) species level through surface measurements of intact leaves. Theoretical considerations regarding the penetration depth of the evanescent wave into the sample and the thickness of plant leaf cuticles suggest that the structure and composition of the cuticle represent universal taxonomic markers. However, experimental evidence for this hypothesis is scarce. In the current contribution, we present results of a series of simple experiments on epidermal monolayers derived from the bulbs of Allium cepa L. (Amaryllidaceae) as a model system to study the effect of an IR active probe located beyond the theoretical penetration depth of the evanescent wave. We found that this probe had a significant influence on the ATR-FTIR spectra for up to 4 epidermal layers stacked on top of each other corresponding to a total thickness of around 60 µm, exceeding the theoretical penetration depth of the evanescent wave by a factor of around 20. Altogether, our data indicate a major discrepancy between theory and practice in ATR-FTIR spectroscopy in general and provide strong evidence that in general plant leaf spectra cannot be fully explained by the structure and composition of the cuticle alone.


Assuntos
Cebolas , Epiderme Vegetal , Folhas de Planta , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Cebolas/química , Cebolas/citologia , Epiderme Vegetal/química , Epiderme Vegetal/citologia , Folhas de Planta/química , Folhas de Planta/citologia , Análise de Componente Principal , Microtomografia por Raio-X
14.
Protoplasma ; 257(3): 833-840, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31848754

RESUMO

Cuticular wax is a hydrophobic barrier between the plant surface and the environment that effectively reduces the loss of water. The surface of Welsh onion leaves is covered with wax. To explain the relationship between wax composition and water loss, we conducted this experiment. The water permeability and wax composition of leaves were determined by chemical and GC-MS methods. We performed a comparative analysis of the differences between the two cultivars and analyzed the relationship between water permeability and waxy components. Overall, the permeability to water was higher in 'Zhangqiu' than in 'Tenko'. The wax amount of 'Tenko' was 1.28-fold higher than that of 'Zhangqiu' and was primarily explained by the much larger amounts of ketones and alcohols in the former. Among the waxy components, C29 ketones were most abundant. There were substantial discrepancies in wax composition, total wax content, and water permeability between the two cultivars. The main reason for the discrepancy in water permeability may be the significantly lower aliphatic fraction in 'Zhangqiu' than in 'Tenko'. This study makes a vital contribution to drought resistance research on allium plants.


Assuntos
Epiderme Vegetal/química , Água/química , Cebolas , Permeabilidade , Ceras/análise
15.
Microsc Microanal ; 25(5): 1213-1223, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451123

RESUMO

Needles of Juniperus rigida are used in Chinese traditional medicine for the treatment of brucellosis, dropsy, skin disease, and rheumatoid arthritis. This is the first study that reports anatomical structures of the J. rigida needles collected at different altitudes. The most common anatomical, phytochemical, and histochemical techniques and methods are used. The results show that anatomical structures and chemical composition change significantly at different altitudes. The main anatomical characters are significant xeromorphic structures (thick epidermis, hypodermis, and cuticle), a stomatal band, a developed vascular bundle, and a marginal resin duct. The xeromorphic structures become more pronounced with increasing altitude. The phytochemical and histochemical results demonstrate that the content of the main chemical compounds (phenols and terpenoids) basically increases at a higher elevation. Histochemical analysis localizes the phenols in epidermal cells, sponge tissue, endothelial layer cells, and stomatal bands, and the terpenoids in palisade tissue, sponge tissue, and the edge of the resin duct. This work reveals the relation between anatomy and chemistry in J. rigida needles, contributes to the quality control of its ethno-medicine, and provides the evidence to develop the commercial cultivation.


Assuntos
Altitude , Juniperus/anatomia & histologia , Juniperus/química , Compostos Fitoquímicos/análise , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Histocitoquímica , Fenóis/análise , Epiderme Vegetal/anatomia & histologia , Epiderme Vegetal/química , Terpenos/análise
16.
J Hazard Mater ; 379: 120804, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31254783

RESUMO

Cadmium is highly poisonous to mammals and related water pollution incidents are increasing world-widely. Here, the clean-up of trace Cd(II) by a combined process of microwave-functionalized rice husk (RHMW-M) and poly aluminium chloride (PAC) was investigated for the first time, with the exploration of removal mechanism and efficacy. Microwave irradiation was found to be a new approach to achieve the functionalized procedure, which could decrease the processing time from 2.5 h to 390 s with the Cd(II) uptake of the outcome product soaring from 137.16 mg/g to 191.32 mg/g. The ultra-rapidly prepared RHMW-M exhibited a fast adsorption equilibrium within 30 min over a wide pH range of 5.0-8.0, and the FT-IR and XPS studies confirmed that both ion exchange and chelation were functioned in the Cd(II) uptake process. Controlled by the turbidity threshold of drinking water treatment plant, the feasible dosage of RHMW-M in the absence and presence of 30 mg/L PAC increased from 30 to 760 mg/L, which could effectively deal with the trace Cd(II) at the concentration from 33 µg/L up to 0.933 mg/L, exhibiting much better performance than traditional alkali precipitation. Predictably, this simple and scalable RHMW-M/PAC system could afford a promising end-of-pipe solution for heavy-metal contamination.


Assuntos
Hidróxido de Alumínio/química , Cádmio/isolamento & purificação , Micro-Ondas , Oryza/química , Epiderme Vegetal/química , Rios/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Cinética , Propriedades de Superfície
17.
Methods Mol Biol ; 1992: 215-230, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31148041

RESUMO

Cellular force microscopy (CFM) is a noninvasive microindentation method used to measure plant cell stiffness in vivo. CFM is a scanning probe microscopy technique similar in operation to atomic force microscopy (AFM); however, the scale of movement and range of forces are much larger, making it suitable for stiffness measurements on turgid plant cells in whole organs. CFM experiments can be performed on living samples over extended time periods, facilitating the exploration of the dynamics of processes involving mechanics. Different sensor technologies can be used, along with a variety of probe shapes and sizes that can be tailored to specific applications. Measurements can be made for specific indentation depths, forces and timing, allowing for very precise mechanical stimulation of cells with known forces. High forces with sharp tips can also be used for mechanical ablation of cells with force feedback.


Assuntos
Módulo de Elasticidade , Microscopia de Varredura por Sonda/métodos , Cebolas/citologia , Epiderme Vegetal/citologia , Fenômenos Biomecânicos , Parede Celular/química , Desenho de Equipamento , Microscopia de Varredura por Sonda/instrumentação , Cebolas/química , Células Vegetais/química , Epiderme Vegetal/química , Software
18.
Anal Chem ; 91(13): 8326-8333, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31125203

RESUMO

The cuticle, the outermost layer covering the epidermis of most aerial organs of land plants, can have a heterogeneous composition even on the surface of the same organ. The main cuticle component is the polymer cutin which, depending on its chemical composition and structure, can have different biophysical properties. In this study, we introduce a new on-surface depolymerization method coupled to liquid extraction surface analysis (LESA) high-resolution mass spectrometry (HRMS) for a fast and spatially resolved chemical characterization of the cuticle of plant tissues. The method is composed of an on-surface saponification, followed by extraction with LESA using a chloroform-acetonitrile-water (49:49:2) mixture and direct HRMS detection. The method is also compared with LESA-HRMS without prior depolymerization for the analysis of the surface of the petals of Hibiscus richardsonii flowers, which have a ridged cuticle in the proximal region and a smooth cuticle in the distal region. We found that on-surface saponification is effective enough to depolymerize the cutin into its monomeric constituents thus allowing detection of compounds that were not otherwise accessible without a depolymerization step. The effect of the depolymerization procedure was more pronounced for the ridged/proximal cuticle, which is thicker and richer in epicuticular waxes compared with the cuticle in the smooth/distal region of the petal.


Assuntos
Espectrometria de Massas/métodos , Lipídeos de Membrana/química , Epiderme Vegetal/química , Flores/química , Hibiscus , Extração Líquido-Líquido , Lipídeos de Membrana/isolamento & purificação , Polimerização
19.
Plant Cell Physiol ; 60(7): 1567-1580, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31020320

RESUMO

The surface of most aerial plant organs is covered with the cuticle, a membrane consisting of a variety of organic compounds, including waxes, cutin (a polyester) and polysaccharides. The cuticle serves as the multifunctional interface between the plant and the environment, and plays a major role in protecting plants against various environmental stress factors. Characterization of the molecular arrangements in the intact cuticle is critical for the fundamental understanding of its physicochemical properties; however, this analysis remains technically challenging. Here, we describe the nondestructive characterization of the intact cuticle of Brassica oleracea L. leaves using polarization modulation-infrared (IR) reflection-absorption spectroscopy (PM-IRRAS). PM-IRRAS has a probing depth of less than several hundreds of nanometers, and reveals the crystalline structure of the wax covering the cuticle surface (epicuticular wax) and the nonhydrogen-bonding character of cutin. Combined analysis using attenuated total reflection-IR spectra suggested that hemicelluloses xylan and xyloglucan are present in the outer cuticle region close to the epicuticular wax, whereas pectins are dominant in the inner cuticle region (depth of ≤2 µm). PM-IRRAS can also determine the average orientation of the cuticular molecules, as indicated by the positive and negative spectral peaks. This unique advantage reveals the orientational order in the intact cuticle; the hydrocarbon chains of the epicuticular wax and cutin and the backbones of hemicelluloses are oriented perpendicular to the leaf surface. PM-IRRAS is a versatile, informative and easy-to-use technique for studying plant cuticles because it is nondestructive and does not require sample pretreatment and background measurements.


Assuntos
Brassica/metabolismo , Folhas de Planta/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Brassica/química , Glucanos/química , Glucanos/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Epiderme Vegetal/química , Epiderme Vegetal/metabolismo , Folhas de Planta/química , Xilano Endo-1,3-beta-Xilosidase/química , Xilano Endo-1,3-beta-Xilosidase/metabolismo , Xilanos/química , Xilanos/metabolismo
20.
PLoS One ; 14(3): e0214591, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30917157

RESUMO

Diabetes affects at least 285 million people globally, and this number continues to increase. Clinical complications include impaired glucose metabolism, hyperglycemia, dyslipidemia, atherosclerosis and non-alcoholic fatty liver disease. Evidence has shown that natural phenolics play a protective effect on both the development and management of type 2 diabetes. This study evaluated effects of the extract from peanut skins containing polyphenols on induced- hyperglycemia using in vivo and in vitro methods. A human hepatocellular liver carcinoma cell line (HepG2) was used to investigate the effect of the peanut skin extract on cell viability after exposure to high glucose concentrations. In vivo, the effect of peanut skin extract on an oral glucose tolerance was investigated in human subjects. Fifteen participants aged 21-32 underwent an oral glucose tolerance test with five treatments: 1) 50-gram glucose solution (reference); 2). 50-gram glucose solution, followed by 12 mg of vegi-capsulated maltodextrin; 3) 50-gram glucose solution, followed by 120 mg of vegi-capsulated maltodextrin-encapsulated peanut skin extract; 4). 50-gram glucose solution, followed by 28 grams of unfortified coated peanuts; 5) 50-gram glucose solution, followed by 28 grams of chili lime coated peanuts fortified with encapsulated peanut skin extract. Glucose levels were measured using a continuous monitor. Peanut skin extract was found to attenuate the decrease in cell viability in high glucose treated HepG2 cells, showing a protective effect against hyperglycemia induced cell death. No difference in the glycemic response area under the curve between any treatments using the tolerance test, but the treatment of the peanut skin extract with the glucose reference resulted in a significantly lower peak blood glucose response at 45 minutes, indicating that it was effective at reducing the glycemic response. The present study shows that the phenolic extract of peanut skins has an antidiabetic effect, further confirming their value as a functional food ingredient.


Assuntos
Arachis/química , Hiperglicemia/tratamento farmacológico , Fenóis/farmacologia , Adulto , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Teste de Tolerância a Glucose , Células Hep G2 , Humanos , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Masculino , Fenóis/uso terapêutico , Epiderme Vegetal/química , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...